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Reconstructing and designing media with continuously-varying refractive
index fields remains a challenging problem in computer graphics. A core
difficulty in trying to tackle this inverse problem is that light travels inside
such media along curves, rather than straight lines. Existing techniques for
this problem make strong assumptions on the shape of the ray inside the
medium, and thus limit themselves to media where the ray deflection is rela-
tively small. More recently, differentiable rendering techniques have relaxed
this limitation, by making it possible to differentiably simulate curved light
paths. However, the automatic differentiation algorithms underlying these
techniques use large amounts of memory, restricting existing differentiable
rendering techniques to relatively small media and low spatial resolutions.

We present a method for optimizing refractive index fields that both ac-
counts for curved light paths and has a small, constant memory footprint.
We use the adjoint state method to derive a set of equations for computing
derivatives with respect to the refractive index field of optimization objec-
tives that are subject to nonlinear ray tracing constraints. We additionally
introduce discretization schemes to numerically evaluate these equations,
without the need to store nonlinear ray trajectories in memory, significantly
reducing the memory requirements of our algorithm. We use our technique
to optimize high-resolution refractive index fields for a variety of applica-
tions, including creating different types of displays (multiview, lightfield,
caustic), designing gradient-index optics, and reconstructing gas flows.
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1 INTRODUCTION
Computer graphics research has long been fascinated by the way
light refracts through transparent materials to form beautiful, but
intricate, caustics (e.g., the patterns at the bottom of a pool of water).
Although typically such caustics are the result of light undergoing
a discrete number of refraction events, it is also possible for light to
bend continuously through certain objects and media. For example,
the shimmer observed when looking through a mass of heated air
(e.g., the heat haze observed when looking down an asphalt road
on a hot day) is the result of light propagating along curved paths.
Light deflects when it encounters a change in refractive index.

Most simple lenses are made from material with a constant refrac-
tive index, which results in light refracting only at the interface.
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However, the refractive index of an object or medium can also be
continuous, resulting in light continuously refracting through the
medium itself. Gradient-index (GRIN) lenses, such as the Luneburg
lens shown in Figure 1(a) or optical fibers used for telecommunica-
tion, use spatially-varying refractive index fields to focus or steer
light. Mixing two gases with different refractive index also causes
light to distort when passing through, as shown in Figure 1(b).

The theory for the geometric and radiometric properties of light
paths undergoing continuous refraction is well-established in com-
puter graphics. Given a volume with a known refractive index field
as input, there are many ray tracing procedures to efficiently deter-
mine the nonlinear path of light through a medium [Ament et al.
2014; Ihrke et al. 2007; Stam and Languénou 1996]. This enables the
rendering of photorealistic images of these gradient-index fields.
It is also important to consider the inverse question: for a given

target intensity distribution, what is the refractive index profile that
produces it? For reconstruction, we could be interested in knowing
the composition of a fluid mixture, and recovering the refractive
index profile would give us the information to reconstruct the flow.
In the case of lens design, the goal might be to design a refractive
index profile that focuses or shapes light in a particular way.
One way to solve this inverse problem is through differentiable

rendering, which uses reverse-mode automatic differentiation (AD)
to calculate gradients with respect to some parameters of interest.
Reverse-mode AD records the computation that occurs during the
simulation, then calculates the derivative of the output rays with
respect to the refractive index profile. This requires a large amount
of memory to store the computation graph, especially whenworking
with 3D volumes. This means that the more accurate the simulation
is, the more memory automatic differentiation will require.
We present a method for differentiating the dynamics of contin-

uous refraction without constructing the computation graph. We
employ the adjoint state method to derive a set of ordinary differ-
ential equations for calculating the gradient. We then show how to
discretize and efficiently simulate these equations. Our technique
can optimize for refractive index fields based on two types of ob-
jectives: image objectives and geometric objectives. We use our
technique to explore multiple types of optimization objectives for a
number of applications, including: (i) optimizing the focusing prop-
erties of GRIN optical fibers and lenses, (ii) designing novel displays
based on refractive index fields, and (iii) reconstructing unknown
refractive index fields from a set of images. To ensure reproducibility
and facilitate follow-up work, we provide our code on the project
website: http://imaging.cs.cmu.edu/adjoint_nonlinear_tracing/.

2 RELATED WORK
Nonlinear ray tracing. Our focus is on continuously-refractive

media, where the refractive index changes continuously from one
location to another. As a consequence of the eikonal equation of
geometric optics, light propagating inside such media travels along
curved rays, rather than (piecewise-)linear rays [Kravtsov and Orlov
1990]. Stam and Languénou [1996] use Lagrangian optics to convert
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(a) Luneburg lens (b) Gas flow

Fig. 1. Examples of refractive index fields, including a Luneburg lens and a
plume of gas. (a) The Luneburg lens focuses any incoming light direction
to the antipodal point of the incoming direction. (b) The gas plume has a
spatially-varying lower refractive index than the surrounding air, causing
light to bend through the medium. To exaggerate distortion (see inset), we
multiply the refractive index of the medium by 100×.

the eikonal equation into a second-order differential equation, which
they then use to describe and numerically trace these curved rays.
We follow Gröller [1995] and term this process nonlinear ray tracing.
Sharma et al. [1982] reformulate these equations to make nonlinear
ray tracing more numerically stable. Ihrke et al. [2007] use nonlinear
ray tracing to render images due to light wavefronts propagating
through continuously-refractive media. In practice, many such me-
dia additionally exhibit volumetric scattering. The combined effects
of light curving and scattering can be described using the refrac-
tive radiative transfer equation [Ament et al. 2014], which can be
simulated using variants of volumetric path tracing [Pediredla et al.
2020] and photon mapping [Gutierrez et al. 2003] techniques.

Differentiable rendering. Differentiable rendering techniques have
recently emerged as an important methodology for solving inverse
rendering problems; that is, problems where we are searching for
scene parameters that, when used to render images, match some in-
put measurements. A differentiable renderer can be used to calculate
gradients with respect to the unknown scene parameters, which in
turn can be used to perform gradient-based optimization. Recent ex-
amples of differentiable renderers include Mitsuba 2 [Nimier-David
et al. 2019], Redner [Li et al. 2018], and path-space differentiable
rendering (PSDR) [Zhang et al. 2020]. Importantly, Mitsuba 2 can be
used to solve inverse rendering problems such as the ones we focus
on, where we optimize a refractive index field subject to nonlinear
ray tracing constraints. Mitsuba 2 achieves this using reverse-mode
automatic differentiation. This approach allows Mitsuba 2 to gen-
eralize to a variety of inverse rendering problems. However, this
approach has large memory requirements, which limits its applica-
bility to relatively simple scenes with few unknowns. More recent

differentiable rendering techniques [Nimier-David et al. 2020; Vicini
et al. 2021] overcome this problem by using a two-stage procedure
that computes gradients by tracing a light path in forward and
backward directions. We derive a conceptually similar procedure
specifically for the case of nonlinear ray tracing.

Design of refractive optics and caustics. Conventional refractive
optics work by refracting light a discrete number of times at inter-
faces with specific shapes (e.g., spherical). Recently, several works
have used differentiable rendering to design the shape of these re-
fractive interfaces, so as to optimize refractive optics for specific
applications. For example, Li et al. [2021] do so for a single lens, and
Sun et al. [2021] and Tseng et al. [2021] do the same to optimize a
compound lens design. All these works use differentiable specular
ray tracers that leverage automatic differentiation.

