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1. Introduction
In this supplementary material, we cover the following topics:

1. In Sec. 2, we describe blur kernel calibration in more detail, and explore how blur kernels change with respect to scene
depth and focus distance.

2. In Sec. 3, we provide more technical details about our method. More specifically, we explain how we render defocus
maps from the multi-plane image (MPI) representation, provide the derivation of the bias correction term, and define
the total variation function V (·) and the edge map E used in the regularization terms.

3. In Sec. 4, we provide additional implementation details, and show comparison results and ablation studies on more data
in our collected Google Pixel 4 dataset. To facilitate comparisons, we also provide an interactive HTML viewer [2]
at the project website [11].

2. Blur Kernel Calibration
We provide more information about our calibration procedure for the left and right blur kernels used as input to our

method. We use a method similar to the one proposed by Mannan and Langer [6], and calibrate blur kernels for left and right
dual-pixel (DP) images independently (Fig. 1) for a specific focus distance. Specifically, we image a regular grid of circular
discs on a monitor screen at a distance of ∼ 45 cm from the camera. We apply global thresholding and binarize the captured
image, perform connected component analysis to identify the individual discs and their centers, and generate and align the
binary sharp image M with the known calibration pattern by solving for a homography between the calibration target disc
centers and the detected centers. In order to apply radiometric correction, we also capture all-white and all-black images
displayed on the same screen, and generate the grayscale latent sharp image as Il = M ⊙ Iw + (1 − M) ⊙ Ib, where ⊙
represents pixel-wise multiplication, and Iw and Ib are captured all-white and all-black images. Once we have the aligned
latent image and the captured image, we can solve for spatially-varying blur kernels using the optimization proposed by
Mannan and Langer [6]. Specifically, we solve for a 8× 6 grid of kernels corresponding to 1344× 1008 central field of view.

(a) Captured image (b) Calibration pattern (c) Left vignetting (d) Right vignetting

Figure 1: Captured image (a) of the calibration pattern (b) that is used to calibrate the blur kernels. Left DP image (c) and
right DP image (d) of a white sheet shot through a diffuser that is used to correct for vignetting.



In addition to the blur kernels, we calibrate for different vignetting in left and right DP images. Specifically, for the same
focus distance as above, we capture six images of a white sheet through a diffuser. We then average all left and right images
individually to obtain the left and right vignetting patterns Wl and Wr, respectively.

Next, we explore how DP blur kernels change with respect to scene depth and focus distance (Fig. 2). As observed by
Tang and Kutulakos [8], we find that kernels behave differently on the opposite sides of the focus plane. Therefore we choose
focus settings such that all scene contents are at or behind the focus plane for all of our experiments, including this kernel
analysis. We observe that DP blur kernels are approximately resized versions of each other as the scene depth or focus
distance changes, similar to the expected behavior for blur kernels in a regular image sensor.

Left DP blur kernels Right DP blur kernels 
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(a) DP blur kernels with respect to scene depth
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(b) DP blur kernels with respect to focus distance

Figure 2: DP blur kernels with respect to scene depth and focus distance. We choose focus settings such that all scene
contents are at or behind the focus plane, and calibrate for blur kernels either with the same focus settings but at different
depths (a), or at the same depth but with various focus distances (b).

3. Additional Method Details

In this section, we provide more technical details about our method. We explain how we render defocus maps from the
MPI representation in Sec. 3.1, provide the derivation of the bias correction term in Sec. 3.2, and finally define the total
variation function V (·) and the edge map E used in the regularization terms in Sec. 3.3.

