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Figure 1. We develop a method that automatically explores the design space of compound lenses, by using Markov chain Monte Carlo sampling to combine
gradient-based optimization with discrete changes to the number and type of lens elements. This combination allows our method to find designs that improve
the sharpness and throughput of the initial lens design (in this example, the Nikon Nikkor-S 50mm 𝑓 /1.4, released in 1962 [Reiley 2014]), even after it has
been optimized by prior gradient-based methods [Teh et al. 2024]. Our method achieves image quality comparable to that of an improved lens designed by an
expert (in this example, the Canon FD 50mm 𝑓 /1.2, released in 1980). We report image brightness (top-left number of images) in terms of relative exposure.

We introduce a method that automatically and jointly updates both con-

tinuous and discrete parameters of a compound lens design, to improve

its performance in terms of sharpness, speed, or both. Previous methods

for compound lens design use gradient-based optimization to update con-

tinuous parameters (e.g., curvature of individual lens elements) of a given

lens topology, requiring extensive expert intervention to realize topology

changes. By contrast, our method can additionally optimize discrete parame-

ters such as number and type (e.g., singlet or doublet) of lens elements. Our

method achieves this capability by combining gradient-based optimization
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with a tailored Markov chain Monte Carlo sampling algorithm, using trans-

dimensional mutation and paraxial projection operations for efficient global

exploration. We show experimentally on a variety of lens design tasks that

our method effectively explores an expanded design space of compound

lenses, producing better designs than previous methods and pushing the

envelope of speed-sharpness tradeoffs achievable by automated lens design.
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1 Introduction
Modern lens design demands optimizing increasingly sophisticated

compound lenses to meet increasingly challenging performance
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requirements. Though computational design tools exist, in practice

these optimizations require close supervision by expert designers,

who manually tune all aspects of the optical elements making up the

compound lens. Obtaining good solutions requires tedious manual

intervention, expert intuition, and trial and error.

Gradient-based optimization has become an essential part of the

compound lens design process. Recent advances in differentiable

rendering facilitate faster gradient-based optimization of continuous

lens parameters (e.g., shapes of individual elements or distances be-

tween them) [Sun et al. 2021; Teh et al. 2024; Tseng et al. 2021; Wang

et al. 2022]. Though such methods are invaluable for improving

lens designs with a fixed topology (number and type of lens ele-

ments), they cannot optimize the lens topology itself. It is up to the

expert designer to perform discrete changes manually—strategically

adding, changing, or removing elements from a base design—before

handing the design back to the optimizer for further improvement.

Critically, changing the lens topology is often the only option avail-

able for meeting stringent performance requirements, for example:

maintaining sharpness across the field of view when transitioning a

lens from a half-frame to a full-frame sensor; increasing speed when

designing a lens for extreme low-light conditions; or maintaining

sharpness and speed when adapting a lens to smaller form factors.

Another way to assist expert designers is by generating good

starting points. Methods using deep learning or genetic algorithms

[Côté et al. 2021; Höschel and Lakshminarayanan 2018; Zoric et al.

2025] can help seed the design process, but the designs they output

are often suboptimal: though they can make discrete changes to lens

topology, they cannot effectively optimize continuous lens parame-

ters, and thus cannot accurately assess the potential of different lens

topologies. As a result, pushing the envelope in lens performance

still requires expert designers to manually explore edits and iterate

between discrete and continuous optimization.

These considerations highlight a critical gap in automated design

of compound lenses: existing methods optimize only continuous

or only discrete parameters of a system whose performance crit-

ically depends on joint optimization of both types of parameters.

We address this gap in automated lens design capabilities by de-

veloping a method that performs mixed discrete and continuous

lens optimization automatically. Our method uses Markov chain
Monte Carlo (MCMC) sampling to combine gradient-based optimiza-

tion of continuous lens parameters with transdimensional mutations
that alter the number of lens elements (Figure 1). We make such a

combination practical through two core contributions:

• A sampling algorithm that facilitates mixing gradient updates and

mutations without sacrificing optimization performance.

• A set of mutations that use a projection operation to propose

lenses with varied topologies that nevertheless remain paraxially

equivalent to an original design.

These contributions enable our method to automatically explore

a much larger design space of compound lenses than previously

possible. We show experimentally that our method finds lenses with

improved sharpness and speed compared to prior work that uses

only gradient-based optimization. We provide interactive visualiza-

tions and an open-source implementation on the project website.
1

1
https://imaging.cs.cmu.edu/automated_lens_design

2 Related work
Geometric optics design. Lens designers commonly use computa-

tional tools [Synopsys 2023; Zemax 2023] to automatically optimize

continuous lens parameters (e.g., curvature, size, and placement

of lens elements). However, they typically have to rely on manual

tuning and intuition to update the lens topology (e.g., number and

type of lens elements) [Smith 2008]. Pedrotti et al. [2017] and Born

and Wolf [2013] provide introductions to optics and lens design.

