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ABSTRACT
Optics designers use simulation tools to assist them in designing
lenses for various applications. Commercial tools rely on finite
differencing and sampling methods to perform gradient-based opti-
mization of lens design objectives. Recently, differentiable rendering
techniques have enabled more efficient gradient calculation of these
objectives. However, these techniques are unable to optimize for
light throughput, often an important metric for many applications.

We develop a method for calculating the gradients of optical sys-
tems with respect to both focus and light throughput. We formulate
lens performance as an integral loss over a dynamic domain, which
allows for the use of differentiable rendering techniques to calculate
the required gradients. We also develop a ray tracer specifically
designed for refractive lenses and derive formulas for calculating
gradients that simultaneously optimize for focus and light through-
put. Explicitly optimizing for light throughput produces lenses
that outperform traditional optimized lenses that tend to prioritize
for only focus. To evaluate our lens designs, we simulate various
applications where our lenses: (1) improve imaging performance
in low-light environments, (2) reduce motion blur for high-speed
photography, and (3) minimize vignetting for large-format sensors.

CCS CONCEPTS
• Computing methodologies→ Computational photography;
Ray tracing.

KEYWORDS
lens design, differentiable rendering

ACM Reference Format:
Arjun Teh, Ioannis Gkioulekas, andMatthewO’Toole. 2024. Aperture-Aware
Lens Design. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Conference Papers ’24 (SIGGRAPH Conference Papers
’24), July 27-August 1, 2024, Denver, CO, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3641519.3657398

1 INTRODUCTION
Cameras are a ubiquitous technology in our modern world. Scien-
tists use cameras to image objects ranging from microscopic organ-
isms to gargantuan celestial bodies. Engineers rely on cameras to
collect measurements in applications ranging from remote sensing
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(a) scene layout

(b) lens optimized for throughput
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Figure 1: (a) The objective of thiswork is to design lenses capa-
ble of forming sharp images and having high light through-
put. (b) We optimize the shape and position of individual
lens elements and an aperture stop to gather the light from
the scene. (c) Using off-the-shelf rendering software (e.g.,
Blender), we then model our lens and simulate its perfor-
mance in forming images under various settings.

to quality assurance. Everyday consumers using cameras for enter-
tainment or artistic pursuits. In all these settings, the imaging per-
formance of cameras depends critically on their lenses—typically
compound lenses, comprising stacks of refractive materials and
opaque stops that together direct light on a sensor to form an im-
age. In turn, the ability of a compound lens to focus light depends
on the design of the geometry and materials of its optical elements.

The design space of compound lenses has been historically hard
for designers to navigate, necessitating assistance from simulation
and computational tools that help guide the search for performant
designs. Geometric optics theory has provided a theoretical model
for how light travels through the refractive materials that make
up lenses [Born and Wolf 2013; Pedrotti et al. 2017]. This theory
remains the basis of how optical design software such as Zemax
[2023] and CODE V [2023] evaluate lens performance. Even with
these tools, design remains time consuming and requires a lot of
designer input. It is thus useful to develop algorithms that can
further alleviate some of the burden on designers.

A common design specification is requiring a lens that takes in
as much light as possible, even at the cost of reduced sharpness.
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A light-efficient lens is especially important when imaging fast
moving objects requiring a fast shutter (e.g., sports photography),
or night scenes where available light is limited. However, existing
design tools can only quantify the light efficiency of a lens (e.g., by
computing its f-number), but cannot explicitly optimize it.

We augment the set of tools available for lens design by devel-
oping a technique to automatically optimize the light efficiency of
a lens. Our key contribution is a new aperture-aware differentiable
rendering technique for efficiently optimizing lens designs with
respect to parameters controlling their entrance pupil. In particu-
lar, we express common lens design objectives as integrals over a
domain that corresponds to the entrance pupil and depends on the
lens parameters. We then derive estimators for the gradients of such
objectives that correctly account for this dependence and are effi-
cient to compute. We use our technique to explore the fundamental
trade-off between light throughput and focus in lens design, and de-
sign lenses for applications where light throughput is critical, such
as low-light and fast-motion settings. Our code for aperture-aware
lens optimization is available at the project website.1

2 RELATED WORK
Lens design. Lens design has a long history in optics research

and industry, and thus there are several textbooks providing de-
tailed theory and engineering background [Pedrotti et al. 2017;
Smith 2008]. Modern lens engineers use dedicated software tools
for simulation and optimization, such as Zemax [2023] and CODE
V [2023]. These tools enable engineers to iterate on virtual lens
designs before building expensive physical prototypes.

Recent research in graphics and computational imaging has also
looked at computational tools for lens design. Sun et al. [2015]
search through the lens design space using a stochastic mutation
policy that adds and removes surfaces from the lens. By contrast, our
method focuses on improving a fixed lens design without changing
its number of surfaces. Damberg and Heidrich [2015] develop a
method for generating caustic images using freeform lenses. Both
their method and ours rely on refractive ray tracing, but our method
focuses on more general optical design problems.

Existing software tools, both industrial and research [Wang et al.
2022], support searching for lens designs that match target specifi-
cations through gradient-based optimization. Our method expands
these capabilities by enabling differentiation with respect to discon-
tinuous parameters, such as the size of physical apertures and other
pupils. This allows optimizing lens designs for important metrics,
such as light throughput and vignetting.