3.1. Defocus Map from MPI

We have shown in the main paper that an all-in-focus image can be composited from an MPI representation as:

Îs =

N∑
i=1

tici =

N∑
i=1

ciαi

N∏
j=i+1

(1−αj)

 . (1)



We can synthesize a continuous-valued defocus map D̂ in a similar way as discussed by Tucker and Snavely [9], by replacing
all pixel intensities in Eq. (1) with the defocus blur size di of that layer:

D̂ =

N∑
i=1

diαi

N∏
j=i+1

(1−αi)

 . (2)

3.2. Proof of Eq. (4) of the Main Paper

In this section, we provide a detailed derivation of the bias correction term. To be self-contained, we restate our assumed
image formation model. Given an MPI representation, its corresponding DP images can be expressed as:

I{l,r}o = I
{l,r}
b +N{l,r} , (3)

where I{l,r}b are the latent noise-free left and right defocused images, and N{l,r} is additive white Gaussian noise with entries
independent identically distributed with distribution N

(
0, σ2

)
. Our goal is to optimize for an MPI with intensity-alpha

layers (ĉi, α̂i), with defocus sizes di, i ∈ [1, . . . , N ], such that the L2 loss ||Î{l,r}b − I
{l,r}
o ||22 is minimized. We show that,

in the presence of image noise, minimizing the above loss biases the estimated defocus map towards smaller blur values.
Specifically, we quantify this bias and then correct for it in our optimization.

For simplicity, we assume for now that all scene contents lie on a single fronto-parallel plane with ground truth defocus
size d⋆, and our scene representation is an MPI with a single opaque layer (i.e., α̂i = 1) with a defocus size hypothesis di.
Under this assumption, the defocused image rendering equation (Eq. (2) of the main paper)

Î
{l,r}
b =

N∑
i=1

(k{l,r}
di

∗ (ciαi)
)
⊙

N∏
j=i+1

(
1− k

{l,r}
dj

∗αj

) (4)

reduces to

Î
{l,r}
b = k

{l,r}
di

∗ ĉi . (5)

Similarly, Eq. (3) becomes:

I{l,r}o = k
{l,r}
d⋆ ∗ ci +N{l,r}. (6)

We can express the above equations in the frequency domain as follows:

I{l,r}
o = K

{l,r}
d⋆ Ci +N {l,r} , (7)

where I{l,r}
o ,K

{l,r}
d⋆ ,Ci, and N {l,r} are the Fourier transforms of I{l,r}o ,k

{l,r}
d⋆ , ci, and N{l,r}, respectively. Note that the

entries of N {l,r} are also independent identically distributed with the same Gaussian distribution N
(
0, σ2

)
as the entries of

N{l,r}.
We can obtain a maximum a posteriori (MAP) estimate of Ĉi and di by solving the following optimization problem [12]:

argmaxP
(
I l

o,I
r
o|Ĉi, di, σ

)
P
(
Ĉi, di

)
=argmaxP

(
I l

o,I
r
o|Ĉi, di, σ

)
P
(
Ĉi

)
. (8)

According to Eq. (7), we have

P
(
I l

o,I
r
o|Ĉi, di, σ

)
∝ exp

− 1

2σ2

∑
v={l,r}

||Kv
di
Ĉi − Iv

o||2
 . (9)

We also follow Zhou et al. [12] in assuming a prior for the latent all-in-focus image such that:

P
(
Ĉi

)
∝ exp

(
−1

2
||ΦĈi||2

)
, (10)



where we define Φ such that

|Φ (f)|2 =
1∣∣∣Ĉi (f)
∣∣∣2 , (11)

and f is the frequency. As Ĉi is the unknown variable, we approximate Eq. (11) by averaging the power spectrum over a set
of natural images {Ci}:

|Φ (f)|2 =
1∫

Ci
|Ci (f)|2 µ (Ci)

, (12)

where µ (Ci) represents the probability distribution of Ci in image domain.
Maximizing the log-likelihood of Eq. (8) is equivalent to minimizing the following loss:

E
(
di|I l

o,I
r
o, σ
)
= min

Ĉi

 ∑
v={l,r}

||Kv
di
Ĉi − Iv

o||2
+ ||σΦĈi||2 . (13)

di can be estimated as the minimizer of the above energy function. Then given di, setting ∂E/∂Ĉi = 0 yields the following
solution of Ĉi, known as a generalized Wiener deconvolution with two observations:

Ĉi =
I l

oK
l
di

+ Ir
oK

r
di∣∣Kl

di

∣∣2 + ∣∣Kr
di

∣∣2 + σ2 |Φ|2
, (14)

where K
{l,r}
di

is the complex conjugate of K{l,r}
di

, and
∣∣∣K{l,r}

di

∣∣∣2 = K
{l,r}
di

K
{l,r}
di

.