Differentiable rendering for lens design. Differentiable rendering
enables solving inverse rendering problems using gradient-based

optimization [Jakob et al. 2022; Li et al. 2018; Zhang et al. 2020]. Pre-

vious work focused on differentiating visibility discontinuities [Ban-

garu et al. 2022; Cai et al. 2022; Vicini et al. 2022; Wang et al. 2024;

Zhou et al. 2024] and reducing memory usage [Teh et al. 2022; Vicini

et al. 2021]. More recently, differentiable ray tracing methods have

gained popularity for optimization of complex optical systems [Sun

et al. 2021; Teh et al. 2022; Tseng et al. 2021; Wang et al. 2022], often

end-to-end with post-processing algorithms [Côté et al. 2023; Yang

et al. 2024]. Côté et al. [2023] also extend gradient-based methods

to optimize discrete material selection. Compared to prior work,

our method uses aperture-aware differentiable ray tracing [Teh et al.

2024] for gradient-based optimization, but explores a larger design

space by also modifying the number and type of lens elements.

Lens design exploration. The design space of lenses is highly non-

convex and contains local minima. Prior work uses simulated an-

nealing [Zoric et al. 2024], genetic algorithms [Höschel and Lak-

shminarayanan 2018], or large language models [Zoric et al. 2025]

to mitigate these issues. These methods can help find performant

designs, but use a predetermined number of elements. To expand the

search space, Betensky [1993] proposed exchanging parts of a design

with paraxially equivalent designs—a strategy our method adopts

for mutations. Alternatively, Sun et al. [2015] search over a library

of off-the-shelf elements to generate designs without optimization.

Côté et al. [2021] use deep learning to generate initial designs for

subsequent optimization. Our method combines continuous opti-

mization and discrete mutations, without requiring learning.

MCMC in computer graphics. Prior work in computational design

often uses MCMC methods for discrete optimization problems. For

example, Yeh et al. [2012] use reversible-jump MCMC to decide

the placement of furniture in virtual rooms. Desai et al. [2018] use

MCMC to optimize the placement of components of a mechanical

assembly. More recently, Barda et al. [2023] use MCMC to optimize

the design of sheet metal parts. MCMC also finds application in ren-

dering to estimate light transport integrals [Veach and Guibas 1997].

Related to our work are methods that mix sampling distributions of

varying dimensionality [Bitterli et al. 2017; Otsu et al. 2017], or use

gradients to guide sampling [Li et al. 2015; Luan et al. 2020].

Quasi-stationary Monte Carlo. Metropolis-Hastings adjusted pro-

cesses reject samples, which can be inefficient, especially when each

sample is costly to generate (e.g., in optimization). Quasi-stationary

Monte Carlo (QSMC) methods sample from a target distribution

without rejections. Unlike Metropolis-Hastings, QSMC methods do
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not require reversible transitions or detailed balance for conver-

gence. Pollock et al. [2020] and Wang et al. [2021] proposed QSMC

algorithms that sample from a target distribution using Brownian

motion. In rendering, Holl et al. [2024] use the jump RESTORE al-
gorithm [Wang et al. 2021] to mix global and local dynamics in

Metropolis light transport. We use the jump RESTORE framework

to develop a sampler that navigates the design space of lenses.

3 Problem setup
We focus on compound lens design under four assumptions:

1. We assume each compound lens is a collection of refractive sin-

glets or cemented doublets (lens elements) that have spherical
surfaces and are radially symmetric around the optical axis.

2. We do not include an aperture stop in the lens, thus the refractive

elements determine the pupils and speed of the compound lens.

3. We use geometric optics and ignore wave effects (e.g., diffraction).

4. We assume sequential lens design, where rays entering the lens

transmit through each refractive surface once and in order from

lens entrance to sensor; we thus ignore geometric effects where

rays violate this assumption (e.g., interreflections, glare).

With these assumptions, we represent a compound lens as a vector

𝜃 ∈ R𝑁 that includes four parameters for each refractive surface,

ordered from lens entrance to sensor: curvature, lateral extent, dis-

tance to the next surface, and refractive index after the surface. Thus,

a compound lens with 𝐾 refractive surfaces has 𝑁 = 4𝐾 parameters.

We assume the compound lens is imaging a target plane to a

sensor plane, both orthogonal to the optical axis at locations before

and after the first and last (resp.) refractive surfaces. We simulate

the image formation process using sequential ray tracing: Given a

ray𝜔 ≔ (x0, v0) starting on the target plane at position x0 ∈ R3
and

direction v0 ∈ S2, we propagate it through the lens with a sequence

of refraction and propagation operations. Ray tracing ends when

the ray either hits a stop (e.g., lens housing), or reaches the sensor

plane at a position we denote xs (𝜔 ;𝜃 ) ∈ R3
or xs (x0, v0;𝜃 ) ∈ R3

,

depending on context. We call rays that reach the sensor valid
rays and denote their set Ω(𝜃 ) ⊂ R3 × S2. The function xs (·;𝜃 ) is
differentiable with respect to 𝜃 , and its value and derivatives can be

computed efficiently through primal and adjoint (resp.) sequential
ray tracing [Teh et al. 2024], which we use as part of our method.

Design objectives. We optimize 𝜃 for a combination of losses that

emphasize sharpness, speed, and conformity to focal length speci-

fications. We define each loss for rays starting from a target plane

location x0, then aggregate for many such locations (Equation (6)).

