
Differential Walk on Spheres
Bailey Miller, Rohan Sawhney, Keenan
Crane, and Ioannis Gkioulekas

Rohan Sawhney
Nvidia

Bailey Miller
CMU

Ioannis Gkioulekas
CMU

Keenan Crane
CMU

and support from

acoustic modeling

structural analysis electrostatics

microfluidics biophysics

thermal diffusion

acoustic modeling

structural analysis electrostatics

microfluidics biophysics

thermal diffusion

Δ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Δu = 0
partial differential equations,

e.g., Laplace eq.

input boundary
representation

finite element method (FEM) pipeline

input boundary
representation

high-quality
surface mesh

tetrahedralize

volume mesh

FEM solve

PDE solution

finite element method (FEM) pipeline

input boundary
representation

high-quality
surface mesh

tetrahedralize

volume mesh

FEM solve

PDE solution

bottleneck

finite element method (FEM) pipeline

meshing complex geometry is difficult + slow

[Miller et al. 2024]

boundary mesh close upMars curiosity rover

solution

°K
min max

Robin coefficients

min max

preview

radiant flux density

Wm-2 min max

position

xyz

boundary mesh

meshing complex geometry is difficult + slow

input boundary mesh

[Miller et al. 2024]

meshing complex geometry is difficult + slow

input boundary mesh boundary of tetrahedral mesh

30 min 2 hours

[Miller et al. 2024]

meshing complex geometry is difficult + slow

input boundary mesh boundary of tetrahedral mesh

30 min 2 hours

8 hours

[Miller et al. 2024]

Monte Carlo PDE solvers

[Miller et al. 2024]

Mars curiosity rover close up with thermal simulation results

Monte Carlo PDE solvers

[Miller et al. 2024]

Mars curiosity rover close up with thermal simulation results

rendering walk on spheres
[Muller 1956, Sawhney and Crane 2020]

Monte Carlo PDE solvers

rendering walk on spheres
[Muller 1956, Sawhney and Crane 2020]

Monte Carlo PDE solvers

benefits of Monte Carlo PDE solvers

benefits of Monte Carlo PDE solvers

[Sawhney et al. 2022]

> 1 billion boundary elements

geometric scalability

benefits of Monte Carlo PDE solvers

[Sawhney et al. 2022]

> 1 billion boundary elements

geometric scalability flexible representations

[Sawhney and Crane 2020]

benefits of Monte Carlo PDE solvers

[Sawhney et al. 2022]

> 1 billion boundary elements

geometric scalability flexible representations

[Sawhney and Crane 2020] [Sawhney et al. 2023]

fast noisy previews

faster than
making real toast!

benefits of Monte Carlo PDE solvers

[Sawhney et al. 2022]

> 1 billion boundary elements

geometric scalability flexible representations

[Sawhney and Crane 2020] [Sawhney et al. 2023]

fast noisy previews

faster than
making real toast!

parallelizability

increasing capabilities of Monte Carlo solvers

increasing capabilities of Monte Carlo solvers
expanded generality

coupled
physics

physical
phenomena

boundary
conditions

[Miller et al. 2024]

[Rioux-Lavoie et al. 2022]

 [Bati et al. 2022]

increasing capabilities of Monte Carlo solvers
expanded generality improved performance

coupled
physics

physical
phenomena

boundary
conditions

[Miller et al. 2024]

[Rioux-Lavoie et al. 2022]

 [Bati et al. 2022]

caching
schemes

[Miller et al. 2023]

importance
sampling

[Sawhney and Crane 2020]

path
guiding

 [Huang et al. 2024]

increasing capabilities of Monte Carlo solvers
expanded generality improved performance

coupled
physics

physical
phenomena

boundary
conditions

[Miller et al. 2024]

[Rioux-Lavoie et al. 2022]

 [Bati et al. 2022]

caching
schemes

[Miller et al. 2023]

importance
sampling

[Sawhney and Crane 2020]

path
guiding

 [Huang et al. 2024]