Lens modeling. Prior work in computer graphics has developed
several approximate models for image formation through com-
pound (multi-element) refractive lenses. Hullin et al. [2012] derive
a model for approximating ray tracing using polynomials. Tang and
Kutulakos [2013] provide a polynomial approximation of different
optical aberrations in a lens. Both models trade off accuracy for effi-
ciency, and thus are more suitable for inverse problems that require
reasoning about the unknown scene that the lens is imaging. Tseng
et al. [2021] have used deep learning to build differentiable approx-
imations of the light transport inside a lens. These approximations,

1https://imaging.cs.cmu.edu/aperture_aware_lens_design/

while efficient, do not provide sufficient accuracy for minimizing
aberrations to the level required for photographic optics, and do not
capture effects such as pupil size or light throughput. Our method
uses geometric ray tracing, which is a more general and accurate
model of light transport, and can thus optimize for such effects.

Refractive ray tracing. Our method uses the classical geometric
optics model of light transport through refractive materials, which
has a long history as a modeling tool for refractive lenses [Pedrotti
et al. 2017]. In the context of rendering, this model translates to
ray tracing with light paths that undergo a chain of specular (i.e.,
Dirac-delta) refractive events. Chen and Arvo [2000] and Walter
et al. [2009] use the implicit function theorem to derive differentials
for such reflective and refractive light paths with respect to their
endpoints. Zeltner et al. [2020] and Jakob and Marschner [2012]
use the same theory to efficiently sample and perturb specular
chains for Monte Carlo rendering. Our method likewise computes
differentials of specular paths, with respect to lens parameters.

Differentiable rendering. In recent years, differentiable rendering
has emerged as a core methodology for solving inverse problems
within vision and graphics. A differentiable renderer calculates
derivatives of images, or image-based objectives, with respect to
scene parameters. Examples of differentiable rendering systems
include Mitsuba 3 [Jakob et al. 2022], Redner [Li et al. 2018a], and
PSDR [Zhang et al. 2020]. Recent works have enabled differentiable
rendering with drastically lower memory requirements [Vicini et al.
2021], efficient handling of parametric discontinuities [Bangaru
et al. 2020], and support both explicit and implicit surface represen-
tations [Bangaru et al. 2022; Cai et al. 2022; Vicini et al. 2022]. Our
differentiable rendering method utilizes all three of these advances,
and extends support to specular-manifold light paths that comprise
solely interactions with smooth refractive interfaces and optical
stops—such as the paths inside a lens.

Automatic differentiation. Most differentiable rendering architec-
tures utilize, at different stages in their pipeline, automatic differen-
tiation (AD) (backpropagation) [Griewank and Walther 2008]. AD
analyzes the computational graph of a program, then iteratively
applies the chain rule through the graph nodes to automatically
calculate gradients of the program outputs with respect to its in-
puts. In computer graphics, Li et al. [2018b] build a domain-specific
language for differentiable programming and use it to optimize a
lens design in a setting similar to ours. We also use AD in both
forward and reverse mode (backpropagation), to further enable the
optimization of discontinuous lens parameters such as pupil sizes.

Adjoint-state method. The adjoint-state method is a classical
methodology for efficiently differentiating optimization objectives
constrained by partial differential equations (e.g., the rendering
equation) [Chavent 1974; Hinze et al. 2008]. More recently, Chen
et al. [2018] used the adjoint-state method for differentiating ordi-
nary differential equation systems represented as neural networks.
In computer graphics, the adjoint-state method has found appli-
cations in problems including rigid-body dynamics and control
[Geilinger et al. 2020], fluid control [McNamara et al. 2004], and
surface cutting [Sharp and Crane 2018]. In differentiable rendering,
Nimier-David et al. [2020] and Stam [2020] use the adjoint-state

https://imaging.cs.cmu.edu/aperture_aware_lens_design/
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Figure 2: Rays travel through multiple refractive or aperture
surfaces along the optical axis. A valid ray (black) travels
through every surface once and in the correct order before
reaching the sensor. An invalid ray either does not intersect a
surface within its physical bounds (purple, green), or does so
at a supercritical angle resulting in total internal reflection
(red). We consider only valid rays in sequential lens design.

method to derive algorithms that decouple the computational com-
plexity of ray tracing from the memory requirements of backprop-
agation. Vicini et al. [2021] use a two-stage forward and backward
tracing procedure to achieve constant memory complexity during
derivative calculations. Similar to Wang et al. [2022] and Teh et al.
[2022], we adopt an adjoint-state method for efficiently computing
gradients of refractive ray tracing for lens optimization.

3 DIFFERENTIABLE RAY TRACING
Problem setting. We focus on the design of compound lenses

under the following assumptions:
(1) Compound lenses comprise a given set of refractive lens singlets

and mechanical aperture stops—collectively, the lens elements.
(2) The lens elements have a given order along an optical axis.
(3) All singlets are spherical lenses, and all lens elements are radially

symmetric around the optical axis.
We can thus describe a compound lens as the ordered sequence
of the surfaces of the lens elements—two for each singlet, one for
each aperture stop. Additionally, we consider only geometric optics
and focus on sequential lens design: that is, we consider only light
rays that originate from an emitter surface before the lens, transmit
once through all lens surfaces in order, and reach a sensor plane
after the lens—we call such rays valid rays (Figure 2). Thus, we
do not account for wave effects such as diffraction, or geometric
effects involving invalid rays such as glare and interreflections.