1. Sharpness: We use a variance-based spot size loss:

Lspot (x0;𝜃 ) ≔
∫
(x0,v0 ) ∈Ω (𝜃 )

∥xs (x0, v0;𝜃 ) − x̃(x0)∥2 dv0, (1)

x̃(x0) ≔

∫
(x0,v0 ) ∈Ω (𝜃 ) xs (x0, v0;𝜃 ) dv0∫

(x0,v0 ) ∈Ω (𝜃 ) dv0
. (2)

2. Speed: We use a throughput loss inspired by Teh et al. [2024]:

L
throughput

(x0;𝜃 ) ≔ 1 − 1

𝑇0

∫
(x0,v0 ) ∈Ω (𝜃 )

dv0, (3)

where 𝑇0 is the maximum throughput determined by the maxi-

mum size of the design, which we specify as a hyperparameter.

3. Focal length: We use a loss based on the target focal length 𝑓 ,

L
focal
(x0;𝜃 ) ≔ ∥x̃(x0) − xthin (x0; 𝑓 )∥2, (4)

where x
thin
(x0; 𝑓 ) is the sensor point predicted for x0 from the

Gaussian lens formula for a thin lens of focal length 𝑓 .

We include an additional regularization term that prevents lens

elements from becoming thinner than a hyperparameter 𝑑min:

L
thickness

(𝜃 ) ≔
∑︁𝐾

𝑘=1
max (𝑑min − 𝑡𝑘 , 0)2 , (5)

where 𝑡𝑘 is the thickness of the 𝑘-th lens element.

Our total loss is a weighted combination of these losses, aggre-

gated over multiple target locations where appropriate:

L(𝜃 )≔
∑︁𝑀

𝑚=1

(
𝑤spotLspot (x𝑚0 ;𝜃 ) +𝑤

throughput
L
throughput

(x𝑚
0
;𝜃 )

+𝑤
focal
L
focal
(x𝑚

0
;𝜃 )

)
+𝑤

thickness
L
thickness

(𝜃 ) . (6)

3.1 Design with Markov chain Monte Carlo sampling
When the number 𝐾 of lens elements (and thus length 𝑁 of 𝜃 ) is

fixed a priori, the loss of Equation (6) is differentiable using adjoint

sequential ray tracing [Teh et al. 2024]. Therefore, for fixed 𝑁 , the

design of a compound lens can be done using gradient-based opti-

mization, an approach that has been popular in recent work [Sun

et al. 2021; Teh et al. 2024; Tseng et al. 2021; Wang et al. 2022].

Unlike this prior work, we are interested in methods that design

all aspects of a compound lens, including both the discrete-valued

number 𝐾 of elements and their continuous-valued parameters 𝜃 .

Though𝐾 is not amenable to gradient-based optimization, we would

like any such method to continue using gradient-based optimization

for 𝜃 . We enable mixed discrete-continuous design by treating it

as a sampling problem that we attack with Markov chain Monte
Carlo (MCMC) algorithms. To this end, we first convert the loss in

Equation (6) into a positive Boltzmann distribution to bemaximized:

𝜋 (𝜃 ) ≔ 𝑒−
L(𝜃 )
𝑇 , (7)

where 𝑇 is a temperature that controls the “sharpness” of the distri-
bution: higher𝑇 allows exploring larger regions of the design space,

whereas lower 𝑇 forces exploration of only high-value regions. We

treat𝑇 as a fixed hyperparameter, though future work could explore

simulated annealing methods that progressively lower temperature.

Metropolis-Hastings and its pitfalls. The most popular MCMC

method is the Metropolis-Hastings (MH) algorithm [Hastings 1970].

Given a lens 𝜃 , it uses a proposal distribution 𝑝 to sample a lens

proposal 𝜃 ′ ∼ 𝑝 (𝜃 → 𝜃 ′), and compute an acceptance probability:

𝛼 ≔ min

{
1, exp

(
L(𝜃 ) − L(𝜃 ′)

𝑇

)
· 𝑝 (𝜃

′ → 𝜃 )
𝑝 (𝜃 → 𝜃 ′)

}
. (8)

The proposal is randomly either accepted with probability 𝛼 and

used to update the lens (𝜃 ← 𝜃 ′), or rejected leaving the lens un-

changed. The exponential term in Equation (8) favors accepting

proposals 𝜃 ′ that improve (reduce) L. Under certain conditions on

𝑝 , this algorithm will sample lenses proportionally to L.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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The appeal of MH for mixed discrete-continuous design lies in

the great flexibility it affords the user in selecting the proposal

distribution 𝑝 . We can use a mixture proposal distribution:

𝑝
(
𝜃 → 𝜃 ′

)
= 𝛽𝑝continuous

(
𝜃 → 𝜃 ′

)
+ (1 − 𝛽)𝑝

discrete

(
𝜃 → 𝜃 ′

)
, (9)

which at random updates lens parameters 𝜃 either continuously by

sampling 𝑝continuous—a perturbation that leaves the dimension𝑁 the

same—or discretely by sampling 𝑝
discrete

—a mutation that changes

𝑁 . Moreover, for 𝑝continuous, we can use Langevin perturbations
𝜃 ′ ∼ N(𝜃 −𝜂 dL/d𝜃, 𝜂) [Roberts and Tweedie 1996], or equivalently:

𝜃 ′ ← 𝜃 − 𝜂 dL
d𝜃
+ √𝜂 · 𝜀, (10)

where 𝜀 is a vector of normal random variates, and the gradient term

can be computed using adjoint sequential ray tracing. The Langevin

perturbations in Equation (10) mimic gradient descent, except for

the addition of noise, allowing MH to incorporate gradient-based op-

timization of continuous lens parameters. In practice, it is common

to use adaptive step sizes 𝜂 in Equation (10) to improve sampling

performance [Li et al. 2015; Luan et al. 2020], analogously to gradient

descent algorithms such as Adam [Kingma and Ba 2017].