Limited work on differentiable
Monte Carlo PDE solvers!

physical model parameters [πg, πf , πm]

forward PDE solver

geometry πg
boundary

conditions πf

physical model parameters [πg, πf , πm]

materials πm
cool hot

simulation result

forward
solver

u(x, [πg, πf , πm])

forward PDE solver

cool hot

simulation result

differentiable
solver

u(x, [πg, πf , πm])physical model parameters [πg, πf , πm]

differentiable PDE solver

geometry πg
boundary

conditions πf

materials πm

cool hot

simulation result

differentiable
solver

u(x, [πg, πf , πm])

[∂u
∂πg

,
∂u
∂πf

,
∂u
∂πm]

physical model parameters [πg, πf , πm]

differentiable PDE solver

geometry πg
boundary

conditions πf

materials πm

cool hot

simulation result
design target:

uniform temperature

differentiable
solver

u(x, [πg, πf , πm])

[∂u
∂πg

,
∂u
∂πf

,
∂u
∂πm]

physical model parameters [πg, πf , πm]

differentiable PDE solver

geometry πg
boundary

conditions πf

materials πm

cool hot

simulation result
design target:

uniform temperature

differentiable
solver

u(x, [πg, πf , πm])

[∂u
∂πg

,
∂u
∂πf

,
∂u
∂πm]

∂L
∂πg

=
∂L
∂u

⋅
∂u
∂πg

update model parameters

physical model parameters [πg, πf , πm]

differentiable PDE solver

geometry πg
boundary

conditions πf

materials πm

cool hot

simulation result
design target:

uniform temperature

differentiable
solver

u(x, [πg, πf , πm])

[∂u
∂πg

,
∂u
∂πf

,
∂u
∂πm]

∂L
∂πg

=
∂L
∂u

⋅
∂u
∂πg

update model parameters

physical model parameters [πg, πf , πm]

differentiable PDE solver

geometry πg
boundary

conditions πf

materials πm

while (not converged):

update using πg
∂L
∂πg

(stochastic) gradient descent

cool hot

simulation result
design target:

uniform temperature

differentiable
solver

u(x, [πg, πf , πm])

[∂u
∂πg

,
∂u
∂πf

,
∂u
∂πm]

∂L
∂πg

=
∂L
∂u

⋅
∂u
∂πg

update model parameters

physical model parameters [πg, πf , πm]

differentiable PDE solver

geometry πg
boundary

conditions πf

materials πm

while (not converged):

update using πg
∂L
∂πg

(stochastic) gradient descent

cool hot

simulation result
design target:

uniform temperature

differentiable
solver

u(x, [πg, πf , πm])

[∂u
∂πg

,
∂u
∂πf

,
∂u
∂πm]

∂L
∂πg

=
∂L
∂u

⋅
∂u
∂πg

update model parameters

physical model parameters [πg, πf , πm]

differentiable PDE solver

geometry πg
boundary

conditions πf

materials πm

while (not converged):

update using πg
∂L
∂πg

(stochastic) gradient descent

[Sawhney et al. 2022]

> 1 billion boundary elements

geometric scalability flexible representations

[Sawhney et al. 2023]

faster than
making real toast!

parallelizability

[Sawhney and Crane 2020]

fast noisy previews

Monte Carlo well suited for differentiability

[Sawhney et al. 2022]

> 1 billion boundary elements

geometric scalability flexible representations

[Sawhney et al. 2023]

faster than
making real toast!

parallelizability

[Sawhney and Crane 2020]

fast noisy previews

→avoid repeatedly creating
volume mesh

Monte Carlo well suited for differentiability

[Sawhney et al. 2022]

> 1 billion boundary elements

geometric scalability flexible representations

[Sawhney et al. 2023]

faster than
making real toast!

parallelizability fast noisy previews

→avoid repeatedly creating
volume mesh

→ implicit surfaces easily
change topology

Monte Carlo well suited for differentiability

[Sawhney et al. 2022]

