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Figure 1. We develop a method that automatically explores the design space of compound lenses, by using Markov chain Monte Carlo sampling to combine

gradient-based optimization with discrete changes to the number and type of lens

elements. This combination allows our method to find designs that improve

the sharpness and throughput of the initial lens design (in this example, the Nikon Nikkor-S 50mm f/1.4, released in 1962 [Reiley 2014]), even after it has
been optimized by prior gradient-based methods [Teh et al. 2024]. Our method achieves image quality comparable to that of an improved lens designed by an
expert (in this example, the Canon FD 50mm f /1.2, released in 1980). We report image brightness (top-left number of images) in terms of relative exposure.

We introduce a method that automatically and jointly updates both con-
tinuous and discrete parameters of a compound lens design, to improve
its performance in terms of sharpness, speed, or both. Previous methods
for compound lens design use gradient-based optimization to update con-
tinuous parameters (e.g., curvature of individual lens elements) of a given
lens topology, requiring extensive expert intervention to realize topology
changes. By contrast, our method can additionally optimize discrete parame-
ters such as number and type (e.g., singlet or doublet) of lens elements. Our
method achieves this capability by combining gradient-based optimization
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with a tailored Markov chain Monte Carlo sampling algorithm, using trans-
dimensional mutation and paraxial projection operations for efficient global
exploration. We show experimentally on a variety of lens design tasks that
our method effectively explores an expanded design space of compound
lenses, producing better designs than previous methods and pushing the
envelope of speed-sharpness tradeoffs achievable by automated lens design.
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1 Introduction

Modern lens design demands optimizing increasingly sophisticated
compound lenses to meet increasingly challenging performance
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requirements. Though computational design tools exist, in practice
these optimizations require close supervision by expert designers,
who manually tune all aspects of the optical elements making up the
compound lens. Obtaining good solutions requires tedious manual
intervention, expert intuition, and trial and error.

Gradient-based optimization has become an essential part of the
compound lens design process. Recent advances in differentiable
rendering facilitate faster gradient-based optimization of continuous
lens parameters (e.g., shapes of individual elements or distances be-
tween them) [Sun et al. 2021; Teh et al. 2024; Tseng et al. 2021; Wang
et al. 2022]. Though such methods are invaluable for improving
lens designs with a fixed topology (number and type of lens ele-
ments), they cannot optimize the lens topology itself. It is up to the
expert designer to perform discrete changes manually—strategically
adding, changing, or removing elements from a base design—before
handing the design back to the optimizer for further improvement.
Critically, changing the lens topology is often the only option avail-
able for meeting stringent performance requirements, for example:
maintaining sharpness across the field of view when transitioning a
lens from a half-frame to a full-frame sensor; increasing speed when
designing a lens for extreme low-light conditions; or maintaining
sharpness and speed when adapting a lens to smaller form factors.

Another way to assist expert designers is by generating good
starting points. Methods using deep learning or genetic algorithms
[Coté et al. 2021; Hoschel and Lakshminarayanan 2018; Zoric et al.
2025] can help seed the design process, but the designs they output
are often suboptimal: though they can make discrete changes to lens
topology, they cannot effectively optimize continuous lens parame-
ters, and thus cannot accurately assess the potential of different lens
topologies. As a result, pushing the envelope in lens performance
still requires expert designers to manually explore edits and iterate
between discrete and continuous optimization.

These considerations highlight a critical gap in automated design
of compound lenses: existing methods optimize only continuous
or only discrete parameters of a system whose performance crit-
ically depends on joint optimization of both types of parameters.
We address this gap in automated lens design capabilities by de-
veloping a method that performs mixed discrete and continuous
lens optimization automatically. Our method uses Markov chain
Monte Carlo (MCMC) sampling to combine gradient-based optimiza-
tion of continuous lens parameters with transdimensional mutations
that alter the number of lens elements (Figure 1). We make such a
combination practical through two core contributions:

e A sampling algorithm that facilitates mixing gradient updates and
mutations without sacrificing optimization performance.

o A set of mutations that use a projection operation to propose
lenses with varied topologies that nevertheless remain paraxially
equivalent to an original design.

These contributions enable our method to automatically explore
a much larger design space of compound lenses than previously
possible. We show experimentally that our method finds lenses with
improved sharpness and speed compared to prior work that uses
only gradient-based optimization. We provide interactive visualiza-
tions and an open-source implementation on the project website.!

Lhttps://imaging.cs.cmu.edu/automated_lens_design
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2 Related work

Geometric optics design. Lens designers commonly use computa-
tional tools [Synopsys 2023; Zemax 2023] to automatically optimize
continuous lens parameters (e.g., curvature, size, and placement
of lens elements). However, they typically have to rely on manual
tuning and intuition to update the lens topology (e.g., number and
type of lens elements) [Smith 2008]. Pedrotti et al. [2017] and Born
and Wolf [2013] provide introductions to optics and lens design.

