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Abstract

Non-line-of-sight (NLOS) imaging aims to reconstruct
scenes outside the field of view of an imaging system. A
common approach is to measure the so-called light tran-
sients, which facilitates reconstructions through ellipsoidal
tomography that involves solving a linear least-squares.
Unfortunately, the corresponding linear operator is very
high-dimensional and lacks structures that facilitate fast
solvers, and so, the ensuing optimization is a computa-
tionally daunting task. We introduce a computationally
tractable framework for solving the ellipsoidal tomogra-
phy problem. Our main observation is that the Gram of
the ellipsoidal tomography operator is convolutional, ei-
ther exactly under certain idealized imaging conditions, or
approximately in practice. This, in turn, allows us to ob-
tain the ellipsoidal tomography solution by using efficient
deconvolution procedures to solve a linear least-squares
problem involving the Gram operator. The computational
tractability of our approach also facilitates the use of var-
ious regularizers during the deconvolution procedure. We
demonstrate the advantages of our framework in a variety
of simulated and real experiments.

1. Introduction
Recent advances in sensor technology have enabled

high-speed imaging at picosecond timescales [32, 60]. This
has facilitated non-line-of-sight (NLOS) imaging [32, 59],
the ability of an imaging system to “look around corners”
— a capability that finds application in assisted and au-
tonomous driving, endoscopy, and imaging in confined
spaces such as caves and debris.

The core ideas of NLOS imaging rely on measuring the
time of flight (ToF) and radiance of multi-bounce photons
that have interacted with the NLOS scene. The traditional
measurement pipeline is as follows: a pulsed laser illumi-
nates a LOS scene point and the ToF of photons arriving
at a second LOS point is measured using a time-resolved
sensor; these photons are assumed to have bounced off the

NLOS scene via the LOS scene points. Binning the arriving
photons based on their ToF provides a measurement of the
light transport transient associated with the specific pair of
LOS points. Repeating this process across multiple illumi-
nation and sensing points results in the measurement of the
so-called 5D light transport transient [43, 49]. The 5D light
transient provides a rich encoding of the geometry of the
NLOS scene, thereby facilitating the recover of its shape.

Algorithmically, the reconstruction of the NLOS scene,
modeled as a volumetric albedo map, from the 5D light
transient requires the solution to an ellipsoidal tomography
problem, which is usually computationally prohibitive to
solve. The high computational cost can be attributed to two
factors: first, the high-dimensionality of both the measure-
ments and the NLOS scene voxelization; and second, the
lack of structures in the measurement operator that facilitate
fast implementations. Solving the linear inverse problem
to recover a volumetric albedo from the 5D light transient
measurements, with or without priors, is intractable.

Many existing methods avoid solving the inverse prob-
lem by relying on a pipeline adapted from computed to-
mography [28] called filtered backprojection. First, the
backprojection operator is applied to the measured tran-
sients [2, 10, 18, 35, 59]; this operator projects each light
transient measurement onto the voxels in the NLOS scene
that could have contributed to it. Next, the Laplacian opera-
tor is applied to mitigate the enhancement of low-frequency
components endemic to the backprojected result [10, 59].
Yet, this version of filtered backprojection as used in NLOS
imaging is a heuristic reconstruction procedure, as it does
not solve any specific formulation of the inverse problem.

Contributions. Our main technical result is to show that,
under certain assumptions on the imaging geometry, the
Gram1 of the NLOS measurement operator is a convolution
operator, as illustrated in Figure 1. This result advances
NLOS imaging in three important ways. First, it allows us
to efficiently obtain the ellipsoidal tomography reconstruc-
tion by solving an equivalent linear least-squares involving

1The Gram of the matrix A is A>A.
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Figure 1. Overview of our convolutional model for NLOS imaging. (a) We capture transient measurements of light interacting with the
NLOS scene through reflections on a relay LOS surface. (b) The measurement model A maps the volumetric albedo ρ of the NLOS scene
to 5D light transients, and the backprojection operation A> maps 5D light transients to the backprojected albedo. We enable efficient and
robust NLOS imaging by showing that the end-to-end mapping, modeled as the Gram operator A>A, is approximately convolutional.

the Gram operator: As the Gram operator is convolutional,
this problem can be solved using computationally-efficient
deconvolution algorithms. Second, it provides a theoretical
justification for the filtered backprojection algorithm: We
can show that filtered backprojection corresponds to using
an approximate deconvolution filter to solve the problem in-
volving the Gram operator. Third, it facilitates the use of a
wide range of priors to regularize the NLOS reconstruction
problem: The convolutional property of the Gram operator
implies that the corresponding regularized least squares re-
main computationally tractable. We verify the benefits of
this result using both simulated and real data.