> 1 billion boundary elements

geometric scalability flexible representations parallelizability fast noisy previews

→avoid repeatedly creating
volume mesh

→ implicit surfaces easily
change topology

→ use noisy gradient estimates
early in optimization
(stochastic gradients)

Monte Carlo well suited for differentiability

differentiable rendering

similar to differentiable rendering

[Vicini et al. 2023][Zhang et al. 2020]

differentiable rendering

similar to differentiable rendering

[Vicini et al. 2023][Zhang et al. 2020]

differentiable rendering

similar to differentiable rendering

differential walk on spheres

[Zhang et al. 2020]

differential walk on spheres

Δu = 0 Δ ·u = 0
u = g ·u = Vn (∂g

∂n
−

∂u
∂n)

 on Ω

 on ∂Ω

 on Ω

 on ∂ΩPDE

algorithm

primal differential

differential walk on spheres

Δu = 0 Δ ·u = 0
u = g ·u = Vn (∂g

∂n
−

∂u
∂n)

 on Ω

 on ∂Ω

 on Ω

 on ∂ΩPDE

algorithm

primal differential

review of walk on spheres

Laplace PDE with Dirichlet boundary cond.

Δu = 0
u = g

 on Ω

 on ∂Ω

+1

-1

0

∂Ω

g(x)

Ω

g(x)

Laplace PDE with Dirichlet boundary cond.

Δu = 0
u = g

 on Ω

 on ∂Ω

given: values on the boundary of a region Ω

+1

-1

0

∂Ω

g(x)

Ω

g(x)

Laplace PDE with Dirichlet boundary cond.

Δu = 0
u = g

 on Ω

 on ∂Ω

given: values on the boundary of a region Ω

find: smooth interpolation into interior

+1

-1

0

∂Ω

g(x)

Ω

mean value integral

Ω

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

x

∂ΩΔu = 0since

mean value integral

Ω

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

x∂B(x)

∂ΩΔu = 0since

Monte Carlo estimator

Ω

∂B(x)

y
x

y ∼ 𝒰 [∂B(x)] ∂Ω

̂u(x) = { ̂g(y) if y ∈ ∂Ω
̂u(y) otherwise

walk on spheres [Muller 1956, Sawhney and Crane 2020]

Ω

∂B(x) x0

x1

∂Ω

̂u(xi) = { ̂g(xi+1) if xi+1 ∈ ∂Ωϵ

̂u(xi+1) otherwise

xi+1 ∼ 𝒰 [∂B(xi)]

walk on spheres [Muller 1956, Sawhney and Crane 2020]

Ω

∂B(x) x0

x1
x2
xk

∂Ω

̂u(xi) = { ̂g(xi+1) if xi+1 ∈ ∂Ωϵ

̂u(xi+1) otherwise

xi+1 ∼ 𝒰 [∂B(xi)]

walk on spheres [Muller 1956, Sawhney and Crane 2020]

Ω

∂Ωϵ

∂B(x) x0

x1
x2
xk xk

A walk terminates once solution
can be approximated with

boundary data

∂Ω

̂u(xi) = { ̂g(xi+1) if xi+1 ∈ ∂Ωϵ

̂u(xi+1) otherwise

xi+1 ∼ 𝒰 [∂B(xi)]

differential walk on spheres

differential quantities of a PDE

Δu = 0
u = g

 on Ω

 on ∂Ω

PDE with parameterized boundary

boundary parameters

Δu = 0
u = g(x, π)

 on Ω(π)

 on ∂Ω(π)

π = [p1
x , p1

y , . . . , pn
x , pn

y]
vi = (pi

x, pi
y) (vertex position)

differential quantities of a PDE

·u =
∂u
∂π

π = [p1
x , p1

y , . . . , pn
x , pn

y]
vi = (pi

x, pi
y)

boundary parameters

Δu = 0
u = g

 on Ω(π)

 on ∂Ω(π)

(vertex position)