Other techniques for optimizing the shape of refractive interfaces
have appeared for the closely-related problem of caustic design [Pa-
pas et al. 2011; Schwartzburg et al. 2014; Yue et al. 2014]. Instead of
minimizing an image loss, these techniques optimize the interface
shape to realize a specific mapping between incident and outgoing
rays, intended to map beams incident on one side of the interface
to target images on the other side.

Gradient-index optics. Unlike conventional refractive optics, GRIN
optics work by using a continuously-varying refractive index field
to guide light along curved light paths. These optics can produce
optical effects and aberration characteristics that are not possible
with conventional refractive optics. Teichman et al. [2013] survey
GRIN optic designs, their advantages and disadvantages compared to
conventional refractive optics, and ways to fabricate different GRIN
profiles. As an alternative to fabrication, it is possible to sculpt virtual
GRIN optics in various media (e.g., water, tissue) using acoustic
waves [Chamanzar et al. 2019; Kang et al. 2018; Pediredla et al. 2020;
Scopelliti and Chamanzar 2019; Scopelliti et al. 2020].

Two common examples of GRIN optics, for which the refractive in-
dex fields are known analytically, are the Luneburg lens [Luneberg
1944] and Maxwell fisheye lens [Maxwell 1854]. They focus col-
limated beams or point sources (respectively), regardless of the
orientation of the lens, the angle of incidence of the beam, or the
location of the point source [Kravtsov and Orlov 1990]. Another
common example is GRIN waveguides, which can be used in place
of conventional optical fibers [El-Diasty 2003]. Similar to our work,
Balasubramanian et al. [2020] use differentiable ray tracing to de-
sign refractive index fields for new types of GRIN optics. Their
technique is based on automatic differentiation, and thus suffers
from slow computation and large memory consumption. Our adjoint
derivation addresses both shortcomings.

Reconstruction of transparent materials. Some transparent materi-
als such as gas clouds are continuously-refractive media. Atcheson
et al. [2008] develop an algorithm that, given a set of image mea-
surements of a gas cloud, solves for the refractive index everywhere
inside the cloud. Their approach assumes that light rays through the
cloud are approximately linear, which makes it possible to recover
the refractive index field through Poisson integration. Ihrke [2007]
and Ji et al. [2013] both relax the path linearity assumption by iterat-
ing between nonlinear path tracing and refractive index estimation.
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However, these iterative schemes ignore either the exit direction or
the exit position when path tracing. In contrast to these prior works,
our method can recover the refractive index field even in cases of
large deflection. Schröder and Schuster [2016] introduce theoretical
analysis and an algorithm for reconstructing continuously-refractive
media using time-of-flight measurements. Our method can also take
advantage of time-of-flight information.

Reverse-mode automatic differentiation. Most existing differen-
tiable rendering implementations use reverse-mode automatic dif-
ferentiation (AD), or backpropagation [Griewank andWalther 2008].
Reverse-mode AD works as follows: First, it maintains a compu-
tation history of the program to be differentiated, in the form of
a graph, until a scalar output is generated. Second, it accumulates
the gradient of this output by traversing the computation graph
backward using the chain rule. This two-stage procedure requires
storing in memory the computation graph for the entire program.
As a result, the computational complexity of the program also di-
rectly impacts the memory requirements of reverse-mode AD. In the
case of nonlinear ray tracing, smaller integration step sizes result
in much larger memory requirements. Our proposed method uses
reversible nonlinear ray tracing that can be treated as a single node
in the computation graph, resulting in constant memory use. Our
approach is conceptually similar to deep learning techniques that
use reversible neural network architectures to reduce the memory
cost of backpropagation [Gomez et al. 2017; MacKay et al. 2018].

Adjoint statemethod. The adjoint statemethod is a general-purpose
technique for differentiating optimization objectives that are subject
to constraints that take the form of differential equations [Chavent
1974; Hinze et al. 2008]. In computer graphics, the adjoint state
method has been used in problems related to rigid body dynam-
ics and control [Geilinger et al. 2020], fluid control [McNamara
et al. 2004], and surface cutting [Sharp and Crane 2018]. In differen-
tiable rendering, Nimier-David et al. [2020] and Stam [2020] use the
adjoint state method to derive algorithms that decouple the compu-
tational complexity of raytracing from the memory requirements of
backpropagation. Vicini et al. [2021] use a two-stage forward and
backward tracing procedure to achieve constant memory complex-
ity during gradient calculation. We derive a conceptually similar
method for light transport in continuously-refractive media.

Outside graphics, Leung et al. [2006] use the adjoint state method
in seismic imaging applications, to reconstruct the refractive index
of layers of the Earth based on time of flight measurements of pres-
sure waves traveling through the ground. The propagation of such
waves is governed by the same dynamic equations as the propaga-
tion of light through continuously-refractive media. However, their
technique uses a formulation based on the eikonal equation and
the fast marching method [Sethian 1999], whereas ours is based
on Hamilton’s equations and nonlinear ray tracing. Lastly, Chen et
al. [2018] use the adjoint method for differentiating ordinary dif-
ferential equation systems represented as neural networks. Their
method also has constant memory complexity, but uses implicit in-
tegrators for either the forward or backward pass. This necessitates
using a computationally expensive nonlinear solver (e.g., Newton’s

Table 1. Definitions of main terms used in the adjoint state method.

symbol type description

𝜎 [0,∞) Parameterization of time
𝜂 R3 → [1,∞) Refractive index field
∇𝜂 R3 → R3 Spatial gradient of refractive index

Hess (𝜂) R3 → R3×3 Hessian of the refractive index
x [0,∞) → R3 Position of the light ray
v [0,∞) → R3 Velocity of the light ray
𝝀 [0,∞) → R3 Adjoint state variable of position
𝝁 [0,∞) → R3 Adjoint state variable of velocity
C𝑖 R3 × R3 → R Inner cost function
F𝑖 R→ R Outer cost function

method) at each integration step. We show that, by using a symplec-
tic reversible integrator, we can make both forward and backward
passes explicit, removing the need for nonlinear solvers.

3 THEORETICAL BACKGROUND
We use this section to present the theory of nonlinear ray tracing
within media with continuously-varying refractive index, and the
adjoint state method for differentiating objectives subject to partial
differential equation (PDE) constraints. We refer to Kravtsov and
Orlov [1990] for a more detailed discussion of nonlinear ray tracing,
and to Plessix [2006] for the adjoint state method.

3.1 Nonlinear ray tracing
Nonlinear ray tracing refers to the geometric optics description of
how light propagates in continuously-refractive media. These are
media where the refractive index 𝜂 varies continuously from point
to point. When traveling from point x1 to point x2 inside such a
mediumM ⊂ R3, light will trace a curved ray that is a stationary
point of the optical Lagrangian

𝐿 (𝑅) ≡
∫
𝑅

𝜂 (x (𝑠)) d𝑠, (1)

where 𝑅 is any curve contained inM that starts at x1 and ends at
x2; and 𝑠 is the geometric-length (arc-length) parameterization of
this ray. Equation (1) is the optical length of ray 𝑅, that is, geometric
length weighted by the local refractive index. Therefore, light travels
along curved rays that correspond to extrema (local maxima or
minima) and saddle points of optical length.1
Using the Euler-Lagrange equation for stationarity of the op-

tical Lagrangian of Equation (1), we can derive the ray equation
of geometric optics [Born and Wolf 2013] for light rays inside a
continuously-refractive medium:

d
d𝑠

(
𝜂
dx
d𝑠

)
= ∇𝜂, (2)

where, to simplify notation, we made the dependence of the refrac-
tive index 𝜂 and its gradient ∇𝜂 on the location x (𝑠) ∈ M implicit.