2. Related Work

Non-line-of-sight imaging. Starting with the work of Kir-
mani et al. [31, 32], the past decade has seen a proliferation
of works that explore different aspects of the non-line-of-
sight (NLOS) imaging problem. We can broadly distinguish
between two categories: Passive methods rely on environ-
ment illumination to localize or estimate rough motion and
structure in the NLOS scene [4,5,7,8,13,52,55,56,63]. Ac-
tive methods controllably inject light into the NLOS scene
through a relay surface, which allows obtaining higher-
fidelity information about it. For instance, even using only
intensity cameras with coherent [6, 29, 30, 54] or incoher-
ent illumination [11, 34] can enable accurate tracking and
reconstruction of images of NLOS objects.

Our focus is on active methods that use light tran-
sients, that is, time-resolved radiometric measurements of
the light reflected back by the NLOS scene [24]. These
transients can be acquired using a variety of imaging tech-
nologies, including streak cameras [60], photonic mixer de-
vices (PMD) [19,25,26,43], single-photon avalanche diodes
(SPADs) [15], or interferometry [16]. For macroscopic
scenes, SPADs have recently become the sensor of choice,
providing time resolutions in tens of picoseconds [42, 53].

The technique closest to this work are those that recover
discretized approximations of the NLOS scene by solving a
problem of ellipsoidal tomography [10,20,21,27,35,44,45,

59]. Our paper serves to provide theoretical justification and
computational acceleration for techniques commonly used
within this framework. Alternative approaches for NLOS
reconstruction from transient measurements use geometric
algorithms based on Fermat’s principle [57,62], wave-based
models [37, 39, 50, 51], and inverse rendering [23, 47, 58].
These approaches provide different trade-offs in terms of
reconstruction detail, reflectance invariance, and robustness
to noise. Finally, some of these techniques have been ex-
tended to NLOS imaging with non-optical signals, includ-
ing acoustic [36] and thermal [40].

Computed tomography (CT). NLOS imaging techniques
based on ellipsoidal tomography are closely related to CT
techniques [28]. In both settings, reconstruction can be re-
duced to solving a linear system, involving a measurement
operator corresponding to different light trajectories inside
an invisible volume: straight lines in the case of CT, and
ellipsoidal shells in NLOS imaging. Because of this sim-
ilarity, a lot of concepts from CT have found direct analo-
gies in NLOS imaging, including the filtered backprojection
algorithm [59] and analysis using the elliptic Radon trans-
form [38]. Despite these analogies, our theoretical under-
standing of these concepts is often much more developed
in the case of CT than in ellipsoidal tomography. The con-
tributions of this paper help close this gap, for example by
deriving the optimal filter to be used for filtered backpro-
jection in the ellipsoidal case, analogous to the well-known
Ram-Lak filter [28] in the linear case. This result is also of
general interest for other problems where ellipsoidal tomog-
raphy finds applications, for instance seismic imaging [41]
and ultrasound imaging [3].

3. Problem Setup and Background
We begin by introducing the NLOS imaging problem,

defining basic notation, and reviewing reconstruction proce-
dures based on ellipsoidal tomography. We assume that we
collect measurements through a Lambertian line-of-sight
(LOS) surface L. We use an impulse source (e.g., pulsed
laser) to illuminate a point l on L. We then use a sensor



Table 1. Comparison of NLOS imaging algorithms. A: Measurement operator. i: 5D light transient. L: Laplacian filter. ic: Confocal
light transient (⊂ i). kc: 3D convolution kernel [44], f : 3D convolution kernel (ours). m2: Number of illumination (sensing) points. nt:
Number of time bins. n: Voxel resolution for each axis. Time complexity listed for iterative methods represent the cost per iteration.

