A Theory of Fermat Paths for Non-Line-of-Sight Shape Reconstruction

Shumian Xin, Sotiris Nousias, Kiriklos N. Kutulakos, Aswin C. Sankaranarayanan, Srinivasa G. Narasimhan, and Ioannis Gkioulekas

1Carnegie Mellon University 2University of Toronto 3University College London

Non-line-of-sight (NLOS) setup

Femtosecond-scale reconstructions

What are Fermat paths

Fermat paths: specular or boundary

How to find Fermat paths

transient discontinuous at Fermat pathlengths

Why Fermat

Fermat’s principle: paths of stationary length

How to reconstruct a point and its normal

Fermat pathlength: spherical constraint

$\mathbf{x}_F \in \text{sphere} (\mathbf{v}, \tau/2)$

Fermat flow: ray constraint

$n_{\mathbf{x}_F} = -\nabla_\mathbf{v} \tau_F (\mathbf{v})$

NLOS reconstruction pipeline

densely scan wall reconstruct points & normals

detect discontinuities locally fit polynomials

This work was supported by the DARPA REVEAL program under contract HR0011-16-C-0025, NSF Expeditions award CCF-1730147, the NSERC RGPIN and RTI programs, and an ONR DURIP award.

imaging.cs.cmu.edu/publications/fermat_paths/