We then evaluate the defocus size hypothesis di by computing the minimization loss given the latent ground truth depth
d⋆, and the noise level σ, that is,

E
(
di|Kl

d⋆ ,Kr
d⋆ , σ

)
= ECi,Il

o,Ir
o
E
(
di|Kl

d⋆ ,Kr
d⋆ , σ,Ci,I l

o,I
r
o

)
(15)

= ECi,Il
o,Ir

o

 ∑
v={l,r}

||Kv
di
Ĉi − Iv

o||2
+ ||σΦĈi||2

 , (16)

where E (·) is the expectation. Substituting Ĉi with Eq. (14) gives us:

E
(
di|Kl

d⋆ ,Kr
d⋆ , σ

)
=ECi,Il

o,Ir
o

 ∑
v={l,r}

||Kv
di

I l
oK

l
di

+ Ir
oK

r
di∣∣Kl

di

∣∣2 + ∣∣Kr
di

∣∣2 + σ2 |Φ|2
− Iv

o||2
+ ||σΦ

I l
oK

l
di

+ Ir
oK

r
di∣∣Kl

di

∣∣2 + ∣∣Kr
di

∣∣2 + σ2 |Φ|2
||2
 . (17)

Then substituting Iv
o with Eq. (7), we get:

E
(
di|Kl

d⋆ ,Kr
d⋆ , σ

)
=ECi,N l,N r

[ ∑
v={l,r}

||Kv
di

(
Kl

d⋆Ci +N l
)
Kl

di
+ (Kr

d⋆Ci +N r)Kr
di∣∣Kl

di

∣∣2 + ∣∣Kr
di

∣∣2 + σ2 |Φ|2
− (Kv

d⋆Ci +N v) ||2
+

||σΦ

(
Kl

d⋆Ci +N l
)
Kl

di
+ (Kr

d⋆Ci +N r)Kr
di∣∣Kl

di

∣∣2 + ∣∣Kr
di

∣∣2 + σ2 |Φ|2
||2
]
. (18)



We now define B =
∣∣Kl

di

∣∣2 + ∣∣Kr
di

∣∣2 + σ2 |Φ|2. We can rearrange the above equation as:

E
(
di|Kl

d⋆ ,Kr
d⋆ , σ

)
=ECi,N l,N r

[ ∑
v={l,r}

||
Ci

[
Kv

di

(
Kl

d⋆Kl
di

+Kr
d⋆Kr

di

)
−Kv

d⋆B
]

B
+

Kv
di

(
N lKl

di
+N rKr

di

)
B

−N v||2
+

||σΦ
Ci

(
Kl

d⋆Kl
di

+Kr
d⋆Kr

di

)
B

+ σΦ
N lKl

di
+N rKr

di

B
||2
]
. (19)

Given that the entries of N {l,r} are independent identically distributed with distribution N
(
0, σ2

)
, we have E (N v) =

0,E
(
N v2

)
= σ2 and E

(
N lN r

)
= 0, and we can simplify the above equation as:

E
(
di|Kl

d⋆ ,Kr
d⋆ , σ

)
=ECi,N l,N r

[ ∑
v={l,r}

||
Ci

[
Kv

di

(
Kl

d⋆Kl
di

+Kr
d⋆Kr

di

)
−Kv

d⋆B
]

B
||2 + ||

Kv
di

(
N lKl

di
+N rKr

di

)
B

−N v||2
+

||σΦ
Ci

(
Kl

d⋆Kl
di

+Kr
d⋆Kr

di

)
B

||2 + ||σΦ
N lKl

di
+N rKr

di

B
||2
]