·u =
∂u
∂pk

y

π = [py
k]

vi = (pi
x, pi

y)

boundary parameters

Δu = 0
u = g

 on Ω(π)

 on ∂Ω(π)

differential quantities of a PDE

(vertex position)

·u =
∂u
∂pk

y

π = [py
k]

vi = (pi
x, pi

y)

boundary parameters

Δu = 0
u = g

 on Ω(π)

 on ∂Ω(π)

differential quantities of a PDE

(vertex position)

+1

-1

0

·u =
∂u
∂pk

y

π = [py
k]

vi = (pi
x, pi

y)

boundary parameters

Δu = 0
u = g

 on Ω(π)

 on ∂Ω(π)

differential quantities of a PDE

(vertex position)

+1

-1

0

·u =
∂u
∂pk

y

π = [py
k]

vi = (pi
x, pi

y)

boundary parameters

Δu = 0
u = g

 on Ω(π)

 on ∂Ω(π)

differential quantities of a PDE

(vertex position)

max

min

0

·u =
∂u
∂pk

y

π = [py
k]

vi = (pi
x, pi

y)

boundary parameters

Δu = 0
u = g

 on Ω(π)

 on ∂Ω(π)

differential quantities of a PDE

(vertex position)

max

min

0

·u =
∂u
∂pk

y

π = [py
k]

vi = (pi
x, pi

y)

boundary parameters

Δu = 0
u = g

 on Ω(π)

 on ∂Ω(π)

differential quantities of a PDE

(vertex position)

max

min

0

Differentiating boundary data also possible
more complex PDEs

∇α(x)∇u(x) − c(x) = f (x) on Ω(π)

u(x) = g(x, π) on ∂Ω(π)

·u =
∂u
∂pk

y

π = [py
k]

vi = (pi
x, pi

y)

boundary parameters

Δu = 0
u = g

 on Ω(π)

 on ∂Ω(π)

differential quantities of a PDE

(vertex position)

max

min

0

Differentiating volumetric data covered by
Yilmazer et al. later in this session!

 ∇α(x, π)∇u(x) − c(x, π) = f (x, π) on Ω
u(x) = g(x) on ∂Ω

Differentiating boundary data also possible
more complex PDEs

∇α(x)∇u(x) − c(x) = f (x) on Ω(π)

u(x) = g(x, π) on ∂Ω(π)

deriving differential Monte Carlo solver

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value integral

deriving differential Monte Carlo solver

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value integral

∂
∂π

u(x) =
∂

∂π [1
|∂B(x) | ∫∂B(x)

u(y) dy]
differentiate the mean value integral ?

deriving differential Monte Carlo solver

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value integral

∂
∂π

u(x) =
∂

∂π [1
|∂B(x) | ∫∂B(x)

u(y) dy]
differentiate the mean value integral ?

concurrent work pursues this type of approach

[Yu et al. 2024] [Yilmazer et al. 2024]

deriving differential Laplace PDE

Δu = 0 on Ω(π)

u = g on ∂Ω(π) ·u = Vn (∂g
∂n

−
∂u
∂n) on ∂Ω(π)

differential PDE

Δ ·u = 0 on Ω(π)

primal PDE

deriving differential Laplace PDE

Δu = 0 on Ω(π)

u = g on ∂Ω(π) ·u = Vn (∂g
∂n

−
∂u
∂n) on ∂Ω(π)

differential PDE

Δ ·u = 0 on Ω(π)

primal PDE

classic result from shape optimization
details in Henrot and Pierre [2018]

deriving differential Laplace PDE

Δu = 0 on Ω(π)

u = g on ∂Ω(π)

Change in the
shape of the

boundary

V =
∂Φ(x, π)

∂π

·u = Vn (∂g
∂n

−
∂u
∂n) on ∂Ω(π)

differential PDE

Δ ·u = 0 on Ω(π)

primal PDE

classic result from shape optimization
details in Henrot and Pierre [2018]

deriving differential Laplace PDE

Δu = 0 on Ω(π)

u = g on ∂Ω(π)

Change in the
shape of the

boundary

V =
∂Φ(x, π)