MH with mixed Langevin perturbations and discrete mutations

has been successful elsewhere in graphics, notably in Monte Carlo

rendering [Li et al. 2015; Luan et al. 2020]. Unfortunately, we have

empirically found it difficult to use this approach for mixed discrete-

continuous design of compound lenses, for two reasons:

1. The sharpness and speed of a compound lens 𝜃 with many el-

ements (e.g., 𝐾 ≥ 4) is very sensitive to random perturbations.

Langevin perturbations include noise 𝜀 (Equation (10)), and thus

almost always produce badly performing lenses that are rejected.

Preventing this behavior requires keeping the noise variance—

and thus step size 𝜂—very small. The result in either case is that

optimization requires prohibitively many sampling iterations.

2. Lens mutations that have high acceptance probability generally

require refining a lens after increasing or decreasing its elements.

Such post-mutation refinement requires continuous optimiza-

tion, which makes it challenging—or impossible—to compute the

reverse proposal distribution 𝑝 (𝜃 ′ → 𝜃 ) in Equation (8).

We provide experimental evidence for both issues in Section 6. These

issues arise from the requirement for reversible proposals in MH,

which necessitates the addition of noise in Equation (10) and the

computation of 𝑝 (𝜃 ′ → 𝜃 ) in Equation (8). In Section 4, we address

both issues by using a different MCMC algorithm that lifts the re-

versibility requirement alongside providing other advantages. Then,

in Section 5, we design effective discrete lens mutations, leveraging

the flexibility from no longer being constrained by reversibility.

4 The RESTORE algorithm
We propose to use an MCMC algorithm based on so-called randomly
exploring and stochastically regenerating (RESTORE) processes [Wang

et al. 2021]—we use the name RESTORE also for the algorithm associ-

ated with these processes. RESTORE uses two proposal distributions,

one for small perturbations, and another for large changes. The RE-

STORE literature refers to these distributions as local dynamics and
regeneration probability (resp.); for clarity, we continue to use the

terms perturbation and mutation (resp.) from Section 3.1.

Algorithm 1 SingleRestoreStep(𝜃, 𝑅,𝛾, 𝜋,𝐶)
Input: A compound lens 𝜃 , a reservoir 𝑅, a weight parameter 𝛾 , a

target distribution 𝜋 , a constant 𝐶 .
Output: A new compound lens ˜𝜃 , an updated reservoir 𝑅.
1: ⊲ Perform a gradient step
2:

˜𝜃 ← GradientStep(𝜋, 𝜃 )
3: ⊲ Compute the termination probability

4: 𝜅 ← 𝜋 (𝜃 )−𝜋 ( ˜𝜃 )+𝐶
𝜋 (𝜃 )+𝐶

5: ⊲ Check whether to terminate perturbation sequence
6: if SampleUniform[0, 1] < 𝜅 then
7: ⊲ Update the reservoir with the current lens
8: 𝑅 ← UpdateReservoir(𝑅, ˜𝜃 )
9: ⊲ Sample and mutate new lens
10: if SampleUniform[0, 1] < 𝛾 then
11:

˜𝜃 ← SampleGlobal()
12: else
13:

˜𝜃 ← SampleReservoir(𝑅)
14:

˜𝜃 ← MutateLens( ˜𝜃 )
15: ⊲ Return new lens and updated reservoir
16: return ˜𝜃, 𝑅

Starting from an initial lens 𝜃 , RESTORE performs a sequence

of perturbations updating 𝜃 (“local dynamics simulation”). At each

perturbation, it uses 𝜃 to compute a termination probability to ran-

domly decide whether to continue perturbations or terminate the

sequence. Upon termination, it updates 𝜃 using the mutation dis-

tribution (“regeneration”), then restarts a perturbation sequence.

Compared to MH, RESTORE has no rejections, and does not require

reversible perturbation and mutation distributions—both differences

that benefit optimization [Holl et al. 2024]. Instead of reversibility,

RESTORE relies on careful selection of the mutation distribution and

termination probability to ensure it samples the target distribution

𝜋 [Wang et al. 2021]. We first detail our choices for the perturba-

tion and mutation distributions, then explain how to determine the

termination probability; along the way, we elaborate on advantages

over MH. We summarize our version of RESTORE in Algorithm 1.

Perturbation distribution. As RESTORE does not require reversible
proposals, we use gradient perturbations without noise:

𝜃 ← 𝜃 − 𝜂 dL
d𝜃

. (11)

Thus, a perturbation sequence becomes equivalent to gradient de-

scent. The lack of noise is crucial for performance: Whereas in

Equation (10) the noise term required keeping step size 𝜂 small, in

Equation (11) we can use large step sizes to accelerate optimization.