Sequential ray tracing. Simulation of a compound lens requires
tracing piecewise-linear rays through the lens’ surface sequence.
In turn, gradient-based optimization of a compound lens requires
differentiating through this ray tracing process. To describe both
primal and differentiable ray tracing, we consider a ray with initial
position x0 on an emitter surface E before the first lens surface, and
direction v0—jointly 𝜔 B {x0, v0}. Ray tracing sequentially applies
two operations, propagation P and transmission T, in alternating
order at each lens surface. Given the current ray position and di-
rection, P updates the ray position to the first intersection with the

next lens surface; then T updates the ray direction at that intersec-
tion, using either Snell’s law at refractive surfaces of singlets, or
free-space transmission at open surfaces of aperture stops. Thus,
starting at 𝜔 , ray tracing proceeds with the recurrence relation:

x𝑖+1 = P (x𝑖 , v𝑖 , 𝜋) , (1)
v𝑖+1 = T (x𝑖+1, v𝑖 , 𝜋) . (2)

The subscript 𝑖 indicates each step of the ray tracing process, as
it iterates through the lens surface sequence. Ray tracing ends
when the ray intersects the sensor at a position x𝑁+1, forming a
ray x0 → x1 → . . . x𝑁 → x𝑁+1, where 𝑁 is the number of lens
surfaces. Both P and T depend on the parameters 𝜋 that describe
the lens geometry and material properties. Thus the sequence of
positions x𝑖 and directions v𝑖 (including x𝑁+1) are functions of
the lens parameters 𝜋 and the initial conditions 𝜔—we make this
dependence explicit or implied in equations depending on context.
Importantly, for a fixed lens 𝜋 , the initial conditions 𝜔 completely
determine, through Equations (1)–(2), a ray’s position sequence x𝑖 .
Thus we can parameterize the space of rays through the lens using
the initial conditions 𝜔 , and we will refer to each 𝜔 also as a ray.

We are interested in computing the gradient of the final position
x𝑁+1 with respect to the lens parameters 𝜋 . As the ray tracing
process is a composition of alternating P and T operations, we can
use the chain rule and compute this gradient by working backwards
(i.e., backpropagating) through this composition. Differentiating
Equations (1)–(2), we arrive at the backward recurrence:

𝜕x𝑖+1
𝜕𝜋

=
𝜕P
𝜕x𝑖

𝜕x𝑖
𝜕𝜋

+ 𝜕P
𝜕v𝑖

𝜕v𝑖
𝜕𝜋

+ 𝜕P
𝜕𝜋

, (3)

𝜕v𝑖+1
𝜕𝜋

=
𝜕T

𝜕x𝑖+1
𝜕x𝑖+1
𝜕𝜋

+ 𝜕T
𝜕v𝑖

𝜕v𝑖
𝜕𝜋

+ 𝜕T
𝜕𝜋

. (4)

At each iteration 𝑖 , we can compute the gradients of T directly using
automatic differentiation, and the gradients of P (an intersection
operation) using implicit differentiation [Niemeyer et al. 2020].

Computing the backward recurrence in Equations (3)–(4) re-
quires knowing the ray path. As both P and T are bijective opera-
tions, we can recover this path by starting from the final position
and direction and tracing backwards. Thus, we can calculate the gra-
dients of the final position x𝑁+1 with respect to 𝜋 without storing
the ray path in memory using the following two-stage process.
Primal tracing: Starting from𝜔 = {x0, v0}, we use the recurrence

of Equations (1)–(2) in the forward direction to compute the final
ray position x𝑁+1 (𝜔, 𝜋) and direction v𝑁+1 (𝜔, 𝜋).

Adjoint tracing: Starting from {x𝑁+1, v𝑁+1}, we use jointly the
recurrences of Equations (1)–(2) in the backward direction to
retrace the ray, and Equations (3)–(4) to compute gradients.

Wang et al. [2022] derive the same process using the adjoint state
method. We can analogously also compute gradients of x𝑁+1 with
respect to the initial conditions 𝜔 , which we will need in Section 5.

4 APERTURE-AWARE OPTIMIZATION
To design a compound lens, we minimize objectives that quantify
its imaging performance, including objectives for blur and light
efficiency. We express such objectives in the general form:

L(𝜋) B
∫
Ω (𝜋 )

f (x𝑁+1 (𝜔, 𝜋), 𝜋) d𝜔. (5)
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The scalar-valued function f describes a cost for each ray 𝜔 (e.g.,
squared distance of x𝑁+1 from a target focus point). The integration
is over the set of all valid rays, which we write as:2

Ω(𝜋) :=
{
𝜔 ∈E × S2 : g𝑖 (x𝑖 (𝜔, 𝜋), v𝑖 (𝜔, 𝜋), 𝜋)<0, 𝑖 =1, . . . , 𝑁

}
. (6)

For each of the 𝑁 lens surfaces, we use a scalar-valued implicit
function g𝑖 to describe the constraint that the ray must transmit
through that surface—this constraint function is negative when that
happens, and positive otherwise. As we explain next, in practice we
need to specify more than one constraint function per lens surface,
and Ω is the set of rays that satisfy all constraint functions for each
surface. We do not explicitly indicate the multiple g𝑖 for each 𝑖 in
Equation (6) to keep notation simple. We call Ω(𝜋) the entrance
pupil set, as it comprises all rays forming the entrance pupil image.

