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Robustly handle meshes intended for visualization
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Potential Flow Simulation
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Potential Flow Simulation

Ray Intersections Closest Point Queries
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Boundary Integral Equation (BIE)

12

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

Laplace equation

u = g on ∂ΩD

x

Ω

Dirichlet Neumann



Boundary Integral Equation (BIE)

12

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

Laplace equation

u = g on ∂ΩD

x

Ω

Dirichlet Neumann



Boundary Integral Equation (BIE)

12

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

Laplace equation

u = g on ∂ΩD

x

Ω

Dirichlet Neumann



Boundary Integral Equation (BIE)

13

u(x) = ∫∂Ω

∂G(x, y)
∂n

u(y) − G(x, y)
∂u(y)

∂n
dy

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

Ω



Boundary Integral Equation (BIE)

13

u(x) = ∫∂Ω

∂G(x, y)
∂n

u(y) − G(x, y)
∂u(y)

∂n
dy

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

Neumann DataDirichlet Data

x

y

Ω



Boundary Integral Equation (BIE)

13

u(x) = ∫∂Ω

∂G(x, y)
∂n

u(y) − G(x, y)
∂u(y)

∂n
dy

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

free-space Green kernelfree-space Poisson kernel

x

y

Ω



Monte Carlo Estimate of BIE

14

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

u(yi) − G(x, yi)
∂u(yi)

∂n

x

y

Ω

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD



Monte Carlo Estimate of BIE

15

x

y

Ω

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

requires estimate

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

g(yi) − G(x, yi)
∂ ̂u(yi)

∂n

known



Monte Carlo Estimate of BIE

16

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

̂u (yi) − G(x, yi) h(yi)

x
y

Ω

Δu = 0 on Ω

∂u
∂n

= h on ∂ΩN

u = g on ∂ΩD

requires estimate known



Monte Carlo Estimate of BIE

17

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

̂u (yi) − G(x, yi)
∂ ̂u(yi)

∂n



Monte Carlo Estimate of BIE

17

̂u (x) =
|∂Ω |

N

N

∑
i=1

∂G(x, yi)
∂n

̂u (yi) − G(x, yi)
∂ ̂u(yi)

∂n

x0

x1
x2

we can reuse 
boundary value 

estimates!



18



METHOD

18
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Dirichlet Neumann
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generate samples 
on boundary ∂Ω

use WoSt to 
estimate  &  u
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inside domain  Ω
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simple to implement 

trivially parallelizable 

unbiased + progressive
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Source Term
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Generate cache samples for source values    inside domain:  
no random walks needed 

f

Δu = f on Ω
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Singularities
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Artifacts near the boundary due to lack of importance sampling

clamping + bias correction 
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VALIDATION & COMPARISONS
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Boundary Value Caching Walk on Stars

Benefits of BVC
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Improved run-time efficiency  (sharing global information)
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Suppressed noise (due to correlation)

Improved run-time efficiency  (sharing global information)

Boundary Value Caching Walk on Stars

Benefits of BVC
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Harmonic Interpolation of Texture Coordinates
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original

original boundary caching WoSdeformed
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Output Sensitivity with BVC
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Can focus computation in local regions of interest



Error and Convergence
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Any improvements to WoSt benefit BVC!

Principled approach to estimate  on 
du
dn

∂ΩD

Splatting has quadratic complexity:  
- Barnes-Hut or Stochastic Lightcuts?

Reuse information during a walk?

[Bakbouk & Peers, EGSR 2023]

[Qi, Seyb, Bitterli, Jarosz, EGSR 2022]

Future Work

Unified caching w BVC, MVC, Bidirectional WoS?



Thank you!

pointwise BVC

paper code