We use Adam [Kingma and Ba 2017] to determine adaptive step

sizes from the history of the current sequence. As we explain below,

the sequence terminates randomly with a probability that adapts to

how much progress gradient steps make towards improving 𝜃 .

Mutation distribution. RESTORE requires that the mutation distri-

bution can sample any lens 𝜃 with non-zero probability. In practice,

the choice of mutation distribution is further constrained by its role

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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Figure 2. We construct a toy lens design problem (a) to validate the sam-
pling accuracy of our method. The sampler can choose between optimizing
the distance of a singlet from the sensor (1D target distribution, left), or
the distances between two singlets and the sensor (2D target distribution,
right). Even with an approximate termination probability, our method (d–e)
correctly samples from the target distributions (b–c) in both 1D and 2D.

in determining the termination probability—through an integral

operator relationship that is difficult to compute analytically except

for trivial distributions (e.g., uniform) [Wang et al. 2021, Section 3].

We follow Pollock et al. [2020], who show that using a mutation

distribution that selects from a reservoir of previous samples allows

a tractable approximation of the termination probability.

In particular, we first sample a lens 𝜃 from a mixture distribution

𝛾𝑝
global

(𝜃 ) + (1 − 𝛾)𝑝reservoir (𝜃, 𝑅), (12)

where: 1. 𝑝
global

samples 𝜃 entries independently and uniformly

within some upper and lower bounds; 2. 𝑝reservoir samples 𝜃 from a

reservoir 𝑅 of previously samples, as we explain below. We set the

hyperparameter 𝛾 to a small value, to ensure that the mutation dis-

tribution satisfies the RESTORE requirement while mostly sampling

from the reservoir. After sampling 𝜃 , we mutate it as in Section 5.

We populate 𝑅 by storing the top 𝑁 lenses (in terms of 𝜋 ) sampled

upon perturbation chain terminations. The reservoir effectively

allows “backtracking” to a previous high-performing lens when a

perturbation chain gets trapped exploring a bad region of the design

space.Without this backtracking, themutation distributionwould be

extremely unlikely to find a reasonable lens by randomly sampling

the design space. Using the reservoir allows “warm starting” a new

perturbation chain from a previous reasonable lens.

Termination probability. Pollock et al. [2020] show that using gra-

dient steps for perturbations and reservoir sampling for mutations
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Figure 3. Left column: We consider four types of mutations of a compound
lens. Applying such a mutation often leads to a lens with significantly worse
performance than the original (diverging rays on the sensor plane). Right
column: We alleviate this issue by using a paraxial projection refinement
process that updates the mutated lens to have the same first-order focusing
behavior as the original lens. For visualization, we overlay the original lens
in grey over the refined one. Even though paraxial projection makes only
small changes to lens elements, it greatly improves performance (converging
rays on the sensor plane), while being very efficient to run.

simplifies the termination probability to:

𝜅 ← 𝜋 (𝜃 ) − 𝜋 ( ˜𝜃 ) +𝐶
𝜋 (𝜃 ) +𝐶 , (13)

where 𝐶 > 0 is a hyperparameter. Intuitively, 𝜅 increases, and thus

termination becomes more likely, when the relative improvement

of 𝜋 after a gradient step becomes small. Thus, RESTORE adaptively
determines to stop perturbations and use a mutation when gradient

optimization gets stuck at a local maximum of 𝜋 . Though Equa-

tion (13) is an approximation, we show in Figure 2 that using it in

RESTORE still allows sampling from the target distribution 𝜋 .

5 Lens mutations
We implement four mutations (Figure 3) inspired by strategies in

lens design textbooks [Smith 2008]: singlet addition, singlet removal,

singlet gluing, and doublet splitting. Smith also suggests strategies

for choosing an element and mutation (e.g., splitting high-curvature

singlets). However, for simplicity we use uniform element and muta-

tion sampling, which empirically performed comparably to sampling

schemes derived from these strategies. Following the mutation, we

refine the lens using a paraxial projection process, which we explain
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Figure 4. The 2 × 2 ray transfer matrix describes how a light ray parallel
and close to the optical axis propagates through a compound lens. If two
lenses have the same effect on such a ray, they are paraxially equivalent.

next using singlet addition as an example—the same process applies

to the other mutations. We can perform this refinement because the

overall mutation distribution does not need to be reversible.

If we simply add a singlet to the current compound lens, the result-

ing lens will almost certainly have drastically worse focusing and

throughput performance than the original lens. Though RESTORE

will still attempt to optimize the mutation proposal, optimization

will likely get stuck fast, requiring a new mutation—and thus wast-

ing the previous ones. We therefore need a way to quickly fine-tune

the lens from a mutation proposal so that it performs closer to the

original lens. We do so using ray transfer matrix analysis—a parax-
ial approximation to ray tracing—as a proxy for Equation (6). We

emphasize that we use the paraxial approximation only for this re-

finement process: our overall method uses full ray tracing to design

lenses while accounting for non-paraxial effects (Section 3).