Differentiable rendering for lens design. Differentiable rendering
enables solving inverse rendering problems using gradient-based
optimization [Jakob et al. 2022; Li et al. 2018; Zhang et al. 2020]. Pre-
vious work focused on differentiating visibility discontinuities [Ban-
garu et al. 2022; Cai et al. 2022; Vicini et al. 2022; Wang et al. 2024;
Zhou et al. 2024] and reducing memory usage [Teh et al. 2022; Vicini
et al. 2021]. More recently, differentiable ray tracing methods have
gained popularity for optimization of complex optical systems [Sun
et al. 2021; Teh et al. 2022; Tseng et al. 2021; Wang et al. 2022], often
end-to-end with post-processing algorithms [C6té et al. 2023; Yang
et al. 2024]. Coté et al. [2023] also extend gradient-based methods
to optimize discrete material selection. Compared to prior work,
our method uses aperture-aware differentiable ray tracing [Teh et al.
2024] for gradient-based optimization, but explores a larger design
space by also modifying the number and type of lens elements.

Lens design exploration. The design space of lenses is highly non-
convex and contains local minima. Prior work uses simulated an-
nealing [Zoric et al. 2024], genetic algorithms [Hoschel and Lak-
shminarayanan 2018], or large language models [Zoric et al. 2025]
to mitigate these issues. These methods can help find performant
designs, but use a predetermined number of elements. To expand the
search space, Betensky [1993] proposed exchanging parts of a design
with paraxially equivalent designs—a strategy our method adopts
for mutations. Alternatively, Sun et al. [2015] search over a library
of off-the-shelf elements to generate designs without optimization.
Coté et al. [2021] use deep learning to generate initial designs for
subsequent optimization. Our method combines continuous opti-
mization and discrete mutations, without requiring learning.

MCMC in computer graphics. Prior work in computational design
often uses MCMC methods for discrete optimization problems. For
example, Yeh et al. [2012] use reversible-jump MCMC to decide
the placement of furniture in virtual rooms. Desai et al. [2018] use
MCMC to optimize the placement of components of a mechanical
assembly. More recently, Barda et al. [2023] use MCMC to optimize
the design of sheet metal parts. MCMC also finds application in ren-
dering to estimate light transport integrals [Veach and Guibas 1997].
Related to our work are methods that mix sampling distributions of
varying dimensionality [Bitterli et al. 2017; Otsu et al. 2017], or use
gradients to guide sampling [Li et al. 2015; Luan et al. 2020].

Quasi-stationary Monte Carlo. Metropolis-Hastings adjusted pro-
cesses reject samples, which can be inefficient, especially when each
sample is costly to generate (e.g., in optimization). Quasi-stationary
Monte Carlo (QSMC) methods sample from a target distribution
without rejections. Unlike Metropolis-Hastings, QSMC methods do
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not require reversible transitions or detailed balance for conver-
gence. Pollock et al. [2020] and Wang et al. [2021] proposed QSMC
algorithms that sample from a target distribution using Brownian
motion. In rendering, Holl et al. [2024] use the jump RESTORE al-
gorithm [Wang et al. 2021] to mix global and local dynamics in
Metropolis light transport. We use the jump RESTORE framework
to develop a sampler that navigates the design space of lenses.

3 Problem setup
We focus on compound lens design under four assumptions:

1. We assume each compound lens is a collection of refractive sin-
glets or cemented doublets (lens elements) that have spherical
surfaces and are radially symmetric around the optical axis.

2. We do not include an aperture stop in the lens, thus the refractive
elements determine the pupils and speed of the compound lens.

3. We use geometric optics and ignore wave effects (e.g., diffraction).

4. We assume sequential lens design, where rays entering the lens
transmit through each refractive surface once and in order from
lens entrance to sensor; we thus ignore geometric effects where
rays violate this assumption (e.g., interreflections, glare).

With these assumptions, we represent a compound lens as a vector
0 € RN that includes four parameters for each refractive surface,
ordered from lens entrance to sensor: curvature, lateral extent, dis-
tance to the next surface, and refractive index after the surface. Thus,
a compound lens with K refractive surfaces has N = 4K parameters.
We assume the compound lens is imaging a target plane to a
sensor plane, both orthogonal to the optical axis at locations before
and after the first and last (resp.) refractive surfaces. We simulate
the image formation process using sequential ray tracing: Given a
ray o = (X, Vo) starting on the target plane at position xo € R> and
direction vo € S?, we propagate it through the lens with a sequence
of refraction and propagation operations. Ray tracing ends when
the ray either hits a stop (e.g., lens housing), or reaches the sensor
plane at a position we denote xs(w;0) € R? or xs(xg, vo; 8) € R,
depending on context. We call rays that reach the sensor valid
rays and denote their set Q(#) c R? x S2. The function xs(-; ) is
differentiable with respect to 6, and its value and derivatives can be
computed efficiently through primal and adjoint (resp.) sequential
ray tracing [Teh et al. 2024], which we use as part of our method.

