
Adjoint Nonlinear Ray Tracing Supplemental Material
ARJUN TEH, MATTHEW O’TOOLE AND IOANNIS GKIOULEKAS, Carnegie Mellon University, USA

ACM Reference Format:
Arjun Teh, Matthew O’Toole and Ioannis Gkioulekas. 2022. Adjoint Nonlin-
ear Ray Tracing Supplemental Material. ACM Trans. Graph. 41, 4, Article 126
(July 2022), 4 pages. https://doi.org/10.1145/3528223.3530077

A DERIVATION OF THE ADJOINT EQUATIONS
To derive the adjoint equations, we start by expanding the optimiza-
tion objective. We separate the refractive index field 𝜂 from the state
variables and relate them via Lagrange multipliers:

L = C
(
x
(
𝜎𝑓

)
, v

(
𝜎𝑓

))
−
∫ 𝜎𝑓

0
𝝀⊤ (¤x − v) d𝜎

−
∫ 𝜎𝑓

0
𝝁⊤ (¤v − 𝜂∇𝜂) d𝜎 − 𝝆G

(
x
(
𝜎𝑓

))
. (1)

We omit the inputs to x, v, 𝝀, and 𝝁 for brevity. We will also make
C and G implicit in the inputs x and v.
In Equation (1), we use Lagrange multipliers for both the con-

straints in the original formulation and an additional constraint
omitted in the main text. This is the G boundary term that rep-
resents the exit condition of the ray. In our experiments, G is the
signed distance of a point from a plane. In general, G could be the
signed distance function of an arbitrary mesh. This constraint de-
termines the term 𝜎𝑓 in the Lagrangian, as it dictates the end of the
ray trajectory.

In order for the Lagrangian to be equivalent to our original objec-
tive, we require 𝜕L

𝜕𝜎 = 0, 𝜕L𝜕v = 0, and 𝜕L
𝜕x = 0. These correspond to

critical points in time, velocity, and position, respectively. We also
require 𝜕L

𝜕𝝁 = 0, 𝜕L
𝜕𝝀 , and 𝜕L

𝜕𝝆 = 0. The solutions to these equations
are exactly the original constraints of our problem, which are the
equations of the dynamics along with the constraint that the ray
ends at a desired point (hits a plane, exits an object, etc.).

A.1 Critical point in time

The first equation we examine is the critical point in time, 𝜕L𝜕𝜎 = 0,
which describes how the boundary condition will affect the initial
conditions of the adjoint equations. Taking the partial derivative of
Equation (1) with respect to the (end) time variable 𝜎 gives

𝜕L
𝜕𝜎

=
𝜕C
𝜕x

⊤ 𝜕x
𝜕𝜎

− 𝝀⊤ (¤x − v) − 𝝁⊤ (¤v − 𝜂∇𝜂) − 𝝆
𝜕G
𝜕x

⊤ 𝜕x
𝜕𝜎

. (2)

We observe that both the 𝝀 and 𝝁 terms will be zero when the
constraints are satisfied, and the derivative of x with respect to 𝜎 is

Author’s address: Arjun Teh, Matthew O’Toole and Ioannis Gkioulekas, Carnegie
Mellon University, Pittsburgh, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
0730-0301/2022/7-ART126
https://doi.org/10.1145/3528223.3530077

simply v. So, we can simplify to

𝜕L
𝜕𝜎

=
𝜕C
𝜕x

⊤
v − 𝝆

𝜕G
𝜕x

⊤
v. (3)

The term 𝜕G
𝜕x is the normal of the region of interest in the case of a

boundary condition based on a signed distance function. Then, the
last term can be interpreted as a foreshortening term that attenuates
𝝆 based on how close v is to being perpendicular to the exit point
normal. Setting the expression to 0 and solving for 𝝆 gives us

𝝆 =

𝜕C
𝜕x

⊤
v

𝜕G
𝜕x

⊤
v
. (4)

Therefore, we have that 𝝆 equals the error in position weighted by
the ray’s exit angle. As the denominator is only zero when the ray
is moving parallel to the normal of the exit point, it is not possible
to divide by zero when tracing through the exit point.

A.2 Critical point in velocity
We present the derivation of the critical point in velocity in terms
of variational calculus. The notation used in this case is 𝛿 which
represents an infinitesimal variation in the variable or function.
A subscript is used when the variation is with respect to one of
the parameters of the function. The variation will have the same
dimensionality as its variable. For more information on the calculus
of variations, we refer to Gelfand and Fomin [1].