Paraxial lens optics. With the paraxial approximation of radially

symmetric optics, we parameterize a ray as the 2D vector of its

distance 𝑦 and angular deviation 𝜙 from the optical axis. We also

model propagation of the ray through a sequential compound lens

as matrix-vector multiplication with 2 × 2 ray transfer matrix 𝑀 :[
𝜙
f

𝑦
f

]
= 𝑀

[
𝜙

𝑦

]
, (14)

We overview this matrix for compound lenses comprising spherical

elements, and refer to Pedrotti et al. [2017, Chapter 18] for details.

As a ray traveling through a lens undergoes a sequence of propa-

gation and refraction operations, first we model each such operation

as a ray transfer matrix. Propagation by a distance 𝑑 and refraction

at a spherical surface of curvature 𝜅 correspond to matrices:

𝑀p (𝑑) ≔
[
1 0

𝑑 1

]
, 𝑀r (𝜅, 𝜂o, 𝜂i) ≔

[
𝜂i/𝜂o 𝜅 (𝜂i−𝜂o )/𝜂o
0 1

]
, (15)

where 𝜂i and 𝜂o are the refractive indices before and after refraction.

We can then model a compound lens as the product of the refrac-

tion and propagation matrices corresponding to its elements. For

example, a singlet is represented paraxially as𝑀r𝑀p𝑀r𝑀p, where

the last matrix considers the distance from the final lens surface

to the sensor plane. Given a compound lens 𝜃 , we denote its ray

transfer matrix𝑀 (𝜃 ), which can always be written in the form:

𝑀 (𝜃 ) =
[
𝑎 −1/𝑓
𝑏 𝑐

]
, (16)

where 𝑓 is the focal length, and 𝑎, 𝑏, 𝑐 are coefficients encoding

other first-order properties of the compound lens.𝑀 (𝜃 ) provides a
fixed-sized abstraction of the compound lens, no matter its complex-

ity (e.g., number 𝐾 of elements). Moreover, two compound lenses

will have similar (up to first order) focusing behavior if their ray

transfer matrices are equal, no matter how different their internal

designs. We thus define the following notion of approximate equiva-
lence between two compound lenses—emphasizing focusing of rays

parallel to the optical axis and at infinite conjugacy (𝑦 = 1, 𝜙 = 0).

Definition 1 : Paraxial eqivalence

Two compound lenses 𝜃𝑎 and 𝜃𝑏 are paraxially equivalent if

𝑀 (𝜃𝑎)
[
0

1

]
= 𝑀 (𝜃𝑏 )

[
0

1

]
.

Paraxial projection. After adding a singlet to a lens 𝜃 , we refine
the augmented lens 𝜃∗ so that it is paraxially equivalent to 𝜃 . We

formulate this refinement as a constrained optimization problem,

which we solve using Newton’s method and Lagrange multipliers:

min

𝜃 ∗



𝜃 − 𝜃∗

2 s.t.

(
𝑀 (𝜃 ) −𝑀

(
𝜃∗

) ) [
0

1

]
= 0. (17)

We keep entries of 𝜃∗ for the added singlet fixed. Empirically, we

found that this process, which we term paraxial projection, results in
much larger objective improvements than gradient descent with full

ray tracing for equal runtime (30 iterations). The paraxial projection

is locally unique and thus has a full-rank Jacobian of 𝜃∗ with respect

to 𝜃 (Appendix A). This property, though not needed by our method,

allows using paraxial projection in MH-based samplers requiring

reversibility, and we compare with such a sampler in Section 6.

Comparison with automatic design search. Commercial software

[Dilworth 2025] includes automatic design search procedures, which

mutate compound lens designs through automatic lens insertion
(AEI) and automatic lens delete (AED) methods, similar in spirit to

our singlet-addition and singlet-removal mutations (resp.). AEI ran-

domly adds singlets that initially have near-zero thickness, so that

they do not impact the design. In our experiments, we found that

such singlets remained thin even after several gradient iterations,

and mitigating this issue required using expensive line search meth-

ods and a large weight on the thickness penalty loss (Equation (5)).

AED removes elements by first attempting to make them have near-

zero thickness through the addition of extra thickness penalties

to the loss function. In our experiments, we found that AED was

very sensitive to hyperparameter tuning, and significantly slowed

down convergence. By contrast, our method supports a richer set of

mutations that modify the design without causing gradient descent

to get stuck or requiring dynamically changing the loss function.

6 Experiments
We show results from experiments on several lens design tasks. The

project website includes interactive visualizations and more results.
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Figure 5. By varying the throughput and spot error weights in the optimization loss, we can explore designs that achieve different tradeoffs between lens
speed and sharpness, tracing a Pareto front. Without mutations, lens designs are limited to the Pareto front determined by the initial design’s topology. As our
method can add and remove elements from the design, it is able to explore a larger space of designs and expand the Pareto front to achieve better tradeoffs.

Implementation details. We implemented our method in Python,

using JAX [Bradbury et al. 2018] for GPU acceleration, and Opti-

mistix [Rader et al. 2024] for paraxial projection. To compute deriva-

tives of Equation (6), we implemented aperture-aware differentiable

ray tracing [Teh et al. 2024], whichwas previously shown to improve

lens optimization compared to alternatives [Wang et al. 2022]. We as-

sume a 35mm full-frame sensor, and optimize for four target plane

positions in Equation (6), selected so that their thin-lens sensor-

plane projections are uniformly distributed. We set the temperature

𝑇 in Equation (7) so that 𝜋 (𝜃0) ≈ 0.5, the size of the reservoir 𝑅 to

5 and 𝛾 = 0.02 in Equation (12), and 𝐶 = 2 in Equation (13). Initial

designs are from Reiley [2014]. On a workstation with an NVIDIA

RTX 3090 GPU, our implementation performs 12,000 iterations in

40min. We provide an open-source implementation of our method

on the project website. When we use Zemax [2023], we optimize the

default merit function for spot error and added objectives for focal

length, running Zemax’s damped least squares until convergence.

