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Δu = 0
partial differential equations, 

e.g., Laplace eq.
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meshing complex geometry is difficult + slow

input boundary mesh boundary of tetrahedral mesh

30 min 2 hours

8 hours

[Miller et al. 2024]
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caching 
schemes

[Miller et al. 2023]

importance 
sampling

[Sawhney and Crane 2020]

path 
guiding

       [Huang et al. 2024]

Limited work on differentiable 
Monte Carlo PDE solvers!
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[Sawhney et al. 2022]

> 1 billion boundary elements

geometric scalability flexible representations parallelizability fast noisy previews

→avoid repeatedly creating 
volume mesh

→ implicit surfaces easily  
change topology

→ use noisy gradient estimates 
early in optimization  
(stochastic gradients)

Monte Carlo well suited for differentiability



differentiable rendering

similar to differentiable rendering

[Vicini et al. 2023][Zhang et al. 2020]



differentiable rendering

similar to differentiable rendering

[Vicini et al. 2023][Zhang et al. 2020]



differentiable rendering

similar to differentiable rendering

differential walk on spheres  

[Zhang et al. 2020]



differential walk on spheres 

Δu = 0 Δ ·u = 0
u = g ·u = Vn ( ∂g

∂n
−

∂u
∂n )

 on Ω

 on ∂Ω

 on Ω

 on ∂ΩPDE 

algorithm 

primal differential 



differential walk on spheres 

Δu = 0 Δ ·u = 0
u = g ·u = Vn ( ∂g

∂n
−

∂u
∂n )

 on Ω

 on ∂Ω

 on Ω

 on ∂ΩPDE 

algorithm 

primal differential 



review of walk on spheres 



Laplace PDE with Dirichlet boundary cond.

Δu = 0
u = g

 on Ω

 on ∂Ω

+1

-1

0

∂Ω

g(x)

Ω

g(x)



Laplace PDE with Dirichlet boundary cond.

Δu = 0
u = g

 on Ω

 on ∂Ω

given: values on the boundary of a region Ω

+1

-1

0

∂Ω

g(x)

Ω

g(x)



Laplace PDE with Dirichlet boundary cond.

Δu = 0
u = g

 on Ω

 on ∂Ω

given: values on the boundary of a region Ω

find: smooth interpolation into interior

+1

-1

0

∂Ω

g(x)

Ω
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Monte Carlo estimator

Ω

∂B(x)

y
x

y ∼ 𝒰 [∂B(x)] ∂Ω

̂u(x) = { ̂g(y)  if y ∈ ∂Ω
̂u(y)  otherwise
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walk on spheres [Muller 1956, Sawhney and Crane 2020]

Ω

∂Ωϵ

∂B(x) x0

x1
x2
xk xk

A walk terminates once solution 
can be approximated with 

boundary data 

∂Ω

̂u(xi) = { ̂g(xi+1)  if xi+1 ∈ ∂Ωϵ

̂u(xi+1)  otherwise

xi+1 ∼ 𝒰 [∂B(xi)]
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Differentiating volumetric data covered by 
Yilmazer et al. later in this session!  

   ∇α(x, π)∇u(x) − c(x, π) = f (x, π)  on Ω
u(x) = g(x)  on ∂Ω

Differentiating boundary data also possible 
more complex PDEs 
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u(x) = g(x, π)  on ∂Ω(π)
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deriving differential Monte Carlo solver

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

mean value integral

∂
∂π

u(x) =
∂

∂π [ 1
|∂B(x) | ∫∂B(x)

u(y) dy]
differentiate the mean value integral ?

concurrent work pursues this type of approach

[Yu et al. 2024] [Yilmazer et al. 2024]
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estimating normal derivative at boundary

̂u (x − l ⃗n)

⃗n
g(x)

̂∂u
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(x) ≈
g(x) − ̂u (x − l ⃗n)
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∂Ωϵ



estimating normal derivative at boundary

̂u (x − l ⃗n)

⃗n
g(x)

̂∂u
∂n

(x) ≈
g(x) − ̂u (x − l ⃗n)

l

x1

x2

x2

∂Ωϵ
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inherits benefits of walk on spheres

geometry representations

spline meshradial basis

implicit explicit
pointwise evaluation

Evaluate derivatives 
only where needed

Evaluate derivatives for 
many representations
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sharing primary walk to improve performance

A single shared walk 
estimates both the primal 

and differential PDE



x5

x6

x7 x7

x0

x1

x2

x3
x4

x4

[∂u(x0)/∂π1, . . . , ∂u(x0)/∂πN]

[∂u /∂π1, . . . , ∂u /∂πN]
·u

= [n ⋅ ∂Φ/∂π1, . . . , n ⋅ ∂Φ/∂πN]

Vn

( ∂g
∂n

−
∂u
∂n )  on ∂Ω(π)

Δ[∂u /∂π1, . . . , ∂u /∂πN] = 0  on Ω(π)
differential PDE over several parameters

A single shared walk 
estimates derivatives 

for all parameters

scaling with number of parameters
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PDE solution differential PDE  
reference

finite differences 
(equal time)

ours 
(equal time)

max

min

0

Ours nearly constant
FD scales linearly
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stochastic gradients

target PDE solution initial PDE solution 2 walks per point 8 walks per point 32 walks per point

maxmin

y-coordinate derivative 
visualized on first iteration

optimization trajectory at equal time

min max

initial
target

Noisy derivatives can 

improve performance!
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Shape from diffusion results

optimized reference optimized target

geometry solution
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Shape from diffusion benefits

surface points

noisy estimatespointwise evaluation

dense volumetric grid

borrow ideas from rendering

[Nicolet et al. 2021]



Thermal design setup

simulation result target

differentiable  
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

physical model parameters

wire geometry π

update geometry

bread geometry



Thermal design setup

simulation result target

differentiable  
solver

u(x, π)

∂L
∂π

=
∂L
∂u

⋅
∂u
∂π

physical model parameters

wire geometry π

update geometry

bread geometry



Thermal design results

initial optimized target



Thermal design results

new targetinitial optimized

??



Thermal design localized optimization
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Thermal design localized optimization
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Thermal design results

new targetinitial optimized

??

local update to first letter
JAMHAM

local update to first letter
JAMHAM



Inverse diffusion curves

Bézier targetoptimized

solution (RGB image)geometry



Inverse diffusion curves

Bézier targetoptimized

solution (RGB image)geometry



Inflatable surfaces

implicit surface targetoptimized

geometry shaded 



Inflatable surfaces

implicit surface targetoptimized

geometry shaded 



what’s next? 



Generalizing to new boundary conditions

Δu = 0  on Ω(π)
∂u
∂n

= h  on ∂Ω(π)
∂ ·u
∂n

= Vn ( ∂h
∂n

−
∂2u
∂n2 ) + ⟨∇u, ∇ΓVn⟩ on ∂Ω(π)

differential PDE

Δ ·u = 0  on Ω(π)

primal PDE

Requires higher order boundary gradients 
estimate + more branching



Incorporate ideas from differentiable rendering

[Chang et al. 2024][Nicolet et al. 2023] [Wang et al. 2023]

recursive control variates sample reuse with RESTIR gradient filtering



Thank you! 

project page:  imaging.cs.cmu.edu/differential_walk_on_spheres 

code: github.com/baileymiller/differential_wos

project code

http://imaging.cs.cmu.edu/differential_walk_on_spheres
http://github.com/baileymiller/differential_wos