Constraint functions. To understand how to define the constraint
functions, we must consider the different ways a ray may fail to
transmit through a lens surface, which we show in Figure 2. As we
explain later in this section, we require that these constraint func-
tions be differentiable with respect to all three of their arguments.

We consider first a refractive surface. A ray can fail to transmit
through it due to: (1) straying too far from the optical axis; or
(2) experiencing total internal reflection. In the former case, the ray
position on the surface exceeds the surface’s physical bounds. Given
radially-symmetric surfaces, we can define a constraint function:

gsemi
𝑖 (x, v, 𝜋) B dist(x) − R𝑖 (𝜋), (7)

where R𝑖 is the lateral radius of the 𝑖-th surface (i.e., the size of the
singlet it belongs to, determined by the lens parameters 𝜋 ), and
dist(x) is the lateral distance of a position x from the optical axis.

In the latter case, the ray intersects the surface at a supercritical
angle. We can define a constraint function for this case as:

gTIR𝑖 (x𝑖 , v𝑖 , 𝜋) B
(
cos(𝜙crit𝑖 (𝜋))

)2
− ⟨v𝑖 , n̂(x𝑖 , 𝜋)⟩2, (8)

where 𝜙crit
𝑖

is the critical angle for the 𝑖-th surface (determined by
the lens material parameters in 𝜋 ). We use the differences of squared
cosines as, empirically, doing so improves numerical stability.

Lastly, for an aperture stop surface, we can use the same con-
straint functions gsemi

𝑖
, gTIR

𝑖
, in the former with R𝑖 equal to the

radius of the aperture stop opening, and in the the latter with
𝜙crit
𝑖

= 𝜋/2 (i.e., the constraint is always negative and thus satisfied).

Differentiating lens design objectives. Gradient-based optimiza-
tion of a compound lens requires differentiating objectives as in
Equation (5) with respect to the lens parameters 𝜋 . If the domain of
integration Ω were independent on 𝜋 , this gradient would equal:3

dL
d𝜋

biased
=

∫
Ω

d f
d𝜋

d𝜔 =

∫
Ω

𝜕 f
𝜕x𝑁+1

𝜕x𝑁+1
𝜕𝜋

+ 𝜕 f
𝜕𝜋

d𝜔. (9)

We could then use automatic differentiation to compute the gradi-
ents of the cost function f , and differentiable ray tracing (Section 3)
to compute the gradients of the final ray position x𝑁+1. Techniques
such as DiffOptics [Wang et al. 2022] use this approach, which we
refer to as the biased gradient approach.

2The measure d𝜔 is the product of the area d𝐴(x) and solid angle d𝜎 (v) measures.
3Throughout the paper, we explicitly distinguish between total derivatives 𝜕/𝜕 and
partial derivatives d/d, e.g., in Equations (9)–(11) and Section 5.

(a) initial design (b) biased gradients (c) unbiased gradients

Figure 3: (a)We optimize the size of an aperture stop (in black)
to minimize blur. (b) Doing so using biased gradients leaves
the initial lens design unaltered. (c) Using unbiased gradients
results in a pinhole, and thus perfectly sharp imaging, as
expected from geometric optics.

However, in general Ω does depend on the lens parameters 𝜋 .
For example, the sizes of singlets and aperture stops in a compound
lens determine its entrance pupil, and thus Ω. Then, we can use the
Reynolds transport theorem [Reynolds 1903] to write:

dL
d𝜋

=

∫
Ω

d f
d𝜋

d𝜔 −
∫
𝜕Ω (𝜋 )

f
d g∗

d𝜋
d𝑙 (𝜔) (10)

=

∫
Ω (𝜋 )

𝜕 f
𝜕x𝑁+1

𝜕x𝑁+1
𝜕𝜋

+ 𝜕 f
𝜕𝜋

d𝜔

−
∫
𝜕Ω (𝜋 )

f
(
𝜕 g∗

𝜕x∗
𝜕x∗

𝜕𝜋
+ 𝜕 g∗

𝜕v∗
𝜕v∗

𝜕𝜋
+ 𝜕 g∗

𝜕𝜋

)
d𝑙 (𝜔). (11)

In Equation (10), the entrance pupil boundary 𝜕Ω(𝜋) is the space
of rays that satisfy all constraint functions g𝑖 , except for one active
constraint g∗ that is equal to zero. The active constraint corresponds
to a lens surface where the ray barely fails to transmit—i.e., the cor-
responding intersection point x∗ is exactly on the surface boundary,
or direction v∗ is incident at exactly the critical angle.