1The optical length is directly proportional to time, given that d𝑡 = 𝜂/𝑐𝑜 d𝑠 , where 𝑐𝑜
is the speed of light in vacuum. Therefore, stationary points of the optical Lagrangian
of Equation (1) also correspond to stationary points of time.
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Throughout the paper, we adopt a change of variable proposed by
Sharma et al. [1982] and defined through the differential relationship

d𝜎 ≡ d𝑠
𝜂
. (3)

We term 𝜎 the canonical parameter, a name we will justify shortly.
By reparameterizing light rays in terms of 𝜎 , Equation (2) becomes

d
d𝜎

(
dx
d𝜎

)
= 𝜂∇𝜂. (4)

Lastly, by introducing the velocity v ∈ R3, we can separate this
second-order ordinary differential equation (ODE) into a system of
first-order ODEs known as Hamilton’s equations,

dx
d𝜎

= v, (5)

dv
d𝜎

= 𝜂∇𝜂. (6)

Equations (5)-(6) are known as the Newton’s law form or canoni-
cal form of Hamilton’s equations, because of their similarity with
Newton’s equations of motion in mechanics [Kravtsov and Orlov
1990]. We can interpret these equations as a moving particle that is
subject to forces equal to 𝜂∇𝜂. This exact analogy with Newton’s
equations of motion is a consequence of the use of 𝜎 from Equation 3
to parameterize light rays, justifying the name canonical parameter.
As we discuss in Section 5, the use of canonical parameter 𝜎 also
allows us to discretize and numerically simulate these equations
using reversible symplectic integrators [Hairer et al. 2006]. The re-
versibility property will be critical when discretizing our adjoint
nonlinear ray-tracing formulation.

3.2 Adjoint state method
The adjoint state method allows computing derivatives of optimiza-
tion objectives subject to constraints in the form of (ordinary or
partial) differential equations. Such optimization problems often
arise in physics-based inverse problems. The general form of the
optimization problem that we will consider is:

min
𝜃
G (p)

s.t. S (p;𝜃 ) = 0,
(7)

where S is the set of differential equations describing the under-
lying dynamics, and G is the cost function of the inverse problem.
p is the configuration, or state variables, describing the physics,
and 𝜃 is the control variables of the dynamics. The adjoint state
method differentiates the optimization objective, making it possible
to use gradient-based optimization techniques to solve optimization
problems of the form shown in Equation (7).
The adjoint state method proceeds by first converting the con-

strained optimization problem of Equation (7) into an unconstrained
optimization problem, through the use of Lagrange multipliers,

min
𝜃,p,𝝀

L (p, 𝜃,𝝀) , (8)

L (p, 𝜃,𝝀) ≡ G (p) − ⟨𝝀,S (p;𝜃 )⟩ . (9)

The Lagrangian L augments the original cost function G with the
original constraints, scaled by slack variables 𝝀 known as the ad-
joint state. The adjoint state has the same dimensionality as the
configuration of the dynamics.
The Lagrangian L will have the same minimum as the original

cost function G when all the variables except for 𝜃 are critical points.
This is equivalent to finding values p∗ for the configuration and 𝝀∗
for the adjoint state such that

dpL
(
p∗, 𝜃,𝝀∗

)
= 0, (10)

d𝝀L
(
p∗, 𝜃,𝝀∗

)
= 0. (11)

Combining these equations with the definition of the Lagrangian in
Equation (9), we have(

dpS
) (
p∗;𝜃

)
𝝀∗ − dpG

(
p∗
)
= 0, (12)

S
(
p∗;𝜃

)
= 0. (13)

Equation (13) simply requires that we satisfy the constraints of the
original optimization problem of Equation (7). Equation (12) allows
us to solve for 𝝀∗. Lastly, taking the derivative of the Lagrangian
with respect to 𝜃 , we have

d𝜃L
(
p∗, 𝜃,𝝀∗

)
= −𝝀∗ d𝜃S

(
p∗;𝜃

)
. (14)

Equation (14) equals the derivative of the constrained objective of
the optimization problem of Equation (7). With this gradient in hand,
we can solve this problem using any gradient-based optimization
algorithm. Importantly, Equation (12) will be a set of differential
equations defined by the derivatives of the original differential equa-
tions S with respect to the configuration p. We can use these equa-
tions to compute 𝝀∗ first, and use the result to compute the product
𝝀∗ d𝜃S (p∗;𝜃 ) directly, without having to explicitly construct the,
typically very high-dimensional, Jacobian d𝜃𝑆 (p∗;𝜃 ).

4 DIFFERENTIATING W.R.T. REFRACTIVE INDEX
In this section, we use the adjoint state method to derive an ex-
pression for differentiating optimization objectives constrained by
Hamilton’s equations (5)-(6). Concretely, we are concerned with
optimization problems of the form:

min
𝜂

𝑁∑︁
𝑖=1
F𝑖

[∬
(x0,v0) ∈Ω

C𝑖
(
x
(
𝜎𝑓 ;𝜂, x0, v0

)
,v

(
𝜎𝑓 ;𝜂, x0, v0

))
dx0 dv0

]
s.t. ¤x (𝜎 ;𝜂, x0, v0) = v, ∀𝜎 ∈

[
0, 𝜎𝑓

]
,

¤v (𝜎 ;𝜂, x0, v0) = 𝜂∇𝜂, ∀𝜎 ∈
[
0, 𝜎𝑓

]
,

x (0;𝜂, x0, v0) = x0,

v (0;𝜂, x0, v0) = v0,
(15)

where the dot refers to differentiation with respect to the canonical
parameter 𝜎 ; Ω is the set of possible initial conditions for light rays
(e.g., their location and velocity on a light source); 𝜎𝑓 parameterizes
the end of the ray (e.g., when it exits themedium or reaches a sensor);
C𝑖 is any function of the location and velocity at the end of the ray;
and F𝑖 is any function of integrals over multiple rays. For simplicity,
we will generally use x and v in place of the full x (𝜎 ;𝜂, x0, v0)
and v (𝜎 ;𝜂, x0, v0). Moreover, we will use x

(
𝜎𝑓

)
and v

(
𝜎𝑓

)
when

referring to the ray’s end position and velocity, respectively.
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x𝑡

x̂𝑡

x𝑡

x̂𝑡

𝜆𝑖

𝜇𝑖

x𝑡
x̂𝑡

(a) Forward tracing (b) Backward tracing (c) Updated refractive index field
Fig. 2. The adjoint tracing procedure involves three key steps. (a) First, the ray is traced forward, where each vertex is an integration step in the simulation.
An error value is computed, e.g., the distance between the terminal position x𝑡 and a target position x̂𝑡 . (b) This error is then backward traced through the
volume to compute the optimization gradient. Because of the reversibility property of the forward tracing procedure, we can retrace the same set of vertices
without actually storing them—which would otherwise be extremely memory demanding. (c) Finally, the refractive index field 𝜂 is updated using the gradient.
This cycle is repeated until convergence. Each point on the trajectory of the ray has an associated x, v, 𝝀, and 𝝁.