Method Formulation Speed Priors Scanning pattern Note Complexity per iteration

Full linear reconstruction argminρ ‖i−Aρ‖ Slow X No requirement Intractable O(min(m4n3,m4n2nt))

Backprojection A>i Fast × No requirement Approximate n.a.

Filtered backprojection LA>i Fast × No requirement Approximate n.a.

Light-cone transform [44] argminρ ‖ic − kc ∗ ρ‖ Very fast X Confocal Limited res. O(m2nt lognt)

Ours argminρ ‖A>i− f ∗ (ρ/z4)‖ Fast X No requirement Exact O(n3 logn)

(e.g., SPAD) to image a second point s on L, and measure
the light transient, i.e., time-resolved intensity, i(t; l, s).
The set of light transients at all pairs l and s on the LOS
surface L is called the 5D light transient [43, 49]:

I(L) ≡ {i(t; l, s) | ∀ l, s ∈ L}. (1)

Measurement model. To relate the 5D transient to the
NLOS scene, we follow previous work [10, 18, 21, 32, 44,
59], and model the NLOS scene as a volumetric albedo
function ρ(x), where x = (x, y, z) ∈ Ωx and Ωx ⊂ R3

is the NLOS volume including the objects we are interested
in recovering. Implicit in this model are the following as-
sumptions: (1) each light path only interacts with a single
NLOS scene point (three-bounce paths); (2) all NLOS scene
points are visible from the LOS surface; and, (3) shading ef-
fects due to reflectance and normals are ignored, i.e., light
scatters isotropically at each NLOS scene point. For sim-
plicity, we omit the portions of light paths contained in the
LOS scene, i.e., light travel to/from the illumination and
sensing points to the imaging system. With these assump-
tions, we can define a measurement operator mapping the
NLOS albedo ρ(x) to light transient i(t; l, s) as

i(t; l, s) =

˚

Ωx

ρ(x)
δ(‖x− l‖+ ‖x− s‖ − ct)
‖x− l‖2‖x− s‖2

dx, (2)

where c is the speed of light. Because of the Dirac delta
term δ(·) in the integrand, the points in Ωx that contribute
to the light transient i at a specific time instant tmust satisfy

‖x− l‖+ ‖x− s‖ − ct = 0. (3)

We recognize this as the definition of a 3D ellipsoid with
foci l, s, and major axis length ct [46]. Because each mea-
surement accumulates information about the scene along an
ellipsoid, inverting this measurement operator is referred to
as a problem of ellipsoidal tomography [59]. Discretizing
the measurement operator of Equation (2), we obtain

i = Aρ, (4)

where: i ∈ Rnlnsnt
+ is the vectorized representation of

light transient, with nl, ns, and nt being the number of

illumination points, sensing points, and time bins, respec-
tively; ρ ∈ Rnxnynz

+ is the vectorized representation of
the NLOS volumetric albedo, with nx, ny , and nz be-
ing the number of voxels along each coordinate axis; and
A ∈ Rnlnsnt×nxnynz

+ is a matrix corresponding to the dis-
cretization of integrand terms in Equation (2) other than the
albedo ρ. We refer to A as the measurement matrix.

Reconstructing the NLOS scene can be done by solving
the linear system of Equation (4), e.g., in the least-squares
sense, for the NLOS volumetric albedo ρ. Unfortunately,
this is generally not computationally tractable, because of
the prohibitively large size of A as well as the lack of spe-
cific structures that facilitate fast implementations. (We de-
fer a detailed comparison of the computational complexity
of various reconstruction algorithms to Section 4.)

