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Lenses are everywhere




Many kinds of designs

wide angle

fast

high resolution

no aberrations




Simple lenses aren’t enough

—

singlet lens

scene result

By © Giles Laurent, gileslaurent.com, License CC BY-SA, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=134377157



Modern lenses are complicated
Nikon F3 Cutaway Olympus E-30 Cutaway

By 4300streetcar - Own work, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=167405978



Combinatorially many discrete options
Nikon F3 Cutaway




Two types of parameters
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Two types of parameters
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ABSTRACT

Optics designers use simulation tools to assist them in designing
lenses for various applications. Commercial tools rely on finite
differencing and sampling methods to perform gradient-based opti-
ization of lens design objectives. Recently, di i i

h bled flicient gradient ion of these
objectives. However, these techniques are unable to optimize for
light throughput, often an important metric for many applications.
We develop a method for calculating the gradients of optical sys-
tems with respect to both focus and light throughput. We formulate
lens performance as an integral loss over a dynamic domain, which (b) lons optimized for throughput
allows for the use of differentiable rendering techniques to calculate
the required gradients. We also develop a ray tracer specifically
designed for refractive lenses and derive formulas for calculating
gradients that simultaneously optimize for focus and light through-
put. Explicitly optimizing for light throughput produces lenses
B that outperform traditional optimized lenses that tend to prioritize
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ABSTRACT

Optics designers use simulation tools to assist them in designing
lenses for various applications. Commercial tools rely on finite
differencing and sampling methods to perform gradient-based opti-

ization of lens design objectives. Recently, dif i i
h bled icient gradient

fthese
objectives. However, these techniques are unable to optimize for
light throughput, often an important metric for many applications.

We develop a method for calculating the gradients of optical sys-
tems with respect to both focus and light throughput. We formulate
lens performance as an integral loss over a dynamic domain, which
allows for the use of differentiable rendering techniques to calculate
the required gradients. We also develop a ray tracer specifically
designed for refractive lenses and derive formulas for calculating
gradients that simultaneously optimize for focus and light through-
put. Explicitly optimizing for light throughput produces lenses
that outperform traditional optimized lenses that tend to prioritize
for only focus. To evaluate our lens designs, we simulate various
applications where our lenses: (1) improve imaging performance
in low-light environments, (2) reduce motion blur for high-speed
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(b) lens optimized for throughput

(@) scene layout (c) rendered image

Figure 1;(a) The obiective of this workis to design lenses capa-

Genetic algorithms for lens design: a review

Kaspar Héschel' () - Vasudevan Lakshminarayanan®

LensNet: lens design starting point generator

Get started

Enter the effective focal length,

Results

focal length: 25.0 mm, f-number

3.0, half field of view:

1200

© The Author(s) 2018

Abstract Genetic algorithms (GAs) have a long history of
over four decades. GAs are adaptive heuristic search
algorithms that provide solutions for optimization and
search problems. The GA derives expression from the
biological terminology of natural selection, crossover, and
mutation. In fact, GAs simulate the processes of natural
evolution. Duc to their unique simplicity, GAs are applicd
to the search space to find optimal solutions for various
problems in science and engincering. Using GAs for lens
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surface profile types such as spherical, aspheric, diffr
or holographic. Usually, the design space for optic
tems consists of multi-dimensional parameter
Morcover, the radius of curvature, distance to th
surface, material type and optionally filt, and decen
necessary for lens design [2].

The most important aspects for designing optical
are optical performance or image quality, manufac
and environmental requisitions. Optical performa

f-number and half field of view
desired for your lens design -
project. Our deep learing 1 _vr;j]"
framework will infer a selection \Gpr=r
of lens designs tailored to
those specifications.
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performance loss

Key idea: sample the space of designs
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Metropolis-Hastings
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Metropolis-Hastings requires reversibility

original

Improving a design
Implies a chance of
making it worse
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Metropolis-Hastings requires noise

Langevin Monte Carlo (gradient descent) requires noise
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loss

Comparison to Metropolis-Hastings
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Quasi-stationary Monte Carlo (QSMC)
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Quasi-stationary Monte Carlo (QSMC)

terminate?




Stochastic termination

Boltzmann distribution

L\l T ) == p(x) =e "™
> -

Probability of termination

P(Tprev) — p(m) + C
p(m) +C

RESTORE

Jump Restore Light Transport
[Holl et al. 2025]
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Quasi-Stationary Monte Carlo (QSMC)

Terminate?




Simple mutations are problematic
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High chance of being a worse design
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Most likely terminated
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Key idea: paraxial optics as a proxy
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Key idea: paraxial optics as a proxy
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Key idea: paraxial optics as a proxy
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Paraxial projection
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Quasi-Stationary Monte Carlo (QSMC)
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Pareto front expansion
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Pareto front expansion

our Methog

sharpness
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speed

Pare

02.
high sharpness

gradient only our method
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speed

Pare gradient only our method
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Can improve other lens types as well

wide-angle (28mm)
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Discrete-continuous optimization

Optimization as a sampling
problem

QSMC allows for optimization
without noise
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Better mutations with paraxial
projection
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Our method is extendable

add aspheric, cylindrical, and

= = othertypes of optics
= — o
S— new design objectives to target

specific aberrations

manufacturing and tolerance
aware design
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