Design objectives. We optimize 6 for a combination of losses that
emphasize sharpness, speed, and conformity to focal length speci-
fications. We define each loss for rays starting from a target plane
location xg, then aggregate for many such locations (Equation (6)).

1. Sharpness: We use a variance-based spot size loss:

Lspot(xo;e) = /

(x0,v0) €Q(0)

lIxs (x0, vo; 8) = %(x0)[|* dvo, (1)

/(Xo,vO) cQ(0) Xs (x0, Vo3 0) dvo

X(xo) = )
Joomyeaie) a¥o
2. Speed: We use a throughput loss inspired by Teh et al. [2024]:
1
Lihroughput (%03 0) =1 - — dvo, 3)

To J (xo,v0)€Q(8)

Automated design of compound lenses with discrete-continuous optimization « 3

where Ty is the maximum throughput determined by the maxi-
mum size of the design, which we specify as a hyperparameter.
3. Focal length: We use a loss based on the target focal length f,

Ltocal (%0 0) = |IX(x0) - Xthin(XO§f)”2» 4

where xpin (%0; f) is the sensor point predicted for x¢ from the
Gaussian lens formula for a thin lens of focal length f.

We include an additional regularization term that prevents lens
elements from becoming thinner than a hyperparameter dpjp:

K
Lihickness (0) = ), _ max (dmin — 5, 0)°, &)

where t; is the thickness of the k-th lens element.
Our total loss is a weighted combination of these losses, aggre-
gated over multiple target locations where appropriate:

M
L(0)= Zm:l(wspotispot (X(r)n; 0) + WthroughputLthroughput(Xgl§ 0)

+Wfocal Lfocal (Xgl 5 6) ) + Wthickness ‘Lthickness (9) . (6)

3.1 Design with Markov chain Monte Carlo sampling

When the number K of lens elements (and thus length N of ) is
fixed a priori, the loss of Equation (6) is differentiable using adjoint
sequential ray tracing [Teh et al. 2024]. Therefore, for fixed N, the
design of a compound lens can be done using gradient-based opti-
mization, an approach that has been popular in recent work [Sun
et al. 2021; Teh et al. 2024; Tseng et al. 2021; Wang et al. 2022].
Unlike this prior work, we are interested in methods that design
all aspects of a compound lens, including both the discrete-valued
number K of elements and their continuous-valued parameters 6.
Though K is not amenable to gradient-based optimization, we would
like any such method to continue using gradient-based optimization
for 6. We enable mixed discrete-continuous design by treating it
as a sampling problem that we attack with Markov chain Monte
Carlo (MCMC) algorithms. To this end, we first convert the loss in
Equation (6) into a positive Boltzmann distribution to be maximized:

£(9)
m(0)=e T, )
where T is a temperature that controls the “sharpness” of the distri-
bution: higher T allows exploring larger regions of the design space,
whereas lower T forces exploration of only high-value regions. We
treat T as a fixed hyperparameter, though future work could explore
simulated annealing methods that progressively lower temperature.

Metropolis-Hastings and its pitfalls. The most popular MCMC
method is the Metropolis-Hastings (MH) algorithm [Hastings 1970].
Given a lens 0, it uses a proposal distribution p to sample a lens
proposal 8’ ~ p(6 — 0’), and compute an acceptance probability:

a= min{l, exp(L(g) — L(Q’)) 0= 9)}. ®8)

T p(8—0)

The proposal is randomly either accepted with probability a and
used to update the lens (6 «— ¢’), or rejected leaving the lens un-
changed. The exponential term in Equation (8) favors accepting
proposals 6’ that improve (reduce) £. Under certain conditions on
p, this algorithm will sample lenses proportionally to L.