In the simplest case of the optimization problem of Equation (15),
rays travel for some fixed amount of time 𝜎𝑓 , specified as part of the
problem description. In practice, this time may be defined implicitly,
e.g., as the time when the ray exits the medium or crosses through
some specific surface inside the medium. In this case, 𝜎𝑓 is itself a
function of the unknown refractive index field 𝜂. In both cases, dif-
ferentiation reduces to solving the same pair of ordinary differential
equations (Equations (19)-(20)), but with different boundary condi-
tions. Thus, for simplicity, our derivation in the main paper assumes
that 𝜎𝑓 is fixed and independent of 𝜂, and we show a derivation for
the more general case in the supplement.
Our formulation will allow us to compute the derivative of opti-

mization objectives such as Equation (15) with respect to refractive
index, assuming derivatives of functions F𝑖 and C𝑖 are available
(e.g., through analytic or automatic differentiation). We explore two
main types of losses as specializations of the optimization problem
of Equation (15): image losses and geometric losses.

For image losses, the optimization problem of Equation (15) searches
for a refractive index field 𝜂 such that rendered radiometric measure-
ments through that field match target measurements by a sensor. In
this case, C𝑖 becomes the path contribution function; the integral
corresponds to a radiometric path integral expression [Veach 1998];
and F𝑖 is a loss function that compares the rendered and target
radiometric measurements. An example image loss is:

F𝑖 =
𝐼𝑖 −∬

(x0,v0) ∈Ω
𝑊𝑒,𝑖

(
x
(
𝜎𝑓

)
, v

(
𝜎𝑓

))
𝐿𝑒 (x0, v0)dx0dv0

2 . (16)

In this example, C𝑖 equals the product of the sensitivity function
𝑊𝑒,𝑖 of the 𝑖-th sensor and the source emission function 𝐿𝑒 , and
F𝑖 equals the L2 loss between the rendered measurement and the
actual measurement 𝐼𝑖 at that sensor. Summing over all 𝑁 sensors
(e.g., all pixels of an image) completes the loss.

For geometric losses, the optimization problem of Equation (15)
searches for a refractive index field 𝜂 such that rays traced through
the field have end conditions satisfying specified properties. In this
case, C𝑖 becomes a loss function that compares the end conditions of
the ray against the desired properties; the integral accumulates this
loss for all rays; 𝑁 = 1; and F is the identity function. An example

of a geometric loss is:

C𝑖 =
x (

𝜎𝑓

)
− x̂

2 , (17)

where C is the L2 loss between the ray’s end position x
(
𝜎𝑓

)
and a

target position x̂ where we want all rays to arrive.

Adjoint nonlinear ray tracing. We now apply the adjoint state
method to compute the derivative of the optimization objective of
Equation (15). For simplicity, we differentiate the function inside the
integral of Equation (15), which we denote as C. The total derivative
additionally requires the term dF

dC , which is easy to compute.
Using the terminology of Section 3.2, the configuration variables

are p ≡ (x, v), and the control variable is 𝜃 ≡ 𝜂. Therefore, we
introduce a pair of adjoint state variables (𝝀, 𝝁) that have the same
dimensionality as the corresponding configuration variables. We
can then form the Lagrangian as:

L = C
(
x
(
𝜎𝑓

)
, v

(
𝜎𝑓

))
−
∫ 𝜎𝑓

0
𝝀⊤ ( ¤x − v) d𝜎

−
∫ 𝜎𝑓

0
𝝁⊤ ( ¤v − 𝜂∇𝜂) d𝜎. (18)

Solving for the critical points of the Lagrangian with respect to 𝝀
and 𝝁, we obtain Hamilton’s Equations (5)-(6) with initial condi-
tions x0, v0—that is, the constraints of the optimization problem
of Equation (15), as expected. Solving for the critical points with
respect to x and v, we have

¤𝝀 = −
(
∇𝜂 (∇𝜂)⊤ + 𝜂 Hess (𝜂)

)
𝝁, ∀𝜎 ∈

[
0, 𝜎𝑓

]
(19)

¤𝝁 = −𝝀, ∀𝜎 ∈
[
0, 𝜎𝑓

]
(20)

𝝀
(
𝜎𝑓

)
=

𝜕C
𝜕x

, (21)

𝝁
(
𝜎𝑓

)
=

𝜕C
𝜕v

. (22)

We provide the details of this derivation in the supplement. Wemake
the following observations. First, Equations (19)-(20) are a system of
first-order ODEs on the adjoint state variables, with boundary condi-
tions specified by Equations (21)-(22) at the propagation end, 𝜎𝑓 . We
term Equations (19)-(20) the adjoint equations. Second, computing
the boundary conditions in Equations (21)-(22) requires knowing the
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ray’s end position x
(
𝜎𝑓

)
and velocity v

(
𝜎𝑓

)
. Third, even though

the ODEs in Equations (19)-(20) evolve only the adjoint state vari-
ables 𝝀, 𝝁, they require evaluating the refractive index 𝜂 and its
derivatives at all intermediate ray locations x (𝜎) , ∀𝜎 ∈

[
0, 𝜎𝑓

]
.

These observations suggest the following two-stage procedure for
computing the adjoint state variables. At the first stage, we evolve
Hamilton’s Equations (5)-(6) with initial conditions x0, v0 forward
in 𝜎 , until propagation ends at 𝜎𝑓 . At the second stage, we first use
the ray’s end position and velocity to compute the initial conditions
𝝁
(
𝜎𝑓

)
,𝝀

(
𝜎𝑓

)
of Equations (21)-(22). We then evolve the adjoint

Equations (19)-(20) with initial conditions 𝝁
(
𝜎𝑓

)
,𝝀

(
𝜎𝑓

)
backward

in 𝜎 , for which we travel in reverse along the ray we traced during
the first stage. We refer to the second stage procedure as backward
tracing. In Section 5, we leverage the special structure of Hamilton’s
equations and the adjoint equations, and devise discrete numerical
procedures for efficiently implementing this two-stage procedure,
without the need to store the trajectory of the ray.

Once we have computed the adjoint state variables, we can com-
pute the gradient of the objective of Equation (15) as

d𝜂L =

∫ 𝜎𝑓

0
(𝜂∇ ( d𝜂) + d𝜂∇𝜂)⊤ 𝝁 d𝜎. (23)

Figure 2 visualizes the steps of the overall procedure. The differential
term d𝜂 in Equation (23) will depend on the spatial representation of
the refractive index field. We assume that we compute the refractive
index using a functionN with parameters 𝜃 , 𝜂 (x) = N (x;𝜃 ). Then,
we can replace d𝜂 (x) = dN(x;𝜃 )

d𝜃 d𝜃 . We note that Equation (23)
requires also computing spatial gradients of d𝜂, i.e., the derivatives
of the underlying refractive index field representation. Thus, we
can use Equation (23) to compute derivatives of the objective of
Equation (15) with respect to the parameters of any representation
of the refractive index field that: (i) supports point, gradient (for
Equations (6) and (20)), and Hessian (for Equation (20)) queries; and
(ii) has point and gradient queries that are differentiable with respect
to the representation parameters 𝜃 . We refer to the supplement for
the derivation of these equations for the case whereN corresponds
to trilinear interpolation. Other representations that satisfy these
requirements include smooth interpolation schemes (linear, spline,
and so on), different grid types, and neural fields [Xie et al. 2021].

5 DISCRETIZATION OF THE ADJOINT EQUATIONS
We now discuss how to numerically implement the two-stage pro-
cedure we derived in Section 4 for differentiating the optimization
objective of Equation (15) with respect to the refractive index field.

Forward tracing. During the first stage of our procedure, we need
to evolve Hamilton’s Equations (5)-(6) forward in 𝜎 . We choose to
use a symplectic and reversible integrator to perform this numeri-
cal integration. When applied to a Hamiltonian system of ODEs,
symplectic integrators have well-documented stability properties
that help keep discretization error bounded even along very long
integration trajectories. Additionally, reversible integrators will be
important during the second stage of our procedure when we per-
form backward tracing, as we discuss later in this section. Many

ALGORITHM 1: Forward Tracing
input :𝜂, x0, v0,Δ𝜎
output :x𝑓 , v𝑓

x← x0
v← v0
while insideVolume(x) do

𝜂, ∇𝜂 ← interpolate(𝜂, x)
v← v + 𝜂 · ∇𝜂 · Δ𝜎
x← x + v · Δ𝜎

end
x𝑓 ← x
v𝑓 ← v

ALGORITHM 2: Backward Tracing
input :𝜂, x𝑓 , v𝑓 , 𝛿x, 𝛿v,Δ𝜎
output :𝛿𝜃

x← x𝑓
v← v𝑓
𝝁 ← 𝛿v
𝝀 ← 𝛿x + 𝛿vΔ𝜎
𝛿𝜃 ← 0
while insideVolume(x) do

x← x − v · Δ𝜎
𝜂, ∇𝜂 ← interpolate(𝜂, 𝑥)
v← v − 𝜂 · ∇𝜂 · Δ𝜎
𝑛𝑥𝑥 ← Hess(𝜂, 𝑥)
𝝀 ← 𝝀 +

(
∇𝜂 · ∇𝜂⊤ + 𝜂 · 𝑛𝑥𝑥

)
𝝁Δ𝜎

𝝁 ← 𝝁 + 𝝀Δ𝜎
𝛿𝜃 ← 𝛿𝜃 + (𝝁 · ∇𝜂) dNd𝜃 + 𝜂

(
𝝁 · ∇ dN

d𝜃

)
end

popular symplectic integrators are also reversible. For more infor-
mation on symplectic and reversible integrators, we refer to Hairer
et al. [2006] and Kharevych et al. [2006].
For our experiments, we use the symplectic Euler integrator,

thoughwe can easily change to other symplectic integration schemes
(e.g., the leapfrog integrator [Nimier-David et al. 2019; Pediredla
et al. 2020]). Applying this integrator to Hamilton’s Equations (5)-(6)
results in the following discretized evolution equations:

x𝑖 = x𝑖−1 + v𝑖Δ𝜎, (24)
v𝑖 = v𝑖−1 + 𝜂 (x𝑖−1)∇𝜂 (x𝑖−1)Δ𝜎. (25)

This integration scheme is explicit: the evolution equations compute
the values of x and v at the 𝑖-th step using only their values and
the values of the refractive index field 𝜂 at the previous (𝑖 − 1)-th
step, and thus without the need for a nonlinear solver. Algorithm 1
summarizes our procedure for the forward tracing stage.

Backward tracing. During the second stage of our procedure, we
need to evolve the adjoint Equations (19)-(20) backward in 𝜎 , along
with retracing in reverse direction the ray we traced during the first
stage. For this, we need to: first discretize the adjoint equations, as
we did for Hamilton’s equations in Equations (24)-(25); and second,
evaluate both sets of discrete equations in the backward 𝜎 direction.
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The adjoint equations share the same symplectic structure as
Hamilton’s equations. Therefore, we can discretize them using the
same symplectic Euler integrator we used for Hamilton’s equations:

𝝀𝑖 = 𝝀𝑖−1 −
(
∇𝜂 (x𝑖−1) (∇𝜂 (x𝑖−1))⊤

+ 𝜂 (x𝑖−1)Hess (𝜂 (x𝑖−1))
)
𝝁𝑖Δ𝜎. (26)

𝝁𝑖 = 𝝁𝑖−1 − 𝝀𝑖−1Δ𝜎, (27)

Then, we can invert these discrete relationships to evolve both
Hamilton’s equations and the adjoint equations in reverse, as re-
quired during the backward tracing stage:

x𝑖−1 = x𝑖 − v𝑖Δ𝜎, (28)
v𝑖−1 = v𝑖 − 𝜂 (x𝑖−1) ∇𝜂 (x𝑖−1) Δ𝜎, (29)
𝝀𝑖−1 = 𝝀𝑖

+
(
∇𝜂 (x𝑖−1) (∇𝜂 (x𝑖−1))⊤ + 𝜂 (x𝑖−1)Hess (𝜂 (x𝑖−1))

)
𝝁𝑖Δ𝜎,

(30)
𝝁𝑖−1 = 𝝁𝑖 + 𝝀𝑖−1Δ𝜎. (31)

Equations (28)-(31) are simply rearranged versions of the forward
discretized evolution Equations (24)-(27), respectively. The resulting
numerical scheme is also explicit: the backward evolution equa-
tions update all quantities at the (𝑖 − 1)-th step using only their
values and the values of the refractive index field 𝜂 at the (𝑖)-th step.
Algorithm 2 summarizes our backward tracing procedure.

We make two observations. First, we note that Equations (28)-
(29) will query the exact same locations x and refractive index val-
ues 𝜂 as during forward tracing (up to numerical precision error).
Therefore, we do not need to store the ray locations traced during
forward tracing. We only need to use the final position and velocity(
x
(
𝜎𝑓

)
, v

(
𝜎𝑓

))
at the end of the forward tracing stage. Experimen-

tally, we found that the relative difference between points on the
(discretized) paths produced by forward and backward tracing is
on the order of 10−6. As a result, the memory use of our combined
forward tracing and backward tracing algorithms is constant, in-
stead of scaling linearly with step-size and number of steps, as in
conventional reverse-mode AD.

Second, we note that the explicit and exact reversibility properties
of our two-stage procedure are due to two important choices we
made in our formulation. The first choice is our use of a reversible
symplectic integrator. Using a non-reversible integrator (e.g., Euler
scheme) would result in the locations x (and thus queried refrac-
tive index values 𝜂) during backward tracing being different from
those during forward tracing. In turn, this difference would result
in biased gradient estimates.2 The second choice is our use of the
canonical parameterization 𝜎 and the ensuing Newton’s law form
of Hamilton’s equations (5)-(6). Using a different parameterization
of Hamilton’s equations (e.g., arc-length 𝑠 , as in Ihrke et al. [2007])
would result—even with a reversible integrator—in implicit back-
ward equations, requiring expensive root finding procedures (e.g.,
Newton’s method) to evolve. This is even though the corresponding
continuous Hamilton’s and adjoint equations are reversible. We
demonstrate this in the supplement.