We begin by taking the variation of L with respect to v:

𝛿vL = 𝛿vC +
∫ 𝜎𝑓

0
𝝀⊤𝛿v d𝜎 −

∫ 𝜎𝑓

0
𝝁⊤𝛿 ¤v d𝜎. (5)

Currently, we are taking the variation of the time derivative. We
can separate the time derivative and the variation by applying inte-
gration by parts to the second integral:

𝛿vL = 𝛿vC − 𝝁⊤ (𝛿v)
��𝜎𝑓

0 +
∫ 𝜎𝑓

0
𝝀⊤𝛿v d𝜎 +

∫ 𝜎𝑓

0
¤𝝁⊤𝛿v d𝜎. (6)

The first two terms on the right-hand side are defined at the be-
ginning and end of the ray, whereas the last two terms are defined
over the whole trajectory. This equation needs to be zero for all
perturbations of 𝛿v. We note that 𝛿v at the beginning of the ray is
always zero, as the initial condition is fixed and cannot be changed.
This means that

¤𝝁 = −𝝀, (7)

𝝁 (𝜎𝑓) =
𝜕C
𝜕v

. (8)

ACM Trans. Graph., Vol. 41, No. 4, Article 126. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530077
https://doi.org/10.1145/3528223.3530077

126:2 • Arjun Teh, Matthew O’Toole and Ioannis Gkioulekas

A.3 Critical point in position
To find the critical point in position, we follow the same procedure
as in the velocity case. We take the variation of L with respect to x:

𝛿xL = 𝛿xC −
∫ 𝜎𝑓

0
𝝀⊤ (𝛿 ¤x) d𝜎

+
∫ 𝜎𝑓

0
𝝁⊤ (∇𝜂∇𝜂⊤ + 𝜂∇∇𝜂)𝛿x d𝜎 − 𝝆𝛿xG. (9)

We apply integration by parts on 𝛿 ¤x to get the following expression:

𝛿xL = 𝛿xC − 𝝀⊤ (𝛿x)
��𝜎𝑓

0

+
∫ 𝜎𝑓

0

[¤𝝀⊤𝛿x + 𝝁⊤ (∇𝜂∇𝜂⊤ + 𝜂∇∇𝜂)𝛿x
]
d𝜎 − 𝝆𝛿xG.

(10)

Requiring that the expression be 0 for all 𝛿x, we have that

¤𝝀 = −
(
∇𝜂∇𝜂⊤ + 𝜂∇∇𝜂

)
𝝁, (11)

𝝀(𝜎𝑓) = 𝛿xC − 𝝆𝛿xG. (12)

A.4 Gradient with respect to refractive index
By taking the variation of L with respect to 𝜂, we have

𝛿𝜂L =

∫ 𝜎𝑓

0

[
𝝁⊤ (𝜂∇𝛿𝜂 + 𝛿𝜂∇𝜂)

]
d𝜎. (13)

We select a 𝛿𝜂 that ensures that 𝛿𝜂L is positive:

𝛿𝜂 = 𝝁⊤∇𝜂, (14)
∇𝛿𝜂 = 𝜂𝝁⊤ . (15)

The equation requires solving for 𝝁, which we can do using the
equations derived above. Additionally, we need to be able to define
𝛿𝜂 and ∇𝛿𝜂 for our underlying data structure when calculating the
gradient with respect to 𝜂.

B IMPLEMENTATION OF A TRILINEAR VOLUME
We use a voxel grid to represent the refractive index field, and in-
terpolate using trilinear interpolation. Using trilinear interpolation,
we can obtain both the scalar value and the spatial gradient of the
refractive index field at any point in the volume. The interpolation
weights are trilinear in the sampling position, but linear in the data
points. We can express trilinear interpolation as

𝜂 (x;𝜃) = w · 𝜃 =

𝑤00 (x)
𝑤01 (x)
𝑤10 (x)
𝑤11 (x)

·

𝜃00
𝜃01
𝜃10
𝜃11

, (16)

where 𝜃 contains the data values of the volume, and 𝑤𝑖 𝑗 are the
weights associated with each data point. These weights are based on
the distance between the query and data points. In two dimensions,
there are four points that are closest to the query point, giving us
four nonzero weights. To obtain the spatial gradient of the field, we

can differentiate this equation with respect to x:

d𝜂 (x;𝜃)
dx =

dw
dx · 𝜃 =

d𝑤00
dx
d𝑤01
dx
d𝑤10
dx
d𝑤11
dx

·

𝜃00
𝜃01
𝜃10
𝜃11

. (17)

The derivative with respect to x is a column vector for each of the
weights, resulting in a 2 × 4 matrix.

To apply the adjoint equations to these values, we need to know
how the variation of the data points affects the variation of the
calculated 𝜂 value. For this, we take the variation of 𝜂 with respect
to the data values 𝜃 :

d𝜂 (x;𝜃)
d𝜃 = w · d𝜃 =

𝑤00 (x)
𝑤01 (x)
𝑤10 (x)
𝑤11 (x)

·

d𝜃00
d𝜃01
d𝜃10
d𝜃11

. (18)

We can then replace d𝜂 in Equation (??) with this relation:

𝑑𝜂L =

∫ 𝜎𝑓

0

(
𝜂∇w⊤ d𝜃 +w⊤ d𝜃∇𝜂

)⊤
𝝁 . (19)

We rearrange Equation (19) so that d𝜃 is factored out:

𝑑𝜂L =

∫ 𝜎𝑓

0
𝝁⊤

(
𝜂∇w⊤ + ∇𝜂w⊤) d𝜃 . (20)

This gives us a rule for updating the values of the 𝜃 in order to
satisfy Equations (14) and (15).