Backprojection. To circumvent this computational burden,
an estimate of the NLOS volumetric albedo can be instead
formed using the adjoint of the measurement operator of
Equation (2), often referred to as the backprojection oper-
ator in analogy with computed tomography. Given the 5D
light transients, the backprojection operator is written as

ρbp(x)=

˙

Ωl,s,t

i(t; l, s)
δ(‖x−l‖+‖x−s‖−ct)
‖x− l‖2‖x− s‖2

dtds dl. (5)

The backprojection operator projects each light transient
i(t; l, s) onto the points x satisfying the ellipsoidal con-
straint of Equation (3). Then, the backprojected volumetric
albedo ρbp(x) at x is the weighted accumulation of these
projections, with weights corresponding to light fall-off.

Upon discretization, Equation (5) becomes

ρbp = A>i, (6)

where ρbp ∈ Rnxnynz

+ is the vectorization of the backpro-
jected volumetric albedo, and the backprojection matrix is
simply the transpose of the measurement matrix A.

There are many variants of the backprojection operator
that have appeared in the NLOS imaging literature [10]. We
will be making use of a version that omits the light fall-off
terms in the integrand of Equation (5). In the discretized
setting, this alternative operator can be expressed as

ρbp,alt = (A > 0)>i = (A > 0)>Aρ, (7)



where (A > 0) is a binary matrix that equals one at the
support of A, and zero elsewhere. Our theoretical and al-
gorithmic results will extend to this alternative definition as
well. It is also worth noting that this alternative backpro-
jection has important connections time-delay focusing [45]
and it can be shown that the operator (A > 0)>A is the
imaging operator associated with that approach.

Filtered backprojection. Given that the backprojection of
Equation (6) is simply the transpose to the measurement op-
erator, the backprojected volumetric albedo ρbp is different
from the solution of a linear least-squares problem based
on Equation (4). Empirically, the backprojected volumetric
albedo often resembles a low-frequency approximation of
the true albedo ρ. Therefore, it has been common practice
to use a high-frequency filter as post-processing, to sharpen
the backprojection results [10, 18, 59]. The most widely-
used filter is the Laplacian,

ρfbp(x) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ρbp(x). (8)

Even though filtered backprojection works well in prac-
tice, it raises two important concerns. First, there is no for-
mal justification for the use of the Laplacian filter. Second,
there is no principled way to incorporate priors in the re-
construction pipeline. In many ways, our main contribu-
tions are to alleviate these concerns through mathematical
analysis of the measurement and backprojection operators
underlying NLOS imaging.

Confocal scanning. Before introducing our technical re-
sults, it is worth discussing a particular acquisition set-
ting that has been termed confocal scanning by O’Toole et
al. [44]. This corresponds to the case where only a three-
dimensional subset of the 5D light transient is available,
namely, the measurements corresponding to collocated il-
lumination and sensing points, l = s. Then, O’Toole et
al. [44] used the light cone transform (LCT) to show that
the forward model of Equation (4) simplifies to:

ic = kLCT ∗ ρ, (9)

where ic is the vectorized representation of the confocal 3D
light transient, and kLCT is a 3D convolution kernel2.

Reducing the measurement matrix A to a convolution
enables recovering the volumetric albedo ρ by inverting
(in the least-squares sense) Equation (9), , circumventing
the need to use the heuristical filtered backprojection esti-
mate. Further, the convolutional property makes it possible
to regularize this inverse problem with priors such as non-
negativity, sparsity and smoothness, without sacrificing ef-
ficiency. Inspired by this work, we aim to explore similar
convolutional structure in the general non-confocal NLOS
imaging scenario.

2The LCT also involves a non-linear reparameterization of all quanti-
ties along the z direction. We omit this for notational simplicity.

4. Convolutional Approximations
We are now ready to present our main theoretical and

algorithmic results. For this, we begin with the following
observation: The measurement model of Equation (4) sug-
gests that we can recover the NLOS volumetric albedo ρ by
solving the linear-least squares problem3:

(P1) ρ̂ = argmin
ρ
‖i−Aρ‖2.

Provided A>A is invertible, it is straightforward to show
that ρ̂ is also the solution to the problem:

(P2) ρ̂ = argmin
ρ
‖A>i︸︷︷︸

ρbp

−A>Aρ‖2,

where we recognize the first term in the square loss as the
result of applying the backprojection matrix to the 5D tran-
sients (Equation (6)). In the rest of this section, we study the
Gram operator A>A, and show that it can be well approx-
imated as a convolutional operator. In turn, this facilitates
the efficient solution of problem (P2).