2By “biased”, we mean that the gradients computed by our procedure would not match
those computed using automatic differentiation on the loss evaluation routine, which
involves forward tracing.

Step size. During both the forward and backward tracing stages,
it is important to select an appropriate step size Δ𝜎 for integration.
Decreasing the step size increases the accuracy of the integration,
at the cost of increased computation. In particular, in the case of our
two-stage procedure, halving the step size would increase tracing
computation by roughly 2×, given the need to trace the ray twice,
forward and backward. A procedure based on reverse-mode AD
would have a similar increase in computation, given the need to
forward-trace a longer path and then parse a larger computational
graph. However, such a procedure based on reverse-mode ADwould
have additionally increased memory requirements, given the need
to store this larger computational graph. By contrast, our two-stage
procedure has constant memory requirements. This highlights an
important advantage of our two-stage procedure, especially when
optimizing refractive index fields at higher resolutions (which re-
quires smaller step sizes for accurate ray tracing).

6 RESULTS
We compare the performance of our technique with other differ-
entiable rendering alternatives, in terms of both memory use and
computational efficiency. Additionally, we show experiments using
different cost functions and refractive index field representations,
to show the diversity of applications of our framework. We show
results for designing displays, optimizing GRIN optics, and recon-
structing different types of objects. In the supplement, we show
additional results that validate the accuracy of our computed gradi-
ents, and demonstrate the importance of the reversibility properties
we discuss in Section 5.

Implementation details. We have created two implementations
of our two-stage forward and backward tracing procedure: one in
Pytorch [Paszke et al. 2019], and another in C++ using the Enoki
library [Jakob 2019]. We use the two implementations to compare
against reverse-mode AD, as implemented both by Pytorch’s auto-
grad and in Enoki. For our design and reconstruction experiments,
we use the C++ implementation, combined with Pytorch for its
gradient-based optimizers and visualization tools.
For all our results, we use the Adam optimizer [Kingma and Ba

2014], and initialize the refractive index field to be 𝜂 (x) = 1 every-
where. To ensure that the recovered reconstruction is physically
plausible, after every gradient descent iteration, we project 𝜂 to be
greater than or equal to 1 (projected gradient descent). We also use
a multiresolution approach to accelerate optimization convergence:
During optimization, we periodically double the resolution of the
volume we use to represent the refractive index field. We select the
step size used for tracing to always be smaller than the width of
a voxel in the volume, meaning that we periodically decrease the
step size during optimization. We also impose a constraint that the
volume boundary has a refractive index of 1, by clamping the values
at the boundary at each iteration. We run all of our experiments on
an NVIDIA RTX 3090 GPU, with runtimes ranging between 10-40
minutes.We use theMitsuba renderer with support for continuously-
refractive media [Pediredla et al. 2020] for rendering visualizations
of the results.
We note that, because of the finite step size used for tracing, a

traced ray will end at some point past the volume boundary. We
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Fig. 3. Runtime and memory use comparison for reverse-mode AD and the
adjoint method. The number of steps along a ray is directly proportional to
resolution and inversely proportional to step size. For the adjoint method,
memory use is constant and runtime increases linearly as a function of the
number of steps along a ray. By contrast, memory usage and runtime for
reverse-mode AD are both significantly higher. This is because reverse-mode
AD requires keeping track of the entire light path to compute gradients.

deal with this by tracing the ray back to the boundary to compute
the boundary conditions for the adjoint equations, then begin the
backward tracing stage from the actual post-boundary end location.

Performance. We compare the computational efficiency and per-
formance requirements of our technique, against the reverse-mode
AD implementations of Pytorch and Enoki. In terms of memory, our
method requires the initial and final positions and velocities of the
ray. It also needs to keep track of a second volume that maintains
the refractive index gradients 𝛿𝜂. By contrast, reverse-mode AD
additionally needs to store the computation graph, which grows
with the number of integration steps taken during the simulation.
This means that reverse-mode AD has a linear memory complexity
with respect to step size, whereas the memory complexity of our
method is constant.

To demonstrate these advantages, we perform quantitative com-
parisons of our C++ implementation against one that uses Enoki’s
reverse-mode AD. In the supplement, we show additional compar-
isons of our Pytorch implementation against Pytorch’s reverse-mode
AD. For our comparisons, we look at runtime and peak memory
usage of performing forward and backward tracing operations, as a
function of increasing volume resolution and decreasing step size.

Figure 3 shows the comparison results. As expected, our method
has constant memory usage with respect to step size, whereas
reverse-mode AD has a linear dependence on step size. Increasing
the volume resolution also affects reverse-mode AD significantly
more than our method. As resolution increases, the memory foot-
print of the volume increases by 𝑁 3. However, the step size needs
to decrease along with the increase in resolution so that traced rays
sample the volume voxels properly. The decrease in step size domi-
nates the memory resources more so than the cubic increase in the

Optimized images Target images

Fig. 4. The optimized GRIN lens displaying two images. (Top) Two colli-
mated beams of light (red and blue) simultaneously illuminate two faces of
a cubic GRIN lens, which steers the light to form two distinct images on a
wall. (Bottom) The optimized images of Albert Einstein and Alan Turing,
and the corresponding target images. The image of Albert Einstein is a
portrait by Yousuf Karsh. ©Yousuf Karsh. The portrait of Alan Turing is by
Elliot & Fry Studio. ©National Portrait Gallery.

volume size, which is why we see a linear dependence on resolution
for reverse-mode AD as well.
Our method also performs better in terms of runtime compared

to reverse-mode AD. Theoretically, our method has the same as-
ymptotic complexity as reverse-mode AD, as traversal of the com-
putation graph (for reverse-mode AD) and the backward tracing
procedure (for our method) will both take as long as the forward
tracing procedure. We attribute the better runtime observed for our
method in practice to the much larger number of memory accesses
that reverse-mode AD needs to perform.
We note that Enoki can perform graph simplification during

automatic differentiation, which gives better memory performance
than standard reverse-mode AD (so called, hybrid-mode automatic
differentiation [Griewank and Walther 2008]). In our comparisons
with Enoki, we keep graph simplification turned on. However, our
workload requires use of the gather operation to query the spatial
volume, which prevents Enoki from using certain aggressive graph
simplification techniques.

Novel view displays. We present three experiments for design-
ing refractive index fields that produce different displays. The first
experiments is generating a multiview display that shows two im-
ages in two different directions. The second is building a multifocal
display that produces images at different focusing distances with
accurate defocus blur. The third is a caustic design problem where
our method produces a refractive index field that generates a caustic
pattern in both the near and far fields.