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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The appeal of MH for mixed discrete-continuous design lies in
the great flexibility it affords the user in selecting the proposal
distribution p. We can use a mixture proposal distribution:

P(e - 9,) = ﬁpcontinuous(e - 0/) + (1 = B)Pdiscrete (9 - 9/)’ (O]

which at random updates lens parameters 6 either continuously by
sampling peontinuous—a perturbation that leaves the dimension N the
same—or discretely by sampling pgiscrete—a mutation that changes
N. Moreover, for pcontinuous, We can use Langevin perturbations
0" ~ N(6—ndL/de, ) [Roberts and Tweedie 1996], or equivalently:

d
9’<—9—17d—'§+ M- e (10)

where ¢ is a vector of normal random variates, and the gradient term
can be computed using adjoint sequential ray tracing. The Langevin
perturbations in Equation (10) mimic gradient descent, except for
the addition of noise, allowing MH to incorporate gradient-based op-
timization of continuous lens parameters. In practice, it is common
to use adaptive step sizes n in Equation (10) to improve sampling
performance [Li et al. 2015; Luan et al. 2020], analogously to gradient
descent algorithms such as Adam [Kingma and Ba 2017].

MH with mixed Langevin perturbations and discrete mutations
has been successful elsewhere in graphics, notably in Monte Carlo
rendering [Li et al. 2015; Luan et al. 2020]. Unfortunately, we have
empirically found it difficult to use this approach for mixed discrete-
continuous design of compound lenses, for two reasons:

1. The sharpness and speed of a compound lens 6 with many el-
ements (e.g., K > 4) is very sensitive to random perturbations.
Langevin perturbations include noise ¢ (Equation (10)), and thus
almost always produce badly performing lenses that are rejected.
Preventing this behavior requires keeping the noise variance—
and thus step size p—very small. The result in either case is that
optimization requires prohibitively many sampling iterations.

2. Lens mutations that have high acceptance probability generally
require refining a lens after increasing or decreasing its elements.
Such post-mutation refinement requires continuous optimiza-
tion, which makes it challenging—or impossible—to compute the
reverse proposal distribution p(§’ — 6) in Equation (8).

We provide experimental evidence for both issues in Section 6. These
issues arise from the requirement for reversible proposals in MH,
which necessitates the addition of noise in Equation (10) and the
computation of p(6’ — 0) in Equation (8). In Section 4, we address
both issues by using a different MCMC algorithm that lifts the re-
versibility requirement alongside providing other advantages. Then,
in Section 5, we design effective discrete lens mutations, leveraging
the flexibility from no longer being constrained by reversibility.

4 The RESTORE algorithm

We propose to use an MCMC algorithm based on so-called randomly

exploring and stochastically regenerating (RESTORE) processes [Wang
etal. 2021]—we use the name RESTORE also for the algorithm associ-
ated with these processes. RESTORE uses two proposal distributions,

one for small perturbations, and another for large changes. The RE-
STORE literature refers to these distributions as local dynamics and

regeneration probability (resp.); for clarity, we continue to use the

terms perturbation and mutation (resp.) from Section 3.1.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Algorithm 1 SINGLERESTORESTEP(6, R, y, 7, C)

Input: A compound lens 0, a reservoir R, a weight parametery, a
target distribution 7, a constant C.
Output: A new compound lens 0, an updated reservoir R.
1: > Perform a gradient step
2 0 — GRADIENTSTEP (1, 0)
3: > Compute the termination probability
z(0)-n(§)+C

7(0)+C
5: > Check whether to terminate perturbation sequence

4: K

6: if SAMPLEUNIFORM|O0, 1] < k then
7: > Update the reservoir with the current lens

8: R < UPDATERESERVOIR(R, é)

9: > Sample and mutate new lens

10: if SAMPLEUNIFORM([0, 1] < y then
1 6 — SAMPLEGLOBAL()

12: else

13: 6 — SAMPLERESERVOIR(R)

14: 0 — MuTaTELENS(0)

15: > Return new lens and updated reservoir

6: return é R

—

Starting from an initial lens 6, RESTORE performs a sequence
of perturbations updating 6 (“local dynamics simulation”). At each
perturbation, it uses 0 to compute a termination probability to ran-
domly decide whether to continue perturbations or terminate the
sequence. Upon termination, it updates 6 using the mutation dis-
tribution (“regeneration”), then restarts a perturbation sequence.
Compared to MH, RESTORE has no rejections, and does not require
reversible perturbation and mutation distributions—both differences
that benefit optimization [Holl et al. 2024]. Instead of reversibility,
RESTORE relies on careful selection of the mutation distribution and
termination probability to ensure it samples the target distribution
7 [Wang et al. 2021]. We first detail our choices for the perturba-
tion and mutation distributions, then explain how to determine the
termination probability; along the way, we elaborate on advantages
over MH. We summarize our version of RESTORE in Algorithm 1.