Equation (10) shows that correctly differentiating objectives for
compound lens optimization requires computing the boundary inte-
gral over 𝜕Ω(𝜋). We show how to efficiently do so in Section 5. But
first, we use an example to demonstrate the importance of using cor-
rect gradients for compound lens optimization. We consider a com-
pound lens comprising an aperture stop between two singlets (Fig-
ure 3(a)). We optimize only the aperture radius to minimize imaging
blur, using a cost function f (x𝑁+1 (𝜔, 𝜋), 𝜋) B ∥x𝑁+1 (𝜔, 𝜋) − o∥2,
where o is the center of the sensor plane. From geometric optics,
the optimal solution involves reducing the aperture radius until
we arrive at a pinhole camera, which produces a perfectly sharp
image. As x𝑁+1 does not depend on the aperture radius, the biased
gradient of Equation (9) is always zero, and thus optimization using
these gradients leaves the initial lens unaltered (Figure 3(b)). By
contrast, optimization using the unbiased gradient of Equation (10)
correctly results in a pinhole (Figure 3(c)).

5 WARP-FIELD REPARAMETERIZATION
Computing the boundary integral in Equation (10) is challenging
because, for arbitrary compound lenses, the entrance pupil bound-
ary 𝜕Ω(𝜋) is difficult to characterize analytically or sample rays
from: 𝜕Ω(𝜋) depends on all lens elements non-linearly through ray
tracing; and its shape for source points off the optical axis is non-
trivial, even for radially symmetric lenses (Figure 4). We circumvent
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Figure 4: The shape of the entrance pupil Ω(𝜋) is non-trivial
even for radially symmetric lenses, becoming distorted for
source points far from the optical axis. This behavior makes
computing the entrance pupil boundary 𝜕Ω(𝜋) challenging.

these challenges by using the warp-field reparameterization tech-
nique [Bangaru et al. 2022, 2020; Vicini et al. 2022] to replace the
boundary integral with an integral over the entrance pupil Ω(𝜋).

To this end, we first rewrite the boundary integral in Equa-
tion (10) into a form amenable to the divergence theorem as:∫

𝜕Ω (𝜋 )
f
d g∗

d𝜋
d𝑙 (𝜔) =

∫
𝜕Ω (𝜋 )

〈
f
d g∗

d𝜔
,V

〉
d𝑙 (𝜔), (12)

where the warp field V(𝜔, 𝜋) is a vector field on Ω that must be
differentiable and satisfy, as 𝜔 → 𝜕Ω(𝜋),〈

d g∗

d𝜔
,V

〉
→ d g∗

d𝜋
. (13)

Then, using the divergence theorem, Equation (12) becomes:∫
𝜕Ω (𝜋 )

〈
f
d g∗

d𝜔
,V

〉
d𝑙 (𝜔) =

∫
Ω (𝜋 )

div (f V) d𝜔, (14)

where div (·) is the divergence operator. By using Equation (14) to
replace the boundary integral in Equation (10) and combining the
integrands, we can write the objective gradient as:

dL
d𝜋

=

∫
Ω (𝜋 )

d f
d𝜋

− div (f V) d𝜔. (15)

We have thus eliminated the boundary integral, making it possible
to compute unbiased Monte Carlo estimates of the objective gra-
dient by sampling rays in the entrance pupil Ω(𝜋). For each ray
sample, we can evaluate the derivative terms in the integrand using
differentiable ray tracing (for d f/d𝜋 , as in Section 3) and forward-
mode automatic differentiation (for the warp field).

We still need to find a warp field that satisfies the stated require-
ments. Bangaru et al. [2022] and Vicini et al. [2022] suggest:

V(𝜔, 𝜋) ?
B

𝜕 g∗
𝜕𝜔 𝜕 g∗𝜕𝜔

2 𝜕 g
∗

𝜕𝜋
. (16)

However, g∗ is undefined inside Ω(𝜋), where no constraint is active.
Instead, we leverage the fact thatV(𝜔, 𝜋) only needs to have the
correct direction as it approaches 𝜕Ω(𝜋), and defineV(𝜔, 𝜋) using
a mixture of such warp fields for all constraint functions:

V(𝜔, 𝜋)B 1∑
𝑖𝑤𝑖

∑︁
𝑖

𝑤𝑖

𝜕 g𝑖
𝜕𝜔 𝜕 g𝑖𝜕𝜔

2 𝜕 g𝑖𝜕𝜋
, 𝑤𝑖 (𝜔, 𝜋)B

tanh(−𝛼 g𝑖 )
g𝑖𝑝

, (17)

with hyperparameters 𝑝 > 2 and 𝛼 > 0. Abusing notation, the sum-
mation is over both gTIR and gsemi constraint functions for each
lens surface 𝑖 . Each weight𝑤𝑖 approaches infinity as the correspond-
ing constraint function g𝑖 gets closer to activation; conversely, it
decreases as g𝑖 decreases. Intuitively, when a ray is close to failing
to transmit through a lens surface—through either exceeding its
bounds or total internal reflection—the corresponding constraint
function should contribute more to the warp field.