C USING ARC-LENGTH PARAMETERIZATION
We consider the arc-length parameterized version of Hamilton’s
Equations (??)-(??) [2],

dx
d𝑠 =

v
𝜂
, (21)

dv
d𝑠 = ∇𝜂. (22)

By discretizing these equations using the symplectic Euler integrator,
we have:

x𝑖 = x𝑖−1 +
v𝑖

𝜂 (x𝑖−1)
Δ𝑠, (23)

v𝑖 = v𝑖−1 + ∇𝜂 (x𝑖−1) Δ𝑠 . (24)
We can then reverse these equations to obtain:

x𝑖−1 = x𝑖 −
v𝑖

𝜂 (x𝑖−1)
Δ𝑠, (25)

v𝑖−1 = v𝑖 − ∇𝜂 (x𝑖−1)Δ𝑠 . (26)
We note that, in this case, the backward Equation (25) for x𝑖−1 is im-
plicit and cannot be solved explicitly. This is because, in the forward
direction, Equations (23)-(24) use x𝑖−1. To solve Equation (25), we
would need to use an implicit solver such as Newton’s Method. This
would greatly increase the computational cost of the gradient calcu-
lation. Alternatively, we would need to store the trajectory of the
ray during forward tracing, and use it during backward tracing. This
would increase the memory requirements of our algorithm, making
them similar to those of automatic differentiation techniques that
record the entire trajectory through the computation graph.

ACM Trans. Graph., Vol. 41, No. 4, Article 126. Publication date: July 2022.

Adjoint Nonlinear Ray Tracing Supplemental Material • 126:3

Finite differences Reverse-mode AD Adjoint state method Relative error
0.16

0.00

0.08

Fig. 1. Comparison of gradients generated using finite differences, reverse-mode AD and the adjoint method. We trace rays through the Luneburg lens, then
calculate the loss 1⊤x(𝜎𝑓) . The adjoint and reverse-mode AD methods produce gradients that closely match, as seen in the relative error plot. The result of
finite differences deviates significantly, due to its instability when tracing.

Table 1. Performance comparison between the adjoint method and reverse-
mode AD for one optimization iteration.

Implementation Peak memory Time

AD (Enoki) 5.61GB 2.15 s
Adjoint (Enoki) 0.29GB 0.88 s
AD (PyTorch) 16.01GB 3.29 s
Adjoint (PyTorch) 0.14GB 4.25 s

D VERIFYING THE ADJOINT METHOD WITH
AUTOMATIC DIFFERENTIATION

We verify that the adjoint method produces gradient values equal
to those from automatic differentiation. We trace rays through the
Luneburg lens and then calculate the gradient using both reverse-
mode AD and the adjoint method. We visualize the gradients for a
slice of the volume in Figure 1. The difference between the estimates
remains low throughout most of the volume.

E COMPARISONS IN PYTORCH AND ENOKI
We implemented the adjoint method in both PyTorch and Enoki and
present performance numbers for both versions in Table 1. In both
frameworks, the adjoint method performs significantly better than
reverse-mode AD in terms of memory usage. In Enoki, the adjoint
method performs faster as well, but not in PyTorch. We attribute
this to the fact that accessing the data structure implemented in
PyTorch takes longer than traversing the computation graph.

F IMPORTANCE OF REVERSIBILITY
We use Figure 2 to highlight the importance of reversibility. In
particular, we show that using the non-reversible formulation based
on the arc-length parameterization results in biased gradients. Using
these biased gradients for optimization results in an optimization
trajectory that both converges to a higher loss and is unstable.

REFERENCES
[1] Izrail Moiseevitch Gelfand and Sergei Vasilyevich Fomin. 1963. Calculus of varia-

tions. Courier Corporation.

[2] Ivo Ihrke, Gernot Ziegler, Art Tevs, Christian Theobalt, Marcus Magnor, and Hans-
Peter Seidel. 2007. Eikonal rendering: Efficient light transport in refractive objects.
ACM TOG (2007).

ACM Trans. Graph., Vol. 41, No. 4, Article 126. Publication date: July 2022.

126:4 • Arjun Teh, Matthew O’Toole and Ioannis Gkioulekas

0.0

1.1

0.6

Canonical Arc-length Loss Gradient comparison

Fig. 2. Comparison of optimization results with the adjoint method using the reversible canonical parameterization and the non-reversible arc-length
parameterization. We optimize a refractive index volume to focus single collimated light source to the center of the sensor plane. Both optimization variants
achieve a focus, but the optimization using arc-length parameterization achieves a worse loss value and becomes unstable. At the right, we show the relative
difference between the gradients computed using the canonical and arc-length parameterizations.

ACM Trans. Graph., Vol. 41, No. 4, Article 126. Publication date: July 2022.

	A Derivation of the Adjoint Equations
	A.1 Critical point in time
	A.2 Critical point in velocity
	A.3 Critical point in position
	A.4 Gradient with respect to refractive index

	B Implementation of a trilinear volume
	C Using arc-length parameterization
	D Verifying the adjoint method with automatic differentiation
	E Comparisons in PyTorch and Enoki
	F Importance of Reversibility
	References

