Ellipsoidal Path Connections for Time-Gated Rendering

Aditya Kumar Pediredla1,2, Ashok Veeraraghavan1, Ioannis Gkioulekas2

1Rice University, 2Carnegie Mellon University

TOF RENDERING TASKS

- LIDAR
- Amplitude modulated continuous wave
- Gated Cameras
- Transient Cameras

THEORY

Path integral for physically-based rendering

Steady state rendering: $I_1 = \int_\mathcal{X} \varphi(\mathbf{x}) d\mu(\mathbf{x})$, $\mathbf{x} \rightarrow$ Path, set of ordered vertices

φ → Radiance of the path, includes photometric and geometric light loss

μ → Path Measure (area or volumetric)

$p(\mathbf{x}_i)$ → Probability of path \mathbf{x}_i that depends on sampling strategy and the measure (μ)

Time-of-flight (TOF) renderer

Unified ToF Renderer: $I_j(f) = \int_\mathcal{X} f(\mathbf{x}) \varphi(\mathbf{x}) d\mu(\mathbf{x})$; $|\mathbf{x}| :$ path length

- LIDAR: $f = \delta(|\mathbf{x}| - \min_i t)$
- AMCW: $f = C_{\omega,\phi}(|\mathbf{x}|)$; C: cross-correlation
- Gated/Transient Camera: $f = \text{rect} \left(\frac{|x| - t}{\tau} \right)$

Ellipsoidal connections for efficient rendering

TIME-GATED RENDERING SCENARIOS

Transients for dynamic scenes

Time = 1s
Time = 5s
Time = 5.85 s

Gate location

4 ns
20 ns
23.4 ns

Proximity detection camera

Time = 0.4s
Time = 1.34s
Time = 1.74s

Gate location

16 ns
16 ns
16 ns

RENDERING CUSTOM TOF CAMERAS

CWAM-ToF with Depth Selective Codes \cite{2}
Existing BDPT
Ours

SNLOS: Non-line-of-sight Scanning through Temporal Focusing \cite{3}

Scene

Existing BDPT
Ours

PUBLICLY AVAILABLE SOURCE CODE

- Launch-and-play image file for Amazon Web Services clouds (ami-28308957).
- Trivially scales on multiple cores, CPUs, cloud clusters

https://github.com/cmuci-lab/MitsubaToFRenderer

References

Acknowledgments: