
Ellipsoidal path connections for Time-of-Flight Rendering

(Supplementary material)

March 30, 2019

1 Intersection of ellipsoid and plane

Let the equation of the ellipsoid be

x2

a2
+
y2

b2
+
z2

c2
= 1

[
x y z

]

1

a2
0 0

0
1

b2
0

0 0
1

c2

xy
z

 = 1

p′Dp = 1

Note that the ellipsoid in our paper will constrained to c = b, a =
τ

2
, b =

√
a2 − ‖f1 − f2‖2

2
= a

√
1− k2,

where k is eccentricity.

Let
C1, C2, C3 be the corners of the triangle and

T =
C2 − C1

‖C2 − C1‖
; n̂ =

(C2 − C1)× (C3 − C1)

‖(C2 − C1)× (C3 − C1)‖
; U = n̂× T̂

O = center of ellipse in T-U Plane (unknown)

Equation of the plane p = O + tT + uU =
[
T U O

] tu
1

 = Ev

At the intersection of the ellipsoid and plane containing the triangle, we have v′E′DEv = 1[
t u 1

] 〈T, T 〉D 〈T,U〉D 〈T,O〉D
〈U, T 〉D 〈U,U〉D 〈U,O〉D
〈O, T 〉D 〈O,U〉D 〈O,O〉D − 1

tu
1

 = 0,

Which is in T − U coordinate system.
Let us consider the ellipse through origin in T-U plane orientated at an angle θ with T-axis (in clockwise

direction) and m1 and m2 as major and minor axis respectively.
(t cos θ − u sin θ)2

m2
1

+
(t sin θ + u cos θ)2

m2
2

= 1 coefficient of t, u are zero.

Hence, 〈T,O〉D = 0 and 〈U,O〉D = 0. Also using the fact that the C1, C2, C3, O are co-planar, we get
one more equation. To compute O, we have three equations and three unknowns (Ox, Oy, Oz) and can solve
for O. However, we will use a simpler algorithm described in algorithm 1 to compute the O. Notice that
〈O,O〉D − 1 < 0. If not, the ellipsoid do not intersect the triangle. This is one of the early triangle rejection
tests mentioned in the main text.
We still have to compute θ, m1, and m2, the details of which are given below.

1

Algorithm 1 Finding the origin of the ellipse

1: Scale the axis to transform the ellipsoid to a sphere.
2: Project the origin to the plane containing the triangle to find center of the circle (O) formed by the

intersection of sphere with plane.
3: Rescale the axis back.

1.1 Computation of θ

We have

t2〈T, T 〉D + u2〈U,U〉D + 2tu〈T,U〉D + 〈O,O〉D − 1 = 0

t2(m2
2 cos2 θ +m2

1 sin2 θ) + u2(m2
2 sin2 θ +m2

1 cos2 θ) + tu(m2
1 −m2

2) sin 2θ −m2
1m

2
2 = 0

Consider

coefficient of tu

coefficient of t2 − coefficient of u2
≡ 2〈T,U〉D
〈U,U〉D − 〈T, T 〉D

= tan(2θ)

⇒ θ =
1

2
tan−1

(
2〈T,U〉D

〈U,U〉D − 〈T, T 〉D

)
(1)

1.2 Computation of m1 and m2

Consider

coefficient of t2 + coefficient of u2

coefficient of constant
≡ 1

m2
1

+
1

m2
2

=
〈T, T 〉D + 〈U,U〉D

1− 〈O,O〉D

(coefficient of tu)2 + (coefficient of u− coefficient of t)2

coefficient of constant2 ≡(
1

m2
2

− 1

m2
1

)2

=
4〈T,U〉2D + (〈U,U〉D − 〈T, T 〉D)2

(1− 〈O,O〉D)2

Solving above two equations, we get

m1 =

√√√√2

[
1− 〈O,O〉D

(〈T, T 〉D + 〈U,U〉D)−
√

4〈T,U〉2D + (〈T, T 〉D − 〈U,U〉D)2

]

m2 =

√√√√2

[
1− 〈O,O〉D

(〈T, T 〉D + 〈U,U〉D) +
√

4〈T,U〉2D + (〈T, T 〉D − 〈U,U〉D)2

]
(2)

2 Circle-line intersection

Let P1(x1, y1) and P1(x2, y2) be the points and r be the radius of the circle. Consider the point αP1+(1−α)P2,
where the circle intersects the line joining P1 and P2. We have

(αx1 + (1− α)x1)2 + (αy1 + (1− α)y1)2 = r2

α2((x1 − x2)2 + (y1 − y2)2) + 2α(x1x2 − x2
2 + y1y2 − y2

2) + x2
2 + y2

2 − r2 = 0.

Solving the above equation will give two values for α and the ones that satisfy 0 <= α <= 1 are the points
of intersection of circle and the line

2

3 Jacobian of an ellipse

A point on the ellipse in 3D co-ordinates is given by P = O + TNm1 cosφ + UNm2 sinφ, where TN =
T cos θ − U sin θ, and UN = T sin θ + U cos θ

The component of P along TN -axis is T ′NP and along U -axis is U ′NP up to a translation determined by
any static origin of the T − U plane. Hence,

d(T ′NP)

dτ
= T ′N

dO

dτ
+O′

dTN
dτ

+
dm1

dτ
cosφ;

d(T ′NP)

dφ
= −m1 sinφ

d(U ′NP)

dτ
= U ′N

dO

dτ
+O′

dUN
dτ

+
dm2

dτ
sinφ;

d(U ′NP)

dφ
= m2 cosφ

The Jacobian in TN − UN co-ordinate system is d(T ′NP)d(U ′NP) and in τ − φ coordinate system, the
Jacobian is given by

(
m2

dm1

dτ
cos2 φ+m1

dm2

dτ
sin2 φ+ (m2 cosφT ′N +m1 sinφU ′N)

dO

dτ

+O′
(
dTN
dτ

m2 cosφ+
dUN
dτ

m1 sinφ

))
dτdφ

3.1 Derivation of
dTn
dτ

and
dUn

dτ

dTN
dτ

= (−T sin θ − U cos θ)
dθ

dτ
dUN
dτ

= (T cos θ − U sin θ)
dθ

dτ

From Equation 1, sin θ =
2〈T,U〉D

∆
and cos θ =

〈U,U〉D − 〈T, T 〉D
∆

, where

∆ =
√

4〈T,U〉2D + (〈T, T 〉D − 〈U,U〉D)2

cos θ
dθ

dτ
= 2

∆〈T,U〉E − 〈T,U〉D d∆
dτ

∆2

− sin θ
dθ

dτ
=

∆(〈U,U〉E − 〈T, T 〉E)− (〈U,U〉D − 〈T, T 〉D)d∆
dτ

∆2

d∆

dτ
=

1

∆
(4〈T,U〉D〈T,U〉E + (〈T, T 〉E − 〈U,U〉E)(〈T, T 〉D − 〈U,U〉D))

)

where, E =

−1

a3
0 0

0
−a
b4

0

0 0
−a
b4

3

3.2 Derivation of
dm1

dτ
and

dm2

dτ
From 2, we have

m2
1 =

NR

DR1
,where

NR = 2(1− 〈O,O〉D);DR1 = 〈T, T 〉D + 〈U,U〉D −∆

dNR = −2〈O,O〉Edτ − 4〈O, dO〉DdDR1 = 〈T, T 〉E + 〈U,U〉E − d∆ and

m2
dm1

dτ
=
m2

m1

−DR1(〈O,O〉E + 2〈O, dOdτ 〉D)− (1− 〈O,O〉D)dDR1

DR2
1

Also, from 2, we have

m2
2 =

NR

DR2
,where DR2 = 〈T, T 〉D + 〈U,U〉D + ∆

dDR2 = 〈T, T 〉E + 〈U,U〉E + d∆

m1
dm2

dτ
=
m1

m2

−DR2(〈O,O〉E + 2〈O, dOdτ 〉D)− (1− 〈O,O〉D)dDR2

DR2
2

3.3 Derivation of
dO

dτ
From Section 1,

〈T,O〉D = 0

〈U,O〉D = 0

n̂T (O − C1) = 0

Let α1 = a, α2 = b, α3 = b. Hence, αidαi = τdτ/4; i = {1, 2, 3}

〈T,O〉D = 0⇒
∑
i

tiOi
α2
i

= 0

Taking derivative with respect to τ on both sides,

we have
∑
i

ti
α2
i

dOi
dτ

=
τ

2

∑
i

tiOi
α4
i

Similarly,
∑
i

ui
α2
i

dOi
dτ

=
τ

2

∑
i

uiOi
α4
i

, and
∑
i

niOi = 0

Using the above three equations, we have

dO

dτ
=
τ

2

t1
a2

t2
b2

t3
b2

u1

a2

u2

b2
u3

b2
n1 n2 n3

−1

∑
i

tiOi
α4
i∑

i

uiOi
α4
i

0

4 Transient renderer

I =

∫
x̄∈Ω

f(x̄)dµ(x̄),where Ω is set of all paths

4

The transient rendering is defined as

I(t) =

∫
Ω

f(x̄)δ(|x̄| − t)dµ(x̄),where |x̄| denotes the length of the path

=

∫
Ω1

∫
x∈M

∫
Ω2

f(x̄1)f(x1 → x→ x2)f(x̄2)δ(|x̄| − t)dµ(x̄)

=

∫
Ω1

∫
x∈M∩

|x̄1|+|x̄2|+|x1→x→x2|=t

∫
Ω2

f(x̄1)f(x1 → x→ x2)f(x̄2)dµ(x̄)

where x1 denotes the end vertex of path x̄1, x2 denotes the starting vertex of path x̄2, and x is an intermediate
vertex. Let

|x̄1| = t1

|x̄2| = t2

t1 + t2 < t

τ = t− (t1 + t2)

Let us assume that the mesh (M) is completely made of surface geometries (no volumetric scattering
medium), then we have

I(t) =

∫
Ω1

∫
x∈M∩

|x1→x→x2|=τ

∫
Ω2

f(x̄1)f(x1 → x→ x2)f(x̄2)dµ(x̄1)dµ(x̄2)dA(x)

=

∫
Ω1

∫
Ω2

f(x̄1)f(x̄2)

∫
x∈M∩

|x1→x→x2|=τ

f(x1 → x→ x2)dA(x)dµ(x̄1)dµ(x̄2)

Let us assume that the mesh is represented as polygonal primitives. Let T be the set of all primitives which
contains points that satisfy the temporal constraint |x1 → x → x2| = τ . For one such primitive Tr the
points that satisfy the temporal constraint will lie on a ellipse (or partial ellipse). For these points, the
transient intensity flow will become

ITr(t) =

∫
Ω1

∫
Ω2

f(x̄1)f(x̄2)

∫
m1

∫
φ

| cos(x1 → x, n̂)|
|x1 → x|2

| cos(x→ x2, n̂)|
|x2 → x|2

Jdτdφdµ(x̄1)dµ(x̄2)

where τ is the major axis of the ellipse and n̂ is the normal of the primitive.
For the complete mesh,

I(t) =
∑
Tr

ITr(t)

5

	Intersection of ellipsoid and plane
	Computation of
	Computation of m1 and m2

	Circle-line intersection
	Jacobian of an ellipse
	Derivation of dTnd and dUnd
	Derivation of dm1d and dm2d
	Derivation of dOd

	Transient renderer