4.1. The NLOS Gram operator

We first derive an expression for the continuous form of
the Gram operator A>A. Note that the Gram operator maps
an albedo volume ρ to the backprojected volume ρbp,

ρbp = A>Aρ.

Substituting Equation (2) into Equation (5), we obtain:

ρbp(x′)=

˚

Ωx

ρ(x) k(x,x′) dx, (10)

where k(x,x′) is a spatially-varying kernel that equals˙

Ωl,s

δ(‖x′−l‖+‖x′−s‖−‖x−l‖−‖x−s‖)
‖x− l‖2‖x− s‖2‖x′ − l‖2‖x′ − s‖2

ds dl. (11)

Gram operator as spatially-invariant blurring. We now
state one of our main results, namely, that under certain as-
sumptions on the LOS scene L, the spatially-varying blur
k(x,x′) can be expressed as k(x′ − x). Then, the Gram
operator is a convolution on the volumetric albedo.

Assumption 1 — Infinite planar LOS surface. Our first as-
sumption is that the LOS scene L on which the illumination
and sensing points lie is a planar surface of infinite spatial
extent. In practice, this assumption holds approximately, so
long as the NLOS scene, when projected orthographically
on the LOS surface, is much smaller than the LOS surface.
We discuss this in more detail later in this section.

3The use of square loss implies that our measurements have additive
Gaussian noise. In practice, SPAD measurements are characterized by
Poisson noise [22,48]. As we show in experiments, our algorithms remain
robust to this mismatch.
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Figure 2. Spatial invariance of kernel k. (a) Maximum intensity
projection (MIP) of normalized (×z4) kernel intensity at 5 × 5
points. (b) 3D visualization and 1D slices of (a) at different depths.
The kernels become spatially invariant after normalization.

Assumption 2 — Illumination and sensing points. Our sec-
ond assumption is that the sensing and illumination points
are continuously sampled on the LOS surface surface L. In
practice, a sampling density that allows for the integrals in
Equation (11) to be well approximated would suffice.

Proposition 1 (Convolutional Gram operator) Under
Assumptions 1 and 2, the kernel k(x,x′) defined in
Equation (11) can be written as

k(x,x′) =
1

z4
f(x′ − x), (12)

where x = (x, y, z), and x′ is in close vicinity to x. The
function f(·) is the kernel after normalization by z4.

We provide the proof and analytical expression for f(·) in
the supplement. Our proof uses the fact that, for an infi-
nite LOS surface, every NLOS point has its corresponding
set of illumination and sensing points where the ellipsoids
have the same tangent planes. Thus, the kernel, which is
the weighted superposition of ellipsoids, becomes spatially
invariant after normalization by the 1/z4 term. This term
is due to inverse-square light fall-off and we can absorb it
inside ρ(x) in Equation (10). Since we expect most of the
energy of the kernel to be concentrated around x, the ker-
nel is largely spatially-invariant (see Figure 2). We can then
rewrite Equation (10) as a 3D convolution:

ρbp(x′) =

˚

Ωx

(
1

z4
ρ(x)

)
f(x′ − x)dx. (13)

Extension to alternative backprojection. Proposition 1
generalizes to the case when we use the alternative defini-
tion of backprojection in Equation (7) to define the Gram,

ρbp, alt = (A > 0)>Aρ. (14)

In this case, the kernel is as in Equation (12) but without the
1/z4 term. We provide the proof in the supplement.
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Figure 3. Comparison of inverse kernel and Laplacian filter.
The plots show 1D slices of kernel values along each axis crossing
through the center of the full 3D kernel.

Accommodating a finite LOS surface. When Assumption
1 is violated, that is, the LOS surface is finite, the blur ker-
nel k of Equation (11) is spatially-varying, and therefore
the Gram operator is not convolutional. However, when the
NLOS scene is relatively small compared to the LOS sur-
face, we expect that the spatially-varying kernel can still
be well-approximated by a single convolutional operator.
This is a common setting for all demonstrated NLOS imag-
ing systems, which generally require LOS surfaces of much
larger extent than the corresponding NLOS scenes.

We have verified empirically that, for typical NLOS
scene and LOS surface sizes, the Gram matrix can be well
approximated as a matrix of rank one. Additionally, we can
use the top eigenvector of the matrix as a spatially-invariant
kernel that better matches the non-ideal imaging geometry
than the kernel k of Equation (12). We demonstrate this in
the supplement, and we use this eigenvector-based kernel in
all experiments in Section 5. In practice, this procedure can
be used as a calibration step that has to be performed only
once for each realization of the NLOS imaging geometry.

Inverse kernel. Figure 3 shows the inverse of kernel k,
computed using Wiener deconvolution [61]. We observe
that the inverse kernel closely resembles a Laplacian fil-
ter. This similarity lends theoretical support to the common
choice of the Laplacian filter for post-processing in filtered
backprojection [18, 59]. However, we must highlight two
important differences. First, the discrete Laplacian filter is
bereft of spatial scale. As a consequence, the result of tra-
ditional filtered backprojection is expected to change when
we voxelize the NLOS scene at different resolutions. Our
derived kernel and its inverse have no such adverse proper-
ties. Second, the inverse kernel in Figure 3 was derived un-
der the two assumptions required for Proposition 1. When
these assumptions do not hold, we can use eigendecompo-
sition as discussed above to derive an approximate inverse
kernel that can be significantly different from the Laplacian
filter. Unlike filtered backprojection, our approach naturally
accommodates for this by using the correct inverse filter.



4.2. Reconstruction with priors

Proposition 1 suggests a two-stage procedure for re-
constructing the volumetric albedo ρ: First, use backpro-
jection to compute the backprojected volumetric albedo,
ρbp = A>i. Second, use deconvolution to solve the least-
squares problem (P2) involving the Gram operator.

Proposition 1 additionally facilitates the solution of a
more general version of problem (P2), namely,

(P3) ρ̂ = argmin
ρ
‖A>i︸︷︷︸

ρbp

−A>Aρ‖2 + Γ(ρ),

where the term Γ(ρ) indicates a signal prior. Typical priors
in NLOS imaging are positivity and sparsity both canoni-
cally as well as in spatial gradients (total variation) of the
volumetric albedo ρ [20, 21]. State-of-the-art algorithms
for solving regularized linear least-squares problems, such
as alternating direction method of multipliers (ADMM) [9],
are typically iterative, and thus require multiple forward
and adjoint evaluations of the corresponding matrix—in the
case of (P3), the Gram matrix A>A. These evaluations
tend to dominate the cost of the algorithm. Therefore, the
convolutional form of the Gram matrix offers a significant
computational advantage, by turning forward and adjoint
operations into simple convolutions. In the supplement, we
derive the algorithmic details of using ADMM to solve (P3)
with typical priors used for NLOS imaging.

Computational complexity. We can break down the cost
of solving problems (P2) and (P3) into two parts. The first
part is using backprojection to compute the backprojected
volumetric albedo ρbp = A>i. The time complexity of
implementing A> (as well as A) can be determined by
the number of elements of the sparse matrix A>, which
is nlnsnxnynz = m4n3 assuming nl = ns = m2 and
nx = ny = nz = n. An alternative approach is to imple-
ment the operator by rendering ellipsoids corresponding to
each time bin; the time complexity becomes O(m4n2nt).
Thus, the time complexity of both the measurement opera-
tor and the backprojection is O(min(m4n3,m4n2nt)).

The second part involves either one (for (P2)) or multiple
(for (P3)) evaluations of the Gram operator A>A and its ad-
joint. Using the convolutional approximation of the Gram
operator, each such evaluation has complexity O(n3 log n)
using the 3D fast Fourier transform. Importantly, during the
second part we do not need to perform any additional back-
projection operations. In practice, the second part has negli-
gible additional cost compared to the first part. Therefore, at
a cost only marginally greater than filtered backprojection,
our technique provides solutions to the full linear inverse
problem, while also permiting the use of regularization.