Expanding the lens sharpness-speed Pareto front. Figure 5 shows
that our method allows exploring a larger tradeoff space of lens

designs than using just gradient-based optimization or commercial

tools [Zemax 2023]. Exploring the design space involves changing

the weights of losses for sharpness versus speed in Equation (6),

creating a Pareto front of lens designs. Initialized with lenses from

the Pareto front produced using only gradient-based optimization

[Teh et al. 2024], our method with the same total loss finds designs

that move past this front to more favorable parts of the design

space. By varying both continuous and discrete lens parameters,

our method produces lenses with better overall performance.

Paraxial projection ablation. Figure 6 and Table 1 show results

from an ablation study evaluating the utility of paraxial projection.

We run our method with and without paraxial projection for 5000

iterations. The table shows that our method samples lenses that

Table 1. Ablation study for paraxial projection. We run our method with
and without paraxial projection, and report the fraction of iterations in
which the sampled lenses have better objective value than the initial lens.
We report results after 1000 and 5000 iterations.

projection no projection

lens 1k 5k 1k 5k

wide-angle (28mm) 0.356 0.358 0.225 0.241

normal (50mm) 0.964 0.972 0.554 0.828

macro (105mm) 0.118 0.424 0.0 0.015

telephoto (135mm) 0.087 0.281 0.009 0.122

improve on the initialization much more often with paraxial pro-

jection than without. Figure 6 shows the distribution of mutations

during sampling for the 135mm lens, with and without paraxial

projection. In both cases, there is a “warm-up” period where our

method must first populate the reservoir with good lenses, before it

starts consistently finding better lenses. Using paraxial projection

greatly shortens this period, resulting in overall better lenses.

Comparison with Metropolis-Hastings. In Figure 7, we compare

our method with a reversible-jump MCMC sampler that uses the

Metropolis-adjusted Langevin algorithm [Roberts and Tweedie 1996].

As we explain in Section 3.1, the need to include noise in Langevin

perturbations forces the MH-based sampler to use very small step

sizes to ensure perturbations are accepted, slowing down optimiza-

tion. The MH-based sampler also rejects most mutation proposals.

By contrast, our method uses large step sizes and, as it has no re-

jections, attempts to optimize mutation proposals before another

mutation. As a result, our method consistently finds better lenses.

Comparison with brute-force search. In Figure 8, we compare our

method against a baseline using brute-force search—adding or re-

moving a singlet at every possible location in the compound lens,
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Figure 6. Two runs of our method with (top) and without (bottom) paraxial
projection. We initialize both optimizations with the 135mm lens and run
for 5000 iterations. We also plot the loss of the initial lens (orange) for
comparison. Using paraxial projection results in better mutations with lower
losses, and perturbation sequences with longer durations. As the reservoir
saturates with good lenses, both runs more consistently find better lenses.
However, paraxial projection reduces this “warm-up” period.

then optimizing with gradient descent. Inserted singlet are sampled

with random thickness (mean and standard deviation 1mm) and cur-

vatures (mean zero, standard deviation 0.01mm
−1

). This baseline is

simple to implement, but is sensitive to local minima, and becomes

intractable as we increase the number of elements in the original

lens or the number of elements we want to add. By contrast, our

method better avoids local minima and explores more lens designs.

We use four initial lenses: a 28mm wide-angle lens, a 50mm

normal lens, a 105mm macro lens, and a 135mm telephoto lens.

We run our method and the baseline for 40min, optimizing lenses

generated from additions and removals by the baseline for an equal

number of gradient iterations. In all cases, our method finds lenses

with better objective values, sharpness, and speed.

7 Conclusion and limitations
We presented a method for automated design of compound lenses

that, uniquely among related work, can optimize both continuous

and discrete parameters of a lens design. It uses MCMC sampling to

combine gradient-based optimization of continuous parameters, and

tailored mutations altering the number and type of lens elements.

Ourmethod uses the RESTORE algorithm for effective sampling, and

paraxial projection to improve mutations. It finds better lenses than

0 500
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iteration

lo
ss

 (l
og

)

our method
Metropolis-Hastings rejected jumps

mutations
accepted jumps

Figure 7. We compare our method with an MH-based sampler. The MH-
based sampler (green) rejects most mutation proposals and can only perform
small gradient steps. By contrast, our method (blue) efficiently optimizes
all mutation proposals before trying another mutation.

using only gradient-based optimization, and expands the Pareto

front possible when considering the lens speed-sharpness tradeoff.

We discuss limitations that point towards future research directions.