Comparison to prior work. Vicini et al. [2022] and Bangaru et al.
[2022] have used warp-field reparameterization for differentiable
rendering of implicit surfaces, to deal with visibility-driven changes
in the integration domain of the rendering equation. Their tech-
niques require using a separate warp field of the form of Equa-
tion (16)—replacing our active constraint function with the implicit
function defining the scene geometry—at each stochastic reflection
or refraction event along a multi-bounce light path. By contrast, we
define a single warp field for the entire multi-bounce light path. We
can do so because we deal with only specular (i.e., Dirac-delta and
therefore deterministic) refractions, and can thus parameterize the
resulting space of specular multi-bounce paths using the initial con-
ditions 𝜔 (Section 3). In turn, we use the same parameterization to
define a multi-bounce warp field as in Equation (17). Therefore, our
technique enables differentiable rendering in lower-dimensional
specular path manifolds [Jakob and Marschner 2012; Zeltner et al.
2020] in the presence of parameter-dependent integration domains,
which is not possible in existing differentiable rendering imple-
mentations [Jakob et al. 2022]. Even though we present our theory
and technique in the context of optimizing compound refractive
lenses, they should apply more broadly for other inverse problems
involving specular—reflective or refractive—path manifolds, e.g.,
inverse rendering of specular geometry [Li et al. 2020] or caustics
[Papas et al. 2011; Schwartzburg et al. 2014].

6 EXPERIMENTS
Implementation details. We implemented our warp-field tech-

nique (including the differentiable ray tracer) in JAX [Bradbury
et al. 2018], and provide our implementation on the project website.
We used this implementation for all our optimization experiments,
for which we set 𝛼 = 10 and 𝑝 = 6 in Equation (17), and ran Adam
[Kingma and Ba 2017] for 10,000 gradient iterations. We ran all
experiments on a desktop with an Intel i7-6700k CPU and NVIDIA
Titan X GPU, where each experiment took approximately 10min.

To render images with various lenses, we used either our ray
tracer, or Blender [2023] with the built-in Cycles renderer. In the
latter case, we modelled lens geometry as a triangle mesh.

Lens modeling and initialization. We parameterized all singlet
surfaces as spherical surfaces centered on a fixed optical axis, each
with four parameters: curvature, position on the optical axis, re-
fractive index, and semidiameter. We parameterized aperture stops
as planar surfaces with two parameters: position and semidiameter.

Except where we state otherwise, we initialized optimization
from a double-Gauss design by Reiley [2014], which is a reconstruc-
tion of a design by Rudolph [1897]. This design has 5 singlets (10
refractive surfaces) and one aperture stop, resulting in 3×10+2 = 32
free parameters—we do not optimize refractive index.
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Figure 5: We consider an image of the SIGGRAPH logo
through a lens, and differentiate it with respect to two lens
parameters: (top row) aperture size, and (bottom row) curva-
ture of the first refractive element. We compare the gradient
images from: (a) our method, (b) finite differencing, and (c)
DiffOptics [Wang et al. 2022]. Our method produces accurate
gradients with respect to both lens parameters, and its results
match those from finite differencing. By contrast, the biased
gradients from DiffOptics cannot account for aperture size
changes, producing a gradient image that is identically zero.

Finite differencing. To verify the correctness of the gradients we
compute with our warp-field method, in Figure 5 we show the gra-
dient images (also known as forward gradients Zhang et al. [2023]) it
produces when differentiating with respect to the curvature of the
first refractive surface and the semidiameter of the aperture stop of
the lens. We compare these images against those from finite differ-
encing and from the method of Wang et al. [2022], which computes
biased gradients as in Equation (9). Gradients from our method
match finite differencing and accurately account for changes in
both curvature and aperture size; by contrast, the method of Wang
et al. [2022] cannot account for aperture size changes, as those
impact the integration domain Ω(𝜋) rather than per-ray quantities
(final ray position or throughput). Of course, even though finite
differencing is useful for validating correctness, it is impractical
for gradient-based optimization due to its linear complexity with
parameter dimensionality, and need for step-size fine-tuning.

Light efficiency-sharpness trade-off. The example of Figure 3 high-
lights a classical trade-off in lens design: In the absence of diffraction
effects, we can increase image sharpness by shrinking the entrance
pupil of the lens (e.g., making the aperture stop smaller, or refractive
surfaces flatter); however, doing so comes at the cost of decreased
light efficiency, as most light rays become invalid. Conversely, in-
creasing the entrance pupil size improves light efficiency; but it also
increases geometric aberrations, resulting in decreased sharpness.

We can use our technique navigate the lens design space and
achieve different trade-offs between light efficiency and sharpness.
To this end, we first define two objectives of the form of Equation (5):

Lspot (𝜋) B
∫
Ω (𝜋 )

∥x𝑁+1 (𝜔, 𝜋) − x̂(𝜔, 𝜋)∥2 d𝜔, (18)

Lthroughput (𝜋) B
∫
Ω (𝜋 )

−1 d𝜔, (19)

where x̂(𝜔, 𝜋) is the centroid of the sensor locations of all rays
starting from the same source point x0 ∈ 𝜔 . The spot-size objec-
tive Lspot measures the spot size produced on the sensor by rays
starting from the same source point. Thus, this objective, common
in lens design, encourages improved sharpness. The throughput
objective Lthroughput measures the size of the entrance pupil, with a
negative sign to penalize rays becoming invalid. Thus, this objective
encourages improved light efficiency.