Perturbation distribution. As RESTORE does not require reversible
proposals, we use gradient perturbations without noise:

aha—n‘z—j 1)

Thus, a perturbation sequence becomes equivalent to gradient de-
scent. The lack of noise is crucial for performance: Whereas in
Equation (10) the noise term required keeping step size 1 small, in
Equation (11) we can use large step sizes to accelerate optimization.
We use Adam [Kingma and Ba 2017] to determine adaptive step
sizes from the history of the current sequence. As we explain below,
the sequence terminates randomly with a probability that adapts to
how much progress gradient steps make towards improving 6.

Mutation distribution. RESTORE requires that the mutation distri-
bution can sample any lens 6 with non-zero probability. In practice,
the choice of mutation distribution is further constrained by its role
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Figure 2. We construct a toy lens design problem (a) to validate the sam-
pling accuracy of our method. The sampler can choose between optimizing
the distance of a singlet from the sensor (1D target distribution, left), or
the distances between two singlets and the sensor (2D target distribution,
right). Even with an approximate termination probability, our method (d-e)
correctly samples from the target distributions (b—c) in both 1D and 2D.

in determining the termination probability—through an integral
operator relationship that is difficult to compute analytically except
for trivial distributions (e.g., uniform) [Wang et al. 2021, Section 3].
We follow Pollock et al. [2020], who show that using a mutation
distribution that selects from a reservoir of previous samples allows
a tractable approximation of the termination probability.

In particular, we first sample a lens 6 from a mixture distribution

nglobal(g) + (1 = ¥)Preservoir (6, R), (12)

where: 1. pgioba) samples 0 entries independently and uniformly
within some upper and lower bounds; 2. preservoir Samples 0 from a
reservoir R of previously samples, as we explain below. We set the
hyperparameter y to a small value, to ensure that the mutation dis-
tribution satisfies the RESTORE requirement while mostly sampling
from the reservoir. After sampling 6, we mutate it as in Section 5.

We populate R by storing the top N lenses (in terms of ) sampled
upon perturbation chain terminations. The reservoir effectively
allows “backtracking” to a previous high-performing lens when a
perturbation chain gets trapped exploring a bad region of the design
space. Without this backtracking, the mutation distribution would be
extremely unlikely to find a reasonable lens by randomly sampling
the design space. Using the reservoir allows “warm starting” a new
perturbation chain from a previous reasonable lens.

Termination probability. Pollock et al. [2020] show that using gra-
dient steps for perturbations and reservoir sampling for mutations
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Figure 3. Left column: We consider four types of mutations of a compound
lens. Applying such a mutation often leads to a lens with significantly worse
performance than the original (diverging rays on the sensor plane). Right
column: We alleviate this issue by using a paraxial projection refinement
process that updates the mutated lens to have the same first-order focusing
behavior as the original lens. For visualization, we overlay the original lens
in grey over the refined one. Even though paraxial projection makes only
small changes to lens elements, it greatly improves performance (converging
rays on the sensor plane), while being very efficient to run.

simplifies the termination probability to:

7(0) — () +C

(@) +C

where C > 0 is a hyperparameter. Intuitively, k increases, and thus

termination becomes more likely, when the relative improvement

of  after a gradient step becomes small. Thus, RESTORE adaptively

determines to stop perturbations and use a mutation when gradient

optimization gets stuck at a local maximum of 7. Though Equa-

tion (13) is an approximation, we show in Figure 2 that using it in
RESTORE still allows sampling from the target distribution s.

(13)

5 Lens mutations

We implement four mutations (Figure 3) inspired by strategies in
lens design textbooks [Smith 2008]: singlet addition, singlet removal,
singlet gluing, and doublet splitting. Smith also suggests strategies
for choosing an element and mutation (e.g., splitting high-curvature
singlets). However, for simplicity we use uniform element and muta-
tion sampling, which empirically performed comparably to sampling
schemes derived from these strategies. Following the mutation, we
refine the lens using a paraxial projection process, which we explain

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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Figure 4. The 2 X 2 ray transfer matrix describes how a light ray parallel
and close to the optical axis propagates through a compound lens. If two
lenses have the same effect on such a ray, they are paraxially equivalent.

next using singlet addition as an example—the same process applies
to the other mutations. We can perform this refinement because the
overall mutation distribution does not need to be reversible.

If we simply add a singlet to the current compound lens, the result-
ing lens will almost certainly have drastically worse focusing and
throughput performance than the original lens. Though RESTORE
will still attempt to optimize the mutation proposal, optimization
will likely get stuck fast, requiring a new mutation—and thus wast-
ing the previous ones. We therefore need a way to quickly fine-tune
the lens from a mutation proposal so that it performs closer to the
original lens. We do so using ray transfer matrix analysis—a parax-
ial approximation to ray tracing—as a proxy for Equation (6). We
emphasize that we use the paraxial approximation only for this re-
finement process: our overall method uses full ray tracing to design
lenses while accounting for non-paraxial effects (Section 3).

