Boundary Value Caching for Walk on Spheres

Bailey Miller*, Rohan Sawhney*, Keenan Crane⁺, and Ioannis Gkioulekas⁺

Grid-Free Monte Carlo PDE Solvers

Walk on Spheres avoids meshing or global solves!

Grid-Free Monte Carlo PDE Solvers

Walk on Spheres avoids meshing or global solves!

Robustly handle meshes intended for visualization

boundary representation

(exploded view)

Potential Flow Simulation

Potential Flow Simulation

wind tunnel

wind tunnel

wind tunnel

Noisy streamlines!

boundary value caching

BACKGROUND

Path Tracing ReSTIR (unbiased)

ReSTIR (biased)

Reference

Virtual Point Light Methods (VPLs)

Virtual Point Light Methods (VPLs)

Step 1: Deposit radiance estimates

Virtual Point Light Methods (VPLs)

Step 1: Deposit radiance estimates

Step 2: Reuse cached radiance estimates

Laplace equation $\Delta u = 0$ on Ω $u = g \quad \text{on } \partial \Omega_D$ $\frac{\partial u}{\partial n} = h \quad \text{on } \partial \Omega_N$

Laplace equation $\Delta u = 0$ on Ω $u = g \quad \text{on } \partial \Omega_D$ $\frac{\partial u}{\partial n} = h \quad \text{on } \partial \Omega_N$

Laplace equation $\Delta u = 0$ on Ω $u = g \quad \text{on } \partial \Omega_D$ $\frac{\partial u}{\partial n} = h \quad \text{on } \partial \Omega_N$

Neumann Data **Dirichlet** Data

free-space Poisson kernel free-space Green kernel $u(x) = \int_{\partial\Omega} \frac{\partial G(x, y)}{\partial n} u(y) - G(x, y) \frac{\partial u(y)}{\partial n}$

METHOD

Estimating Dirichlet Boundary Values

Walk on Stars [Sawhney et al. 2023]:

 $\hat{\mathcal{U}}$

Estimating Dirichlet Boundary Values \hat{u}

Walk on Stars [Sawhney et al. 2023]:

Spatial derivative **inside a ball** [Sawhney & Crane 2020]:

$$\nabla_{x} u(x) = \frac{1}{|B|} \int_{\partial B} u(y) \ v(y) \ dy$$

$$\frac{du(x)}{dn_x} = n_x \cdot \nabla_x u(x)$$

Spatial derivative **inside a ball** [Sawhney & Crane 2020]:

$$\nabla_{x} u(x) = \frac{1}{|B|} \int_{\partial B} u(y) \ v(y) \ dy$$

$$\frac{du(x)}{dn_x} = n_x \cdot \nabla_x u(x)$$

Spatial derivative **inside a ball** [Sawhney & Crane 2020]:

$$\nabla_{x} u(x) = \frac{1}{|B|} \int_{\partial B} u(y) \ v(y) \ dy$$

$$\frac{du(x)}{dn_x} = n_x \cdot \nabla_x u(x)$$

Spatial derivative **inside a ball** [Sawhney & Crane 2020]:

$$\nabla_{x} u(x) = \frac{1}{|B|} \int_{\partial B} u(y) \ v(y) \ dy$$

$$\frac{du(x)}{dn_x} = n_x \cdot \nabla_x u(x)$$

generate samples on boundary $\partial \Omega$

simple to implement trivially parallelizable unbiased + progressive

Solution Estimates with BVC

Gradient Estimates with BVC

Gradient Estimates with BVC

Source Term

Generate cache samples for source values f inside domain: no random walks needed

boundary samples

source samples

 $\Delta u = f \quad \text{on } \Omega$

Singularities

Artifacts near the boundary due to lack of importance sampling

Singularities

Artifacts near the boundary due to lack of importance sampling

 $\partial G(x,z)/\partial n_z$

Singularities

Artifacts near the boundary due to lack of importance sampling

VALIDATION & COMPARISONS

Benefits of BVC

Boundary Value Caching

Walk on Stars

Benefits of BVC

Boundary Value Caching

Improved run-time efficiency (sharing global information)

Walk on Stars

Benefits of BVC

Boundary Value Caching

Improved run-time efficiency (sharing global information) Suppressed noise (due to correlation)

Walk on Stars

Harmonic Interpolation of Texture Coordinates

Like WoSt, BVC is **not** affected by quality of discretization

Input boundary conditions

Input boundary mesh

BEM

Like WoSt, BVC is **not** affected by quality of discretization

Input boundary conditions

Input boundary mesh

BEM

Like WoSt, BVC is **not** affected by quality of discretization

Input boundary conditions

Input boundary mesh

Like WoSt, BVC is **not** affected by quality of discretization

Input boundary conditions

Input boundary mesh

Output Sensitivity with BVC

Can focus computation in local regions of interest

reference solution

Neumann

Dirichlet

virtual boundary

Error and Convergence

Stratification

FUTURE WORK

Any improvements to WoSt benefit BVC!

Any improvements to WoSt benefit BVC!

Principled approach to estimate $\frac{du}{dn}$ on $\partial \Omega_D$

Any improvements to WoSt benefit BVC!

Principled approach to estimate $\frac{du}{dn}$ on $\partial \Omega_D$

Splatting has quadratic complexity: - Barnes-Hut or Stochastic Lightcuts?

Future Work

Any improvements to WoSt benefit BVC!

Principled approach to estimate $\frac{du}{dn}$ on $\partial \Omega_D$

Splatting has quadratic complexity: - Barnes-Hut or Stochastic Lightcuts?

Reuse information **during** a walk?

Future Work

Any improvements to WoSt benefit BVC!

Principled approach to estimate $\displaystyle rac{du}{dn}$ on $\partial \Omega_D$

Splatting has quadratic complexity: - Barnes-Hut or Stochastic Lightcuts?

Reuse information **during** a walk?

Unified caching w BVC, MVC, Bidirectional WoS?

[Bakbouk & Peers, EGSR 2023]

pointwise

ВVС

paper