For the multiview display, we replicate the experimental setting
presented in Nimier-David et al. [2019], where the task is to gen-
erate a refractive index volume that produces two different images
simultaneously using two perpendicular light sources. The sources
are collimated beams. We use an image loss in this case where, using
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333 voxels 653 voxels 1293 voxels 2573 voxels
Fig. 5. Effect of volume resolution. We optimize volumes of different resolu-
tion to reproduce a picture of Albert Einstein, under the same setting as in
Figure 4. As the volume resolution increases, so does reproduction accuracy.
The image is courtesy of Yousuf Karsh. ©Yousuf Karsh.

the notation of Equation (15), the outer and inner cost functions are

Fmultiview
𝑖 (𝑎) ≡

𝑎 − 𝐼𝑖2 , (32)

Cmultiview
𝑖 (x, v) ≡ 𝐼𝑖 (x, v) , (33)

and summation is over the two views.
Figure 4 shows the results. Our method allows us to optimize

a higher-resolution volume than that used by Nimier-David et
al. [2019] (2563 versus 1503 voxels; trying to use 2563 with the
reverse-mode AD implementation in a single pass resulted in an
“out-of-memory” error). We note that our experiments produce dif-
ferent results than those in Nimier-David et al. [2019], due to differ-
ences in the experimental setup.
Thanks to its constant memory complexity, our method enables

optimizing refractive index fields of higher resolution than what is
possible using reverse-mode AD. To demonstrate the importance
of this capability, in Figure 5, we repeat the experiment of Figure 4
using refractive index volumes of different resolutions. Increasing
the volume resolution helps ameliorate discretization artifacts due
to trilinear interpolation, which in turn results in more accurate
reproduction of the target image.
For the multifocal display, we optimize a refractive index field

that can generate a focal stack of some input scene. We can simulate
the focal stack by placing image planes at different distances from
the refractive index volume, as shown in Figure 6. The distance of
each plane then corresponds to projecting an image at a different
focusing distance, with appropriate defocus blur. We select focusing
distances equally spaced in diopter space. We then run optimization
with an image loss where, using the notation of Equation (15), the
outer and inner cost functions are

Fmultifocal
𝑖 (𝑎) ≡

𝑎 − 𝐼𝑖2 , (34)

Cmultifocal
𝑖 (x, v) ≡ 𝐼𝑖 (x, v) . (35)

and summation is over the different focusing distances.
Figure 6 shows the results of the optimization. We form the target

images by focusing the Lego knights lightfield from the Stanford
light field dataset at different focusing distances. Our optimized
refractive index fields can produce images that replicate the defocus
blur effects in the input images.
Lastly, we design a refractive index field that generates circular

caustics in both the near and far fields. 3 Instead of an image loss,
3By “far field” we mean the image we would obtain if we placed a sensor at a plane
placed at the infinity focus of a lens. The location of rays on this plane is determined
by their velocity v rather than their location x.

source mask GRIN optic focal planes

Mask Plane A Plane B Plane C

Fig. 6. A multifocal display. (Row 1) Collimated light passes through a
mask to form an all-in-focus projected image of a lego scene. Placing a
GRIN lens in front of the mask produces a 2D intensity distribution that
can change as a function of distance. We optimize this GRIN lens to create a
focal stack of this lego scene. (Row 2) The optimized intensity distribution
at different plane positions, where plane A is the closest to the GRIN lens
and plane C is the furthest. (Row 3) The target (ground truth) focal stack.

for this caustic design, we use a geometric loss that encourages rays
to land at a particular locus of points and have a particular direction.
The use of such a loss function showcases the ability of our method
to optimize both image and geometric objectives. To define the loss,
we use the signed distance function of the target caustic patterns at
the near and far field planes. In the notation of Equation (15), our
loss corresponds to using the outer and inner cost functions

F caustic (𝑎) ≡ 𝑎, (36)

Ccaustic (x, v) ≡ (SDFnear (x))2 + (SDFfar (v))2 . (37)

To compute the loss, rays are traced until they reach the end of
the volume. There, the near-field part of the loss penalizes large
distances (as measured by the SDF) of the ray end-location x from
the target caustic. Likewise, the far-field part of the loss penalizes
large distances of the ray end-velocity v from the target caustic.

Figure 7 shows the results. We note that the optimized refractive
index volume successfully reproduces the target caustic in both
near-field and far-field. However, some parts of the caustic are a
lot brighter than other parts. This is because the loss function we
use encourages rays to move toward the caustic, but not to spread
uniformly along it. Our focus in this experiment is to show that
our technique can optimize geometric losses, rather than to find the
best loss for producing uniformly-illuminated caustics. In fact, the
general problem of defining a transport map between the source
and the target images is an active area of research [Meyron et al.
2018; Schwartzburg et al. 2014; Wei et al. 2020]; our optimization
procedure could be used with a geometric loss, to design refractive
index field realizing such a transport map.
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Target 𝑧 = 10 𝑧 = 100 𝑧 = 1000 𝑧 = ∞
image (near field) (far field)

Fig. 7. Caustic design. The caustic pattern remains in shape as the sensor
moves away from the volume. Since the cost function does not promote
uniform energy distribution, the caustic contains bright spots.
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Fig. 8. Renderings of the reconstructed Luneburg and Maxwell lenses. (Col
1) Renderings of both lenses in the Cornell box with lasers shining through
the lens. (Col 2) A comparison of the center axes of the optimized volume
and the ground truth lens. Qualitatively, the paths have little divergence
between the two. The greatest disparity occurs at the boundary of the
volume. This is because of the constraint we add during optimization which
projects the boundary of the solution to a value of one.

Optimizing GRIN optics. We show experiments where we recover
the refractive index field of a known GRIN lens, using only a descrip-
tion of the operation of the lens (i.e., the geometric mapping between
incident and outgoing rays that the lens implements). We do this
for the Luneburg and Maxwell lenses. The Luneburg lens [Luneberg
1944] is a GRIN lens that focuses a point source at infinity to the
antipodal point on the lens; whereas the Maxwell lens [Maxwell
1854] focuses a point source placed at the surface of the lens to the
antipodal point on the lens. These perfect focusing properties are

optimized parabolic

optimized parabolic parabolic
optimized

0 r-r
(a) (b) (c)

Fig. 9. A comparison between the optimized fiber design and the parabolic
profile. (a) A cross-section of each fiber with the ray trajectories. Light
disperses the farther it travels in both fibers, but much less so in the opti-
mized fiber. (b) Images of the focused source at each of the focus points
in the fibers. The images from the optimized fiber are better focused. (c)
A cross-section of the images, showing the PSF of the fiber at each of the
focus points. The optimized fiber retains better focus at the farther hop.

realized using the radial refractive index profiles

𝜂Luneburg (𝑟 ) ≡
√︂
2 −

( 𝑟
𝑅

)2
, (38)

𝜂Maxwell (𝑟 ) ≡
2

1 +
(
𝑟
𝑅

)2 , (39)

where 𝑅 is the radius of the lens, and 𝑟 is the distance from the
center of the lens. Even though the Luneburg and Maxwell lenses
are primarily of theoretical interest, they provide useful groundtruth
profiles for evaluating our method.
To recover these profiles, we optimize refractive index fields for

the same geometric loss that, in the notation of Equation (15), uses
the outer and inner cost functions 4

FGRIN (𝑎) ≡ 𝑎, (40)

CGRINx0,v0 (x, v) ≡ ∥x − x̂ (x0, v0)∥
2 . (41)

where x̂ (x0, v0) is the target antipodal point determined by the ini-
tial ray direction and position. In the case of the Luneburg lens, rays
entering the lens with the same direction should reach the same end
point. For the Maxwell lens, rays entering the lens from the same
point should reach the same end point. At each gradient descent
iteration, we pick at random six directions and a corresponding six
target points to optimize over. Figure 8 shows the results. The opti-
mized refractive index volumes closely match the analytic refractive
fields for both the Luneburg and Maxwell lenses.
Next, we turn our attention to using our method to optimize a

GRIN fiber. This is a long waveguide cable that has a rotationally-
symmetric refractive index profile. As a result, light traveling through
the fiber is curved toward the center of the fiber. As light travels

4We note that, for this experiment, we use a slightly more general inner cost function
than in Equation (15), as we allow the inner cost function to change depending on the
initial conditions of the ray. This does not affect our optimization formulation.
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Table 2. Error values for the experiments in Figure 10, measured as L2
relative error from the ground truth.