Initialization dependence. Though our method explores a larger

design space than using only gradient-based optimization, it is still

sensitive to initialization, requiring high-quality initial designs. Sam-

pling such designs at random is extremely unlikely, but data-driven

methods [Côté et al. 2021] provide a potential solution to this prob-

lem. Such methods can work in conjunction with ours to, e.g., pre-

populate the reservoir. Alternatively, we can combine our method

with curriculum learning, which has proven effective in mitigating

initialization dependence for lens design tasks [Yang et al. 2024].

Manufacturing constraints and tolerances. Though our method

outputs lenses with good simulated performance, ensuring that

these lenses are manufacturable and robust to manufacturing errors

is essential for practicality. For example, some designs (Figure 8)

include very thin optical elements that can be either impossible to

manufacture, or very unstable due to manufacturing tolerances. As

a result, realizations of these designs may in practice underperform

realizations of alternative designs that are worse in simulation but

more reliable to manufacture. Incorporating manufacturing con-

straints and tolerances in the design process is possible to some

extent through better engineering of the lens design objective (e.g.,

more strongly penalizing thin and high-curvature elements). How-

ever, given how sensitive the performance of a compound lens is to

small changes in its elements (Figure 3), developing more principled

solutions to these issues is an important future research direction.

Other design objectives. Our method optimizes objectives (Equa-

tion (6)) for a single wavelength and focal length. Lens design tasks

often require considering large spectral ranges (achromats and apoc-

hromats that minimize chromatic aberrations) or focal length ranges

(zoom lenses that remain sharp and fast with varied focal length).

Ourmethod can be adapted to such tasks by augmenting Equation (6)

to average losses for different wavelengths and focal lengths, and

allowing element positions to vary with focal length setting [Teh

et al. 2024, Figure 10]. Gradient perturbations trivially extend to
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Figure 8. Comparison of our method with a baseline using brute force search. The baseline adds or removes an element at every possible location in the
original compound lens, then uses gradient-based optimization to improve the resulting lens. Both methods run for 40min. We experiment on four different
lens types: a 28mm wide-angle lens, a 50mm normal lens, 105mm macro lens, and a 135mm telephoto lens. In all cases, our method finds better lenses than
the baseline for the given objective function.
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such augmented objectives, which remain differentiable. However,

effective discrete optimization would require two non-trivial modifi-

cations to our method, which we leave as future research: 1. Adding

mutations that change material (e.g., creation of achromatic dou-

blets, insertion of low-dispersion singlets). 2. Modifying paraxial

projection to account for multiple wavelengths or focal lengths.

Other geometric optical elements. Our method is limited to only

spherical elements, due to our use of ray transfer matrices for parax-

ial projection. First-order approximations to other element types

(e.g., aspherics, cylindrical lenses, or even reflective elements) exist

but have lower accuracy than those for spherical elements. Thus it is

unclear how effective they would be when designing lens mutations.

Wave optics. As we rely on geometric optics for ray tracing and

paraxial projection, our method is limited to elements well approxi-

mated by geometric optics. Several recent works extend continuous

lens design methods using gradient-based optimization to account

for wave effects (e.g., diffraction) [Chen et al. 2023; Ho et al. 2024].

Incorporating these works into our method would allow likewise

extending mixed continuous-discrete lens design.
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A Jacobian of paraxial projection
We can compute the Jacobian of the solution 𝜃∗ of Equation (17)

with respect to the pre-mutation parameters 𝜃 analytically, using the

implicit function theorem. To this end, we first write the Lagrangian

of the constrained optimization problem in Equation (17):

L(𝜃∗, 𝜃, 𝜆) ≔ ∥𝜃 − 𝜃∗∥2 + 𝜆⊤
(
𝑀 (𝜃 ) −𝑀

(
𝜃∗

) ) [
0

1

]
. (18)

From the method of Lagrange multipliers, the solution of Equa-

tion (17) is a stationary point of the Lagrangian, and thus satisfies

the following system of equations:

∇1L = 0, (19)

∇3L = 0, (20)

where ∇𝑖 refers to differentiation with respect to the 𝑖-th argument.

Differentiating both sides of these equations with respect to 𝜃 ,

∇1∇1L
d𝜃∗

d𝜃
+ ∇2∇1L + ∇3∇1L

d𝜆

d𝜃
= 0, (21)

∇1∇3L
d𝜃∗

d𝜃
+ ∇2∇3L + ∇3∇3L

d𝜆

d𝜃
= 0. (22)

∇1L and ∇2L have the same dimensionality, whereas ∇3L has

dimension equal to the number of constraints (two in Equation (18)).

We can write Equations (21) and (22) in matrix form as:[
∇1∇1L ∇3∇1L
∇1∇3L 0

] [
d𝜃 ∗

d𝜃
d𝜆
d𝜃

]
=

[
−∇2∇1L
−∇2∇3L

]
. (23)

Then using Equation (18),[
I + 𝜆⊤∇1∇1𝑔 ∇1𝑔
∇1𝑔⊤ 0

] [
d𝜃 ∗

d𝜃
d𝜆
d𝜃

]
=

[
− (I + ∇2∇1𝑔)
−∇2𝑔⊤

]
, (24)

where 𝑔 is the function describing the constraints in Equation (17):

𝑔(𝜃∗, 𝜃 ) ≔
(
𝑀 (𝜃 ) −𝑀

(
𝜃∗

) ) [
0

1

]
. (25)
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