Paraxial lens optics. With the paraxial approximation of radially
symmetric optics, we parameterize a ray as the 2D vector of its
distance y and angular deviation ¢ from the optical axis. We also
model propagation of the ray through a sequential compound lens
as matrix-vector multiplication with 2 X 2 ray transfer matrix M:

o) =uls

We overview this matrix for compound lenses comprising spherical
elements, and refer to Pedrotti et al. [2017, Chapter 18] for details.

As a ray traveling through a lens undergoes a sequence of propa-
gation and refraction operations, first we model each such operation
as a ray transfer matrix. Propagation by a distance d and refraction
at a spherical surface of curvature k correspond to matrices:

1 0 Mifno  *(Mi=70)/n,
%w:b J M) = |17 e

, (14)

(15)

where 7; and 7, are the refractive indices before and after refraction.
We can then model a compound lens as the product of the refrac-
tion and propagation matrices corresponding to its elements. For
example, a singlet is represented paraxially as My MpM; M, where
the last matrix considers the distance from the final lens surface
to the sensor plane. Given a compound lens 6, we denote its ray
transfer matrix M(6), which can always be written in the form:

a —1/f]

M@=, ¢

(16)

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

where f is the focal length, and a, b, c are coeflicients encoding
other first-order properties of the compound lens. M(6) provides a
fixed-sized abstraction of the compound lens, no matter its complex-
ity (e.g., number K of elements). Moreover, two compound lenses
will have similar (up to first order) focusing behavior if their ray
transfer matrices are equal, no matter how different their internal
designs. We thus define the following notion of approximate equiva-
lence between two compound lenses—emphasizing focusing of rays
parallel to the optical axis and at infinite conjugacy (y = 1, ¢ = 0).

DEFINITION 1 : PARAXIAL EQUIVALENCE

Two compound lenses 0, and 0}, are paraxially equivalent if

mmm=mmm.

Paraxial projection. After adding a singlet to a lens 6, we refine
the augmented lens 0* so that it is paraxially equivalent to 6. We
formulate this refinement as a constrained optimization problem,
which we solve using Newton’s method and Lagrange multipliers:

rréi*n llo- 9*“2 st (M(0) — M(0%)) m =0. (17)

We keep entries of 6* for the added singlet fixed. Empirically, we
found that this process, which we term paraxial projection, results in
much larger objective improvements than gradient descent with full
ray tracing for equal runtime (30 iterations). The paraxial projection
is locally unique and thus has a full-rank Jacobian of 8* with respect
to @ (Appendix A). This property, though not needed by our method,
allows using paraxial projection in MH-based samplers requiring
reversibility, and we compare with such a sampler in Section 6.

Comparison with automatic design search. Commercial software
[Dilworth 2025] includes automatic design search procedures, which
mutate compound lens designs through automatic lens insertion
(AEI) and automatic lens delete (AED) methods, similar in spirit to
our singlet-addition and singlet-removal mutations (resp.). AEI ran-
domly adds singlets that initially have near-zero thickness, so that
they do not impact the design. In our experiments, we found that
such singlets remained thin even after several gradient iterations,
and mitigating this issue required using expensive line search meth-
ods and a large weight on the thickness penalty loss (Equation (5)).
AED removes elements by first attempting to make them have near-
zero thickness through the addition of extra thickness penalties
to the loss function. In our experiments, we found that AED was
very sensitive to hyperparameter tuning, and significantly slowed
down convergence. By contrast, our method supports a richer set of
mutations that modify the design without causing gradient descent
to get stuck or requiring dynamically changing the loss function.

6 Experiments

We show results from experiments on several lens design tasks. The
project website includes interactive visualizations and more results.
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Figure 5. By varying the throughput and spot error weights in the optimization loss, we can explore designs that achieve different tradeoffs between lens
speed and sharpness, tracing a Pareto front. Without mutations, lens designs are limited to the Pareto front determined by the initial design’s topology. As our
method can add and remove elements from the design, it is able to explore a larger space of designs and expand the Pareto front to achieve better tradeoffs.

Implementation details. We implemented our method in Python,
using JAX [Bradbury et al. 2018] for GPU acceleration, and Opti-
mistix [Rader et al. 2024] for paraxial projection. To compute deriva-
tives of Equation (6), we implemented aperture-aware differentiable
ray tracing [Teh et al. 2024], which was previously shown to improve
lens optimization compared to alternatives [Wang et al. 2022]. We as-
sume a 35 mm full-frame sensor, and optimize for four target plane
positions in Equation (6), selected so that their thin-lens sensor-
plane projections are uniformly distributed. We set the temperature
T in Equation (7) so that () ~ 0.5, the size of the reservoir R to
5 and y = 0.02 in Equation (12), and C = 2 in Equation (13). Initial
designs are from Reiley [2014]. On a workstation with an NVIDIA
RTX 3090 GPU, our implementation performs 12,000 iterations in
40 min. We provide an open-source implementation of our method
on the project website. When we use Zemax [2023], we optimize the
default merit function for spot error and added objectives for focal
length, running Zemax’s damped least squares until convergence.