Method Orig. Data 10x 100x 1000x

Adjoint [ours] 0.0014 0.014 0.29 3.8
Atcheson et al. [2008] 0.0110 0.113 1.28 19.3

through the medium and does not bounce off of the sides of the
fiber, it can travel long distances with minimal loss of energy.
The drawback to this design, however, is that light traveling

through the fiber experiences dispersion. Rays starting at the center
of the fiber have a smaller optical distance to travel compared to
rays starting farther away from the center. This results in the wave-
form eventually being deformed as propagation distance increases.
Figure 9 visualizes this dispersion. Hisatomi et al. [2005] survey
different radial profiles and their dispersion characteristics. The
simplest such GRIN fiber profile is the parabolic one,

𝜂fiber (𝑟 ) =
√︂
2 −

( 𝑟
𝑅

)2
, (42)

where 𝑟 is the distance from the medial axis of the fiber, and 𝑅 is
the radius of the fiber.

We seek to design a profile that exhibits less dispersion compared
to the parabolic profile. We start with a collimated source and have
it focus to a point. Our cost function is

F fiber (𝑎) ≡ 𝑎, (43)

Cfiber (x, v) ≡ ∥x − p̂∥ , (44)

where p̂ is the target focal point of the fiber. To enforce rotational
symmetry, we use a refractive index field representation that speci-
fies refractive index only as a function of radius.

Figure 9 shows the results. Using our optimized refractive index
profile results in rays that focus better than using the parabolic pro-
file, and that maintain better focus at multiple points throughout the
fiber. At all focus points in the fiber, the optimized profile produces
a more focused image than the parabolic profile.

Fuel injection reconstruction. An application for our refractive in-
dex field optimization procedure is the reconstruction of transparent
gas flows, similar to Atcheson et al. [2008] and Ji et al. [2013]. Both
works use active sensing to obtain measurements of the light field
entering and exiting a gas volume. They generate correspondences
between incident and outgoing rays; then use this information to
reconstruct the refractive index field of the volume by assuming that
light rays are approximately linear. This is an accurate assumption
given that, as the gas flow volume has refractive index changes on
the order of 10−4, most rays undergo very little deflection.
We reconstruct the fuel injection dataset from SFB 382 of the

German Research Council (DFG) using the measurements as in these
prior works. We optimize a geometric loss that, in the notation of
Equation (15), uses the outer and inner cost functions

F fuel (𝑎) ≡ 𝑎, (45)

Cfuelx0,v0 (x, v) ≡ ∥x − x̂ (x0, v0)∥
2 + ∥v − v̂ (x0, v0)∥2 , (46)

Adjoint [ours] Atcheson et al. [2008]
1.0003

1.0
1.003

1.0
1.03

1.0
1.3

1.0

Fig. 10. Isocontour visualizations of the reconstructions of an unknown
refractive index field from a set of images with our method and Atcheson
et al. [2008]. Every row increases the magnitude of the refractive index field
by a factor of 10. With increased refractive index gradients, the light rays
deflect by larger amounts. The method proposed by Atcheson et al. [2008]
struggles to recover the field in such scenarios, because of a linear path
assumption imposed on the propagation of light. In contrast, our method
recovers the fuel injection scene even in the case of extreme ray deflections.

where x̂ and v̂ are the measurements from the ground truth simula-
tion. Importantly, our technique does not assume that the paths of
the rays are known prior to the optimization (as Ji et al. [2013] do),
or linear (as Atcheson et al. [2008] do).

Figure 10 compares our results with those from the technique of
Atcheson et al. [2008]. Along with experiments using the original
dataset, we show experiments where we scale the refractive index
values of the volume, to artificially generate scenes that produce
much larger ray deflections. These artificial settings are not rep-
resentative of the original application on gas flow reconstruction,
but help highlight the ability of our technique to handle large de-
flections. As ray deflection increases, the technique of Atcheson et
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al. [2008] produces reconstructions with more artifacts than in those
produced by our technique. The remaining artifacts are because of
the nonconvex nature of this inverse problem, and can potentially
be reduced with more measurements. Table 2 compares the per-
formance of our method and the method of Atcheson et al. [2008]
in terms of relative error from the ground truth, showing that our
method improves performance using the same measurements.

7 LIMITATIONS AND DISCUSSION
We discuss some of the limitations of our work and potential solu-
tions that can be explored in future work.

Initialization. Aswith any gradient-based optimization procedure,
our method requires a good initialization. Given that the optimiza-
tion landscape is highly non-convex, it is easy for gradient descent
to get trapped into local minima. In our experiments, initializing to
a uniform refractive index field gave satisfactory results. Exploring
better initialization schemes (e.g., reconstructions from techniques
assuming a single refraction event [Atcheson et al. 2008]) is an
important future research direction.

Sufficient measurements. When using our technique for recon-
struction tasks, it is still unclear how many and what measurements
are required to correctly recover the underlying refractive index
field. In the presence of ambiguities, it is possible to have zero mea-
surement loss, while still recovering a different refractive index
field. The analysis of what are sufficient measurements for unique
refractive index field recovery is an important open problem.

Scattering. Our theory and algorithms apply to media where there
is only continuous refraction, and no volumetric scattering. How-
ever, most real-world materials have both continuous refraction
and volumetric scattering. Currently, there exist forward rendering
formulations based on the refractive radiative transfer equation for
the simulation of such materials [Ament et al. 2014; Pediredla et al.
2020]. We believe our techniques can be combined with the refrac-
tive radiative transfer equation, to enable differentiable rendering
in materials that both scatter and continuously refract light.

Discretization bias. Our procedure uses discrete numerical inte-
gration to simulate continuous ODEs. Inevitably, this introduces
bias, which is larger as the simulation step size increases. However,
we note that our derivation in Section 4 is continuous and thus un-
biased. Investigating ways to simulate these continuous equations
without discretization bias (e.g., Monte Carlo and randomization
techniques) is an interesting future research direction.

Fabrication constraints. In most of our simulated experiments, we
did not take into account possible fabrication constraints in real-
world design tasks, such as those discussed by Teichman et al. [2013].
However, as we show in the GRIN fiber optimization example, it
is possible to incorporate design constraints into our framework
(e.g., rotational symmetry). Future work should investigate incor-
porating other types of design and fabrication constraints into our
optimization framework.

8 CONCLUSION
We presented a theory for differentiating optimization objectives
constrained by nonlinear ray tracing equations with respect to the
underlying refractive index field. We showed both a continuous
formulation, and a discretization that lends itself to numerical eval-
uation. The resulting algorithm has constant memory complexity,
and overall requires significantly less memory than previous dif-
ferentiable rendering methods based on reverse-mode automatic
differentiation. Our method supports different types of optimization
objectives, involving image and geometric losses. Lastly, we demon-
strated the utility of our method through simulated experiments,
where we use it for a variety of design and reconstruction problems
involving continuously-varying refractive index fields.
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