(20)

=ECi

{ ∑
v={l,r}

||
Ci

[
Kv

di

(
Kl

d⋆Kl
di

+Kr
d⋆Kr

di

)
−Kv

d⋆B
]

B
||2 + σ2

(
||
Kv

di

2 + σ2 |Φ|2

B
||2 + ||

Kl
di
Kr

di

B
||2
)+

||σΦ
Ci

(
Kl

d⋆Kl
di

+Kr
d⋆Kr

di

)
B

||2 + σ2

(
||σΦ

Kl
di

B
||2 + ||σΦ

Kr
di

B
||2
)}

. (21)

Recall that, in Eq. (12), we defined Φ (f) such that 1
|Φ(f)|2 =

∫
Ci

|Ci (f)|2 µ (Ci) . Then we can further simplify

E
(
di|Kl

d⋆ ,Kr
d⋆ , σ

)
as:

E
(
di|Kl

d⋆ ,Kr
d⋆ , σ

)
=
∑
f

 1
|Φ|2

∣∣Kl
d⋆Kr

di
−Kr

d⋆Kl
di

∣∣2
B

+
∑
f

 1
|Φ|2σ

2 |Φ|2
(∣∣Kl

d⋆

∣∣2 + |Kr
d⋆ |2

)
B

+

∑
f

[
σ2

(
||
Kl

di

2
+ σ2 |Φ|2

B
||2 + ||

Kr
di

2 + σ2 |Φ|2

B
||2 + 2||

Kl
di
Kr

di

B
||2 + ||σΦ

Kl
di

B
||2 + ||σΦ

Kr
di

B
||2
)]

(22)

=
∑
f

 1
|Φ|2

∣∣Kl
d⋆Kr

di
−Kr

d⋆Kl
di

∣∣2
B

+ σ2
∑
f

[∣∣Kl
d⋆

∣∣2 + |Kr
d⋆ |2

B
+

σ2 |Φ|2

B
+ 1

]
(23)

=
∑
f

 1
|Φ|2

∣∣Kl
d⋆Kr

di
−Kr

d⋆Kl
di

∣∣2∣∣Kl
di

∣∣2 + ∣∣Kr
di

∣∣2 + σ2 |Φ|2

+ σ2
∑
f

[∣∣Kl
d⋆

∣∣2 + |Kr
d⋆ |2 + σ2 |Φ|2∣∣Kl

di

∣∣2 + ∣∣Kr
di

∣∣2 + σ2 |Φ|2
+ 1

]
. (24)

If we define C1

(
K

{l,r}
di

, σ,Φ
)
=

1
|Φ|2∣∣∣Kl

di

∣∣∣2+∣∣∣Kr
di

∣∣∣2+σ2|Φ|2
, and C2(σ) = σ2

∑
f 1, then Eq. (24) boils down to Eq. (4) of

the main paper.



3.3. Edge-aware Total Variation Function

We first define a pixel-wise total variation function of a single-layer image I that in used in both the intensity smoothness
prior Lintensity and the alpha and transmittance smoothness prior Lalpha:

V (I) =

√
I2 ∗ g − (I ∗ g)2 , (25)

where g is a two-dimensional Gaussian blur kernel:

g =

1/16 1/8 1/16
1/8 1/4 1/8
1/16 1/8 1/16

 . (26)

Each “pixel” in V (I) (x, y) is equivalent to, for the 3 × 3 window surrounding pixel (x, y) in I, computing the sample
standard deviation (weighted by a Gaussian kernel) of the pixel intensities in that window. This follows easily from two
facts: 1) as g sums to 1 by construction, I ∗ g produces an image whose pixel intensities can be viewed as expectations
of their surrounding 3 × 3 input patch; and 2) the standard deviation

√
E [(X − E [X])2] can be written equivalently as√

E [X2]− E [X]
2.