Expanding the lens sharpness-speed Pareto front. Figure 5 shows
that our method allows exploring a larger tradeoff space of lens
designs than using just gradient-based optimization or commercial
tools [Zemax 2023]. Exploring the design space involves changing
the weights of losses for sharpness versus speed in Equation (6),
creating a Pareto front of lens designs. Initialized with lenses from
the Pareto front produced using only gradient-based optimization
[Teh et al. 2024], our method with the same total loss finds designs
that move past this front to more favorable parts of the design
space. By varying both continuous and discrete lens parameters,
our method produces lenses with better overall performance.

Paraxial projection ablation. Figure 6 and Table 1 show results
from an ablation study evaluating the utility of paraxial projection.
We run our method with and without paraxial projection for 5000
iterations. The table shows that our method samples lenses that

Table 1. Ablation study for paraxial projection. We run our method with
and without paraxial projection, and report the fraction of iterations in
which the sampled lenses have better objective value than the initial lens.
We report results after 1000 and 5000 iterations.

projection no projection
lens 1k 5k 1k 5k
wide-angle (28 mm) 0.356 0.358 0.225 0.241
normal (50 mm) 0.964 0.972 0.554 0.828
macro (105 mm) 0.118 0.424 0.0 0.015
telephoto (135 mm) 0.087 0.281 0.009 0.122

improve on the initialization much more often with paraxial pro-
jection than without. Figure 6 shows the distribution of mutations
during sampling for the 135 mm lens, with and without paraxial
projection. In both cases, there is a “warm-up” period where our
method must first populate the reservoir with good lenses, before it
starts consistently finding better lenses. Using paraxial projection
greatly shortens this period, resulting in overall better lenses.

Comparison with Metropolis-Hastings. In Figure 7, we compare
our method with a reversible-jump MCMC sampler that uses the
Metropolis-adjusted Langevin algorithm [Roberts and Tweedie 1996].
As we explain in Section 3.1, the need to include noise in Langevin
perturbations forces the MH-based sampler to use very small step
sizes to ensure perturbations are accepted, slowing down optimiza-
tion. The MH-based sampler also rejects most mutation proposals.
By contrast, our method uses large step sizes and, as it has no re-
jections, attempts to optimize mutation proposals before another
mutation. As a result, our method consistently finds better lenses.

Comparison with brute-force search. In Figure 8, we compare our
method against a baseline using brute-force search—adding or re-
moving a singlet at every possible location in the compound lens,

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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Figure 6. Two runs of our method with (top) and without (bottom) paraxial
projection. We initialize both optimizations with the 135 mm lens and run
for 5000 iterations. We also plot the loss of the initial lens (orange) for
comparison. Using paraxial projection results in better mutations with lower
losses, and perturbation sequences with longer durations. As the reservoir
saturates with good lenses, both runs more consistently find better lenses.
However, paraxial projection reduces this “warm-up” period.

then optimizing with gradient descent. Inserted singlet are sampled
with random thickness (mean and standard deviation 1 mm) and cur-
vatures (mean zero, standard deviation 0.01 mm™!). This baseline is
simple to implement, but is sensitive to local minima, and becomes
intractable as we increase the number of elements in the original
lens or the number of elements we want to add. By contrast, our
method better avoids local minima and explores more lens designs.

We use four initial lenses: a 28 mm wide-angle lens, a 50 mm
normal lens, a 105 mm macro lens, and a 135 mm telephoto lens.
We run our method and the baseline for 40 min, optimizing lenses
generated from additions and removals by the baseline for an equal
number of gradient iterations. In all cases, our method finds lenses
with better objective values, sharpness, and speed.

7 Conclusion and limitations

We presented a method for automated design of compound lenses
that, uniquely among related work, can optimize both continuous
and discrete parameters of a lens design. It uses MCMC sampling to
combine gradient-based optimization of continuous parameters, and
tailored mutations altering the number and type of lens elements.
Our method uses the RESTORE algorithm for effective sampling, and
paraxial projection to improve mutations. It finds better lenses than

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

— our method @ mutations
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Figure 7. We compare our method with an MH-based sampler. The MH-
based sampler (green) rejects most mutation proposals and can only perform
small gradient steps. By contrast, our method (blue) efficiently optimizes
all mutation proposals before trying another mutation.

using only gradient-based optimization, and expands the Pareto
front possible when considering the lens speed-sharpness tradeoff.
We discuss limitations that point towards future research directions.