∂π

Change in
boundary
condition

g : ℝ3 → ℝ

·u = Vn (∂g
∂n

−
∂u
∂n) on ∂Ω(π)

differential PDE

Δ ·u = 0 on Ω(π)

primal PDE

classic result from shape optimization
details in Henrot and Pierre [2018]

deriving differential Laplace PDE

Δu = 0 on Ω(π)

u = g on ∂Ω(π)

Change in the
shape of the

boundary

V =
∂Φ(x, π)

∂π

Change in
boundary
condition

g : ℝ3 → ℝ

·u = Vn (∂g
∂n

−
∂u
∂n) on ∂Ω(π)

differential PDE

Δ ·u = 0 on Ω(π)

primal PDE

Change in
PDE solutionclassic result from shape optimization

details in Henrot and Pierre [2018]

estimating normal derivative at boundary

̂∂u
∂n

(x) ≈
̂u (x) − ̂u (x − l ⃗n)

l

⃗n

∂Ωϵ

∂u(x)
∂n

estimating normal derivative at boundary

̂∂u
∂n

(x) ≈
̂u (x) − ̂u (x − l ⃗n)

l

̂u (x − l ⃗n)

⃗n
̂u (x)

∂Ωϵ

estimating normal derivative at boundary

̂u (x − l ⃗n)

⃗n
g(x)

̂∂u
∂n

(x) ≈
g(x) − ̂u (x − l ⃗n)

l

∂Ωϵ

estimating normal derivative at boundary

̂u (x − l ⃗n)

⃗n
g(x)

̂∂u
∂n

(x) ≈
g(x) − ̂u (x − l ⃗n)

l

x1

x2

x2

∂Ωϵ

solving differential PDE with walk on spheres

·u = Vn (∂g
∂n

−
∂u
∂n) on ∂Ω(π)

Δ ·u = 0 on Ω(π)

solving differential PDE with walk on spheres

·u = Vn (∂g
∂n

−
∂u
∂n) on ∂Ω(π)

Δ ·u = 0 on Ω(π)

inherits benefits of walk on spheres

inherits benefits of walk on spheres

pointwise evaluation

Evaluate derivatives
only where needed

inherits benefits of walk on spheres

geometry representations

spline meshradial basis

implicit explicit
pointwise evaluation

Evaluate derivatives
only where needed

Evaluate derivatives for
many representations

x5

x6

x7 x7

x0

x1

x2

x3
x4

x4

x0

x1

x2

x3
x4

x4

u(x0) ·u(x0)

·u = Vn (∂g
∂n

−
∂u
∂n) on ∂Ω(π)

Δ ·u = 0 on Ω(π)Δu = 0 on Ω(π)
u = g on ∂Ω(π)

sharing primary walk to improve performance

x5

x6

x7 x7

x0

x1

x2

x3
x4

x4

x0

x1

x2

x3
x4

x4

u(x0) ·u(x0)

·u = Vn (∂g
∂n

−
∂u
∂n) on ∂Ω(π)

Δ ·u = 0 on Ω(π)Δu = 0 on Ω(π)
u = g on ∂Ω(π)

sharing primary walk to improve performance

A single shared walk
estimates both the primal

and differential PDE

x5

x6

x7 x7

x0

x1

x2

x3
x4

x4

[∂u(x0)/∂π1, . . . , ∂u(x0)/∂πN]

[∂u /∂π1, . . . , ∂u /∂πN]
·u

= [n ⋅ ∂Φ/∂π1, . . . , n ⋅ ∂Φ/∂πN]

Vn

(∂g
∂n

−
∂u
∂n) on ∂Ω(π)