We then optimize a compound lens using the composite objective:

L(𝜋) B Lspot (𝜋) + 𝜆Lthroughput (𝜋) . (20)

The scalar weight 𝜆 allows us to control the relative importance of
the spot-size and throughput objectives, and thus control howmuch
we emphasize sharpness versus light efficiency. Gradient-based
optimization of this composite objective critically depends on the
ability to compute the unbiased gradient (10): the biased gradient
of Lspot-size is inaccurate and, worse yet, the biased gradient (9) of
Lthroughput is always zero! This exploration of the light efficiency-
sharpness tradeoff is only possible with our warp-field technique,
and not those that use biased gradients [Wang et al. 2022].

Figure 6 shows an example where we optimize a 50mm double-
Gauss lens [Cox 1974] using different weights 𝜆. Our technique
produces designs that represent different trade-offs between sharp-
ness and light efficiency. We compare our designs against those
from DiffOptics [Wang et al. 2022] and Zemax [2023]: By using
unbiased gradients to optimize both Lspot (𝜋) and Lthroughput (𝜋),
our warp-field technique produces lens designs that have higher
throughput at comparable spot sizes, as well as designs with smaller
spot sizes by giving up some throughput.

Figure 6 also shows rendered images and spot diagrams for some
of the resulting lens designs.4 We simulate the spot diagrams by
focusing the lens at infinity and tracing rays parallel to the optical
axis. We color the final ray points on the sensor based on how far
the corresponding rays are from the optical axis. The spot diagram
for the lowest 𝜆 value is much smaller than that for the highest
value, indicating sharper focus; however, the resulting image is also
a lot darker, indicating lower light efficiency. The figure also shows,
for comparison, rendered images and spot diagrams for the designs
from DiffOptics [Wang et al. 2022] and Zemax [2023].

Low-light conditions. Using a lens with high light efficiency is
particularly important in low-light settings. In Figure 8, we sim-
ulate such a setting by constructing a candlelit scene. We render
images of this scene using two lens designs from among those in
Figure 6, one with low and another with high throughput, and
incorporate Poisson and additive Gaussian noise [Hasinoff et al.
2010] in the rendered images, assuming the same exposure time.
The high-throughput lens results in a visibly brighter image—a dif-
ference also visible in the image intensity histograms—with higher
signal-to-noise (SNR) ratio, at the expense of some sharpness.

Motion blur. A situation where lens light efficiency is critical is in
scenes with fast motion, where a high-throughput lens helps reduce
exposure time, and thus motion blur. In Figure 7, we render images

4The rendered images are slightly mismatched, because the optimization does not
explicitly enforce a focal length constraint, and thus the resulting lenses produce images
with different fields of view. In our experiments, the focal length of the optimized
lenses deviated by around 1mm from that of the initial design (50mm).
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Figure 6: We use our warp-field technique to optimize the same initial design using the composite objective of Equation (20)
with varying weights 𝜆. The left plot quantifies the throughput and spot-size performance of the resulting set of lens designs,
as well as designs optimized with DiffOptics [Wang et al. 2022] and Zemax [2023]. By using unbiased gradients, our technique
produces lens designs with better throughput at comparable spot sizes as DiffOptics and Zemax, which both use biased gradients.
Our technique additionally produces multiple other designs that achieve different trade-offs between throughput and spot size.
The right figures show the lens configurations, spot diagrams, and simulated images of USAF resolution targets for the designs
corresponding to the lowest (first row) and highest (second row) 𝜆 values, DiffOptics (third row) and Zemax (fourth row). These
figures help qualitatively assess the differences in spot size and throughput performance. For example, the spot-size-focused
design in the first row has a smaller spot, but also transmits fewer rays than the throughput-focused design in the second row.

of a scene with a USAF resolution target moving from left to right,
using the same two lenses as in Figure 8. In this experiment, we
adjust exposure times so that both images reach the same brightness
level. The low-throughput lens requires about four times longer
exposure time, resulting in significant motion blur.

Vignetting. The composite objective of Equation (20) penalizes
low throughput, and thus encourages rays starting from source
points away from the optical axis to reach the sensor. As a result,
using this objective, and correctly minimizing it with the unbiased
gradients from our warp-field technique, helps reduce vignetting
artifacts in lens designs. Figure 9 shows images of a white balance
target rendered using two lenses, optimized with our warp-field
technique and Zemax. As Zemax uses biased gradients, it cannot
optimize for the throughput of off-axis source points, and thus its
designed lens results in significant vignetting. By contrast, the lens
from our technique maintains high throughput for off-axis source
points, drastically reducing vignetting.

Zoom lens. In Figure 10, we use our method to improve a com-
pound zoom lens for better sharpness and light efficiency. We start
with a zoom lens design by Reiley [2014], and optimize the surface
curvatures and distances, by summing the composite objectives of
Equation (20) for three different focal lengths—28mm, 45mm, and
75mm. Our technique produces a zoom lens design that is gener-
ally better in terms of both overall sharpness and light efficiency.
At focal lengths where both designs have similar sharpness, their
performance can differ significantly across the field of view; for
example, at 77mm, the optimized lens has better sharpness in the
center and worse towards the edges of the image.

7 LIMITATIONS AND DISCUSSION
We discuss some limitations of our work, and potential solutions
that suggest future research directions.