By contrast, solving the linear inverse problem with or
without priors using implementations of A and A> has per-
iteration cost of O(min(m4n3,m4n2nt)) [35], far greater

than the combined cost of the two parts of our reconstruc-
tion procedure. Even though implementations of these op-
erators can be accelerated using GPU implementations [23],
our convolutional model reduces the inherent platform-
independent computational complexity of the reconstruc-
tion procedure, enabling even more efficient implementa-
tions on an equivalent platform. Table 1 provides a sum-
mary of relative complexity of the various algorithms.

4.3. The confocal case

We prove in the supplement a version of Proposition 1
specifically for the case of confocal scanning, in which case
the kernel of Equation (11) becomes

kc(x,x
′) =

1

z6
fc(x

′ − x). (15)

It is worth comparing the application of our approach to the
confocal case with the LCT [44]. The two appear superfi-
cially similar, as they are both convolutional formulations
for NLOS imaging. However, there is an important distinc-
tion: The LCT shows that (a non-linear reparameterization
of) the measurement matrix A is convolutional, whereas our
result shows the same for the Gram of the measurement ma-
trix A>A. We discuss some implications of this difference.

Lateral resolution. The derivation of the LCT requires
that the lateral (x and y) resolution of the NLOS volume
be the same as the lateral resolution of collocated illumi-
nation/sensing points on the LOS surface; that is, n = m.
Consequently, when the lateral scanning resolution is low,
the lateral resolution of LCT results is necessarily poor. On
the other hand, our method decouples NLOS volume reso-
lution from the scanning resolution (n 6= m). Therefore,
we can recover NLOS volumes at a lateral resolution that is
often higher than the scanning resolution. The key here is to
exploit the time resolution of light transients, which is often
significantly higher than the lateral scanning resolution.

Computational complexity. Assuming equal volume lat-
eral resolution and scanning resolution (n = m), LCT
and our approach have the same computational complexity
O(m2nt log nt) for evaluations of their corresponding op-
erators (measurement and Gram, respectively), wherem2nt
is the number of elements in the confocal 3D transient.

However, we note an important disadvantage of our
method: As discussed above, solving problem (P2) or (P3)
requires performing a single backprojection operator, which
has complexity (in the confocal case) O(m4nt). The LCT,
on the other hand, operates directly on the light transients
ic, and therefore has no such requirement.

Scanning pattern. The LCT can only be used if light
transients are measured in a confocal scanning pattern.
The confocal light transient provides rich information for
NLOS imaging, and has advantages in terms of calibration
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Figure 4. Comparison under simulated 5D light transient. Note
that the thicker red lines in LCT indicates a lower resolution of the
result caused by the inherent limit of the method.

and signal-to-noise ratio when measuring retroreflective ob-
jects [44]. However, confocal measurements can be cor-
rupted by pile-up and after-pulsing effects [12, 17, 22, 48],
due to the strong direct reflection from the LOS surface. By
contrast, our approach is flexibly applicable to any scanning
pattern, be it 3D non-confocal or 5D light transients.

5. Experiments

We compare our algorithm against full linear reconstruc-
tion, filtered backprojection, and LCT, on simulated and
real transients. Although the convolutional model applies
to both A>A and (A > 0)>A, the 1/z4 term in the former
causes numerical instability. Hence, we show results using
the alternative backprojection. We provide implementation
details and additional results in the supplement. Our imple-
mentation and data are available on our project page [1].

5.1. Simulated results

Rendering setup. For the simulation of light transient,
we used light transients from the public NLOS imaging
dataset [14,33] as well as an implementation of a physically
accurate renderer from [58]. The geometric parameters for
each NLOS scene are provided in the supplement.

Comparisons with full linear reconstruction. Figure 4(a)
compares our method and full linear reconstruction on
scene consisting of an S-shape. Our method has faster run-

LCT
(1.12 cm / 0.39 cm / 2.42 cm)

0 cm

5 cm

Ours (w/o priors)
(0.99 cm / 0.30 cm / 2.33 cm)

Filtered backprojection
(1.01 cm / 0.31 cm / 2.38 cm)

Figure 5. Quantitative evaluation under simulated 5D light
transient. Error maps are shown with three error metrics (mean
absolute error / median absolute error / root mean square error).