As done in prior work [9], we would like to encourage edge-aware smoothness in addition to minimizing total variation,
so a bilateral edge mask is computed using this total variation:

E (I) = 1− exp

(
−I2 ∗ g − (I ∗ g)2

2β2

)
. (27)

In this equation, β is set to 1/32 (assuming pixel intensities are in [0, 1]). A joint total variation function that takes into account
both the original and the edge-aware total variation is then defined as:

VE (I,E) = ℓ (V (I)) + (1−E)⊙ ℓ (V (I)) . (28)

4. Additional Implementation Details and Experimental Results
We first discuss more implementation details about our method, then show qualitative results on more data in our collected

Google Pixel 4 dataset in Fig. 4-6. We also provide an interactive HTML viewer [2] at the project website [11] to facilitate
the comparisons.
Data normalization. Before running the optimization, we first compute an intensity scaling factor s = 0.5/mean

(
I{l,r}o

)
, and

normalize the inputs Ī{l,r}o = sI
{l,r}
o to account for global intensity variations. After optimization, we undo the normalization

by dividing the all-in-focus image by s.
Scaling factors of each loss term. Recall that our optimization loss is

L = λ1Ldata + λ2Laux + λ3Lintensity + λ4Lalpha + λ5Lentropy . (29)

Ldata and Laux have the same weight: λ1 = λ2 = 2.5 · 104. For most scenes, λ3 = 30, λ4 = 7.5 · 104, and λ5 = 12. We
set higher weights on the regularization terms Lintensity, Lalpha, and Lentropy for scenes with less texture, e.g., data from
Abuolaim and Brown [1].
Kernel size of each MPI layer. We manually determine the kernel sizes of the front and back layers, and evenly distribute
MPI layers in disparity space. As mentioned in Sec. 2, we choose focus settings such that all scene contents are at or behind
the focus plane. Therefore the kernel size of the front MPI layer is usually set to a small positive number, e.g., in the range
of 1 × 1 to 3 × 3, to mimic a 2D delta function, while the kernel size corresponding to the back MPI layer is set to a large
enough value, e.g., in the range of 57× 57 to 61× 61, to represent blur kernels at infinity.
Quantitative Metrics. We use the commercial software, Helicon Focus [4] to compute the ground truth all-in-focus images
and the defocus maps using focus stacking. There may be a small shift between the ground truth all-in-focus image and the
all-in-focus image from the deblurring algorithms we evaluate. This is because one can apply an arbitrary transform to the
blur kernels and an inverse transform to the recovered all-in-focus image to yield the same blurred image. We determine
this shift for each algorithm by using OpenCV to align the ground-truth all-in-focus image with the all-in-focus image from
the algorithm via an affine transform for a single specific scene, and then using that transform to align all images before



computing the metrics for all-in-focus images. We also crop a small border of 8 pixels before computing the metrics as it
may contain invalid pixels after alignment.
Additional results for bias correction. Fig. 3 shows additional results for our ablation study. Specifically, it shows that
without bias correction term B, the estimated defocus size is smaller on average as predicted by our analysis.
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Figure 3: Mean of the predicted defocus map for our full pipeline vs an ablation where bias correction term is not applied.
Defocus is measured as the relative scaling applied to the calibrated kernels. Without bias correction, the mean defocus is
lower in 14 of the 17 scenes, i.e., the prediction is biased towards smaller defocus size.
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(a) Input image (b) GT all-in-focus image (c) Ours (d) Wiener deconv. [12] (e) DPDNet [1] (f) DPDNet w/ calib [1]
Figure 4: More qualitative comparisons of various defocus deblurring methods.

(a) Input image (b) Ground Truth (c) Ours (d) Ours w/ GF (e) Wiener [12] (f) DMENet [5] (g) [7] (h) Garg [3] (i) Wadhwa [10]

Figure 5: More qualitative comparisons of defocus map estimation methods.



(a) Input image (b) Ground truth (c) Ours full (d) No Lintensity (e) No Lalpha (f) No Lentropy (g) No Laux (h) No B
Figure 6: More qualitative results on ablation study.