Nonconvexity. Our technique facilitates gradient-based optimiza-
tion of complex objectives for compound lenses. However, these
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high throughput weight low throughput weight
Figure 7: We simulate images of a moving USAF resolution
target using lenses optimized for high throughput (𝜆 = 5 ×
10−4, left) versus small spot size (𝜆 = 1 × 10−5, right). The
high-throughput lens is well suited for this dynamic scene:
it achieves the same overall brightness at one-fourth the
exposure time, resulting in much reduced motion blur.

objectives are highly non-convex. Thus gradient-based optimiza-
tion can get stuck in local minima. We can mitigate this issue by
combining our technique with simulated annealing, or reasonable
initializations from data-driven techniques [Côté et al. 2021].

Variable element number. To produce performant compound lens
designs, designers typically add and remove lens elements to ex-
amine whether different configurations can improve performance.
From an optimization perspective, doing so corresponds to a dis-
crete, non-differentiable operation that changes the dimensionality
of the design space. Gradient-based optimization, and thus our tech-
nique, does not accommodate such changes, but we can combine it
with lens mutation techniques that do [Sun et al. 2015].

Other design constraints and trade-offs. Lens designs often need
to accommodate application-specific constraints that go beyond
sharpness and light efficiency. For example, the manufacturing
process may constrain the realizable surface shapes. Alternatively,
the intended use may constrain the lens form factor or cost. Such
constraints are typically differentiable, and thus amenable to op-
timization using our technique. Even if they do not take the form
of hard constraints, such application-specific considerations can
introduce additional trade-offs that the lens design process must
balance. In such cases, we can combine our technique with gradient-
based multi-objective optimization techniques [Schulz et al. 2018]
to discover Pareto-optimal lens designs.

Other geometric optical elements. We have not considered many
geometric optical elements that are commonplace in consumer pho-
tography and scientific imaging. Aspherical, Fresnel, and freeform
lenses have many more degrees of freedom than spherical ones,
and are common in projector and illumination systems. Beyond
dioptric (i.e., refractive) systems, catoptric (i.e., reflective) systems
are common in telescopes [Gardner et al. 2006; Wilson 2013]; and
catadioptric (i.e., both reflective and refractive) systems [Baker and
Nayar 1999] facilitate wide-angle imaging. As such systems can be
modeled using geometric optics and ray tracing, our theory directly
supports or can be readily extended to support their design.

Wave optical elements. Other types of optical elements funda-
mentally rely on wave optics, such as diffractive optical elements
and “metalenses” [Chakravarthula et al. 2023]. Such elements are

becoming increasingly popular in both scientific and consumer
applications, thanks to their miniaturization potential. As our the-
ory relies on geometric optics, it does not apply to such optical
elements. Recent progress in wave optics rendering [Steinberg and
Yan 2021] can facilitate extensions in this direction.

Interreflections. An important effect that we did not explore is
interreflections between and inside optical elements in a compound
lens. In very bright scenes, such interreflections can become visible
in the form of glare and lens flare. Our theory can, in principle,
model this effect; however optimization of glare characteristics
would require expensive Monte Carlo rendering, to account for all
possible interreflections inside a lens in an unbiased manner.

Beyond cameras. We presented our technique in the context of
photographic lenses, but it can apply to other domains. An example
is augmented reality (AR) and virtual reality (VR), where design of
eyepieces is important. VR displays use intricate configurations of
optical elements [Qin et al. 2023] and benefit from high throughput
designs [Damberg et al. 2016]; our technique can help optimize
existing such configurations or discover new ones. Another example
is non-imaging optics, i.e., optical systems designed specifically to
maximize light throughput [Steinberg et al. 2022]. Our technique
can be suitable for optimizing designs in this domain.
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Figure 8:We simulate images of a candlelit scene using lenses
optimized for high throughput (𝜆 = 5 × 10−4, bottom left)
versus small spot size (𝜆 = 1 × 10−5, bottom right). We incor-
porate shot and read noise in rendered images—simulated
for a Canon 7D sensor [Clark 2023] at unity ISO (984)—then
gamma-correct (𝛾 = 0.2) the noisy images. We also plot the
histogram of pixel intensities in the two images (top). The
image from the high-throughput lens has less pronounced
noise and an intensity distribution shifted towards larger
values; but also slightly worse blur (e.g., at the candle flame).
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Figure 9: We simulate images of a white balance target using
lenses optimized with our technique (bottom left) versus Ze-
max [2023] (bottom right). We also plot the horizontal cross
section of the two images (top). By emphasizing throughput,
including from off-axis sources, the lens from our technique
strongly mitigates vignetting away from the sensor center.
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Figure 10: We use our technique to optimize a zoom lens
design in the focal length range 28mm to 77mm. We sum the
composite objective of Equation (20) at three target focal
lengths, 28mm, 45mm, and 77mm. We plot the spot-size error
(top left) and throughput (top right) of the initial and opti-
mized designs across the focal length range, and simulate
images of a USAF resolution target at focal lengths 35mm
(bottom left) and 77mm (bottom right). The optimized design
has overall better spot-size error and throughput across the
focal length range. At the target focal length 77mm, both
lenses achieve the same overall spot-size error, but distribute
the error to different parts of the sensor (insets).
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