Target object Ours (w/o priors)
[72.73s]

Ours ℝ" + $ %&
[87.79s]

Ours (ℝ" + $ ()
[88.05s]

Ours ℝ" + $ (,%&
[88.05s]

Filtered backprojection
[65.89s]

Figure 6. Reconstruction with priors under real confocal light
transient. MIPs of recovered albedos when using priors. The pri-
ors enforce positivity, total variation, and sparsity of the volume.

time (70×), while providing similar reconstruction quality.

Comparison with filtered backprojection. Figures 4(a)
and 4(b) show comparisons between our method and filtered
backprojection. Even without the use of priors, our method
performs better, as it uses the exact inverse filter whereas
filtered backprojection behaves as a heuristic inverse filter.

Comparison with LCT. Figure 4(c) shows the reconstruc-
tion under rendered confocal light transient. Here, while the
temporal resolution of the light transient is 8 ps, the coarse
scanning of illumination points corresponds to 26 ps (i.e.,
64 × 64 samples on the LOS wall of size 0.5 m × 0.5 m).
Thus, even though the temporal resolution of the light tran-
sient is enough to reconstruct the letters on the soap, it is
not reconstructed well in LCT [44] due to the poor lateral
resolution. On the other hand, we can recover significantly
higher detail by running the same confocal measurements
through our computational pipeline even without any prior.

Also, as shown in Figure 4(a), where LCT result is ob-
tained from the confocal subset of the 5D light transient,
LCT even cannot fully make use of the scanning resolution
when the object is small compared to the LOS wall because
the field of view is also tied to the range of LOS wall.



OursFiltered backprojectionLCTTarget object

Figure 7. Comparisons under real confocal light transients. Our method produces reconstructions of higher detail and fewer artifacts
than the alternatives. In our experiment, we cover the digits in the first row with white paper, to increase SNR.

Quantitative evaluation. Figure 5 shows point-wise differ-
ences between reconstructed MIP surface and the ground-
truth surface along depth axis with three error metrics. We
use 64 × 64 simulated confocal light transient for a scene
of a Lambertian Stanford bunny. The temporal resolution
of the measurements is 8 ps, and the voxel resolution is
0.78 cm for LCT (inherent limit of the method) and 0.24 cm
for FBP and our approach. We observe that our approach
(without priors) performs the best on all error metrics.

5.2. Real scenes

Acquisition system. Our imaging system consists of a pi-
cosecond pulsed laser synced with a SPAD sensor. Details
about the hardware prototype, calibration and acquisition
procedures are in the supplement. Note that, although our
method can be applied to the general 5D light transients
as shown in Section 5.1, here we use confocal light tran-
sients because of their shorter acquisition time (1.5 hours
for 51 × 51 points in 3D confocal, versus 11 hours for
12× 12× 12× 12 points in 5D) and ease of calibration.

Reconstruction with priors. Figure 6 shows the effect of
using different priors. We show results with a mixed prior
that enforces positivity, total variation (i.e., sparse gradi-
ents), as well as canonical sparsity enforced via `1 norm.
We observe that, our method produces improvements over
filtered backprojection even without priors, and that the use
of priors further improves the reconstructions.

Comparisons. Figure 7 shows the comparisons with
LCT and filtered backprojection under confocal light tran-
sients measured for various NLOS objects. We observe
that our method provides higher reconstruction detail than
LCT [44], by exploiting the high temporal resolution of
transients, and fewer artifacts than filtered backprojection,
by incorporating accurate inverse kernels and priors.

6. Conclusion

We presented convolutional approximations to the
NLOS imaging operator by studying its Gram. This pro-
vides a pathway for applying priors of various kinds to reg-
ularize the inverse problem without a steep computational
cost. Our method does not require a specific scanning pat-
tern on LOS wall and can be adapted to exploit any specific
subset of the 5D light transients. But above all, we believe
that the insights we provide on the nature of the measure-
ment operator for ellipsoidal tomography will have applica-
tions and impact on a range of problems, for instance seis-
mic imaging, tissue imaging, and ultrasound imaging.
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