Δ[∂u /∂π1, . . . , ∂u /∂πN] = 0 on Ω(π)
differential PDE over several parameters

A single shared walk
estimates derivatives

for all parameters

scaling with number of parameters

scaling with number of parameters

PDE solution differential PDE
reference

finite differences
(equal time)

ours
(equal time)

max

min

0

scaling with number of parameters

PDE solution differential PDE
reference

finite differences
(equal time)

ours
(equal time)

max

min

0

Ours nearly constant
FD scales linearly

stochastic gradients

target PDE solution initial geometry guess

min max

initial
target

stochastic gradients

target PDE solution initial PDE solution

min max

initial
target

stochastic gradients

target PDE solution initial PDE solution

optimization trajectory at equal number of iterations

2 walks per point 8 walks per point 32 walks per point

maxmin

y-coordinate derivative
visualized on first iteration

min max

initial
target

stochastic gradients

target PDE solution initial PDE solution 2 walks per point 8 walks per point 32 walks per point

maxmin

y-coordinate derivative
visualized on first iteration

optimization trajectory at equal time

min max

initial
target

Noisy derivatives can

improve performance!

applications

Shape from diffusion

measurements

diffusive medium

emissive surface

Shape from diffusion

measurements

diffusive medium

emissive surface

shape of emissive surface

??

[∂u
∂π]

Shape from diffusion

simulation result target

differentiable
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

update geometry

physical model parameters

geometry π min max

[∂u
∂π]

Shape from diffusion

simulation result target

differentiable
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

update geometry

physical model parameters

geometry π min max

[∂u
∂π]

Shape from diffusion

simulation result target

differentiable
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

update geometry

physical model parameters

geometry π min max

[∂u
∂π]

Shape from diffusion

simulation result target

differentiable
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

physical model parameters

geometry π min max

update geometry

[∂u
∂π]

Shape from diffusion

simulation result target

differentiable
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

physical model parameters

geometry π min max

update geometry

Shape from diffusion results

optimized reference optimized target

geometry solution

Shape from diffusion benefits

pointwise evaluation

Shape from diffusion benefits

surface points

pointwise evaluation

dense volumetric grid

Shape from diffusion benefits

surface points

noisy estimatespointwise evaluation

dense volumetric grid

Shape from diffusion benefits

surface points

noisy estimatespointwise evaluation

dense volumetric grid

borrow ideas from rendering

[Nicolet et al. 2021]

Thermal design setup

simulation result target

differentiable
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

physical model parameters

wire geometry π

update geometry

bread geometry

Thermal design setup

simulation result target

differentiable
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

physical model parameters

wire geometry π

update geometry

bread geometry

Thermal design results

initial optimized target

Thermal design results

new targetinitial optimized

??

Thermal design localized optimization

simulation result

differentiable
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

physical model parameters

wire geometry π

update geometry

bread geometry

target

Thermal design localized optimization

simulation result

differentiable
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

physical model parameters

wire geometry π

update geometry

bread geometry

target

Thermal design results

new targetinitial optimized

??

local update to first letter
JAMHAM

local update to first letter
JAMHAM

Inverse diffusion curves

Bézier targetoptimized

solution (RGB image)geometry

Inverse diffusion curves

Bézier targetoptimized

solution (RGB image)geometry

Inflatable surfaces

implicit surface targetoptimized

geometry shaded

Inflatable surfaces

implicit surface targetoptimized

geometry shaded

what’s next?

Generalizing to new boundary conditions

Δu = 0 on Ω(π)
∂u
∂n

= h on ∂Ω(π)
∂ ·u
∂n

= Vn (∂h
∂n

−
∂2u
∂n2) + ⟨∇u, ∇ΓVn⟩ on ∂Ω(π)

differential PDE

Δ ·u = 0 on Ω(π)

primal PDE

Requires higher order boundary gradients
estimate + more branching

Incorporate ideas from differentiable rendering

[Chang et al. 2024][Nicolet et al. 2023] [Wang et al. 2023]

recursive control variates sample reuse with RESTIR gradient filtering

Thank you!

project page: imaging.cs.cmu.edu/differential_walk_on_spheres

code: github.com/baileymiller/differential_wos

project code

http://imaging.cs.cmu.edu/differential_walk_on_spheres
http://github.com/baileymiller/differential_wos