Initialization dependence. Though our method explores a larger
design space than using only gradient-based optimization, it is still
sensitive to initialization, requiring high-quality initial designs. Sam-
pling such designs at random is extremely unlikely, but data-driven
methods [C6té et al. 2021] provide a potential solution to this prob-
lem. Such methods can work in conjunction with ours to, e.g., pre-
populate the reservoir. Alternatively, we can combine our method
with curriculum learning, which has proven effective in mitigating
initialization dependence for lens design tasks [Yang et al. 2024].

Manufacturing constraints and tolerances. Though our method
outputs lenses with good simulated performance, ensuring that
these lenses are manufacturable and robust to manufacturing errors
is essential for practicality. For example, some designs (Figure 8)
include very thin optical elements that can be either impossible to
manufacture, or very unstable due to manufacturing tolerances. As
a result, realizations of these designs may in practice underperform
realizations of alternative designs that are worse in simulation but
more reliable to manufacture. Incorporating manufacturing con-
straints and tolerances in the design process is possible to some
extent through better engineering of the lens design objective (e.g.,
more strongly penalizing thin and high-curvature elements). How-
ever, given how sensitive the performance of a compound lens is to
small changes in its elements (Figure 3), developing more principled
solutions to these issues is an important future research direction.

Other design objectives. Our method optimizes objectives (Equa-
tion (6)) for a single wavelength and focal length. Lens design tasks
often require considering large spectral ranges (achromats and apoc-
hromats that minimize chromatic aberrations) or focal length ranges
(zoom lenses that remain sharp and fast with varied focal length).
Our method can be adapted to such tasks by augmenting Equation (6)
to average losses for different wavelengths and focal lengths, and
allowing element positions to vary with focal length setting [Teh
et al. 2024, Figure 10]. Gradient perturbations trivially extend to
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Figure 8. Comparison of our method with a baseline using brute force search. The baseline adds or removes an element at every possible location in the
original compound lens, then uses gradient-based optimization to improve the resulting lens. Both methods run for 40 min. We experiment on four different
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such augmented objectives, which remain differentiable. However,
effective discrete optimization would require two non-trivial modifi-
cations to our method, which we leave as future research: 1. Adding
mutations that change material (e.g., creation of achromatic dou-
blets, insertion of low-dispersion singlets). 2. Modifying paraxial
projection to account for multiple wavelengths or focal lengths.

Other geometric optical elements. Our method is limited to only
spherical elements, due to our use of ray transfer matrices for parax-
ial projection. First-order approximations to other element types
(e.g., aspherics, cylindrical lenses, or even reflective elements) exist
but have lower accuracy than those for spherical elements. Thus it is
unclear how effective they would be when designing lens mutations.

Wave optics. As we rely on geometric optics for ray tracing and
paraxial projection, our method is limited to elements well approxi-
mated by geometric optics. Several recent works extend continuous
lens design methods using gradient-based optimization to account
for wave effects (e.g., diffraction) [Chen et al. 2023; Ho et al. 2024].
Incorporating these works into our method would allow likewise
extending mixed continuous-discrete lens design.
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A Jacobian of paraxial projection

We can compute the Jacobian of the solution 6* of Equation (17)
with respect to the pre-mutation parameters 6 analytically, using the
implicit function theorem. To this end, we first write the Lagrangian
of the constrained optimization problem in Equation (17):

L(6%,0,2) =10 - 0%|]> + AT (M(6) — M(6*)) m . (1)

From the method of Lagrange multipliers, the solution of Equa-
tion (17) is a stationary point of the Lagrangian, and thus satisfies
the following system of equations:

ViL=0, (19)
V3L =0, (20)

where V; refers to differentiation with respect to the i-th argument.
Differentiating both sides of these equations with respect to 0,

do* dA

Vivil T +V2V1£+V3V1LE =0, (21)
do* dA

ViV L a0 +VoVs L+ V3V3.£E =0. (22)

V1L and V3L have the same dimensionality, whereas V3£ has
dimension equal to the number of constraints (two in Equation (18)).
We can write Equations (21) and (22) in matrix form as:

\2% Ay 401 [-v,v
1Vil V3 1£] ﬁ _ [ 2 1£]. (23)
a6

ViV3L 0 -VoV3L
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Then using Equation (18),

1+17V,Vig Vig % _
VlgT 0 il —Vag

0

_(I+V2_Ylg)], (24)

where ¢ is the function describing the constraints in Equation (17):
* «\y |0
g(0%,0) = (M(6) — M(6%)) [1] . (25)
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