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During the last decade, we have been witnessing the continued development
of new time-of-flight imaging devices, and their increased use in numerous
and varied applications. However, physics-based rendering techniques that
can accurately simulate these devices are still lacking: while existing algo-
rithms are adequate for certain tasks, such as simulating transient cameras,
they are very inefficient for simulating time-gated cameras because of the
large number of wasted path samples.We take steps towards addressing these
deficiencies, by introducing a procedure for efficiently sampling paths with
a predetermined length, and incorporating it within rendering frameworks
tailored towards simulating time-gated imaging. We use our open-source
implementation of the above to empirically demonstrate improved rendering
performance in a variety of applications, including simulating proximity
sensors, imaging through occlusions, depth-selective cameras, transient
imaging in dynamic scenes, and non-line-of-sight imaging.
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1 INTRODUCTION
Time-of-flight (ToF) imaging is revolutionizing a large array of ap-
plications including robotics, autonomous navigation, atmospheric
sciences, medicine, and even entertainment and human-computer
interaction. Unlike conventional intensity sensors, ToF sensors ex-
ploit the fact that the speed of light is finite, and record information
about the time it takes for photons to travel from a light source to
the sensor. This information can then be used to recover geometric
and material properties of the scene the photon traveled through,
including even parts of the scene that are not directly visible to the
sensor because of opaque or translucent occluders.
Within computer graphics, imaging and rendering have consis-

tently advanced in lockstep: As new imaging sensors are being
developed, rendering algorithms that can accurately and efficiently
simulate measurements of such sensors quickly follow. In turn, the
availability of rendering algorithms greatly enhances the ability of
the sensor designers to optimize their designs, resulting in novel

Authors’ addresses: Adithya Pediredla, Rice University, USA, adithya.k.pediredla@rice.
edu, Carnegie Mellon University, USA, apedired@andrew.cmu.edu; Ashok Veeraragha-
van, Rice University, USA, vashok@rice.edu; Ioannis Gkioulekas, Carnegie Mellon
University, USA, igkioule@andrew.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/7-ART38 $15.00
https://doi.org/10.1145/3306346.3323016

sensors of superior performance. In particular, as state-of-the-art
machine learning tools are increasingly used for both designing the
sensors [Marco et al. 2017a] and processing their outputs [Gruber
et al. 2019]. Efficient rendering tools are necessary to generate the
large, diverse, and realistic datasets needed for training.
Existing physically-accurate rendering algorithms are primarily

tailored to conventional, steady-state rendering. As a consequence,
they can be suboptimal for simulating ToF sensors, with their per-
formance varying considerably between different ToF rendering
tasks. To characterize the performance characteristics of existing
algorithms, we will broadly classify ToF rendering tasks into two
categories. The first category includes tasks such as simulating
continuous-wave time-of-flight cameras, which accumulate all pho-
tons with a weight that depends on their time of travel; as well as
transient cameras, which aggregate all photons but separate them
into a sequence of images, each recording contributions only from
photons with a specific time of travel. Existing steady-state render-
ing algorithms remain efficient for simulation tasks in this category,
as the majority of paths they generate will have a non-zero contri-
bution, regardless of their pathlength. Tasks in this category have
generally been the main focus of previous research on ToF render-
ing; for instance, Jarabo et al. [Jarabo et al. 2014] improve rendering
performance by introducing path-sampling schemes and reconstruc-
tion techniques tailored to the transient imaging setting.
The second type of ToF rendering tasks involves simulating im-

ages that accumulate contributions only from a small subset of
photons, whose time of travel is within some narrow interval. These
time-gated rendering tasks arise in a large number of practical sit-
uations; examples include time-gated sensors used as proximity
detectors, gated laser ranging cameras, as well as situations where
transient imaging is performed in dynamic scenes such as outdoors
environments or tissue with blood flow. Unfortunately, existing
rendering algorithms cannot be used for efficient time-gated render-
ing: the vast majority of the paths generated by these algorithms
end up being rejected, for having length outside the narrow range
accumulated by the simulated sensor.
Given this challenge and the importance of the problem, we fo-

cus on developing efficient Monte Carlo algorithms for time-gated
rendering tasks. At the core of the challenge is the fact that current
physics-based rendering algorithms cannot sample paths that sat-
isfy specific constraints on their length. We take first steps towards
addressing this fundamental limitation, by making the following
technical contributions: We develop a path-sampling technique that
generates paths with a predetermined target length. This technique
is a variant of standard bidirectional path tracing [Lafortune and
Willems 1996; Veach and Guibas 1995a], which we term bidirec-
tional path tracing with ellipsoidal connections. This allows us to
simulate time-gated sensors without having to reject an excessive
number of sample paths. We develop the mathematical machinery
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required to ensure that this new path-sampling technique remains
consistent and unbiased. Additionally, we propose algorithms for
accelerating path sampling using our proposed technique, including
efficient geometric query procedures analogous to those used for
accelerating ray-mesh intersections. Finally, we implement all of our
contributions within an open-source renderer [Jakob 2010], and use
this renderer to demonstrate improved rendering performance in a
variety of time-gated rendering tasks. We hope that our publicly-
available implementation [Pediredla et al. 2019b] will facilitate the
design of new ToF cameras and related inverse algorithms.

2 RELATED WORK
Time-of-flight imaging. We can broadly distinguish between two

types of time-of-flight imaging sensors. First, transient imaging
sensors record a sequence of images, with each image comprising
contributions from photons that have traveled for a specific time
between emission and measurement [Faccio and Velten 2018; Jarabo
et al. 2017]. Transient cameras have been implemented using a num-
ber of different technologies, with temporal resolutions ranging
from a few nanoseconds to a few femtoseconds. These include streak
cameras [Velten et al. 2013], intensified CCD (ICCD) sensors [Cester
et al. 2019; Pediredla et al. 2017b], single-photon avalanche diodes
(SPADs) [Gariepy et al. 2015], continuous-wave time-of-flight sen-
sors [Heide et al. 2013; Peters et al. 2015], Kerr gates [Ham 2019;
Schmidt et al. 2003; Takahashi et al. 1994; Zhan et al. 2016], and inter-
ferometry [Gkioulekas et al. 2015]. Transient imaging has recently
attracted increased interest within computer graphics, for applica-
tions such as non-line-of-sight imaging [Buttafava et al. 2015; Chan
et al. 2017; Heide et al. 2019, 2014; Kirmani et al. 2009; O’Toole et al.
2018; Pediredla et al. 2017a, 2019a; Tsai et al. 2017; Velten et al. 2012;
Xin et al. 2019], separating light transport components [O’Toole
et al. 2014; Wu et al. 2014a,b], and inverting and seeing through
scattering [Gkioulekas et al. 2016; Satat et al. 2016].
Second, there are time-of-flight sensors that produce single im-

ages through the (weighted) integration of contributions from pho-
tons with travel time within the same range. One example is time-
gated sensors, which couple ultrafast pulsed lasers with ultrafast
shutters, activated only for a specific time interval after each laser
pulse is emitted. We discuss this case below. Another example is sen-
sors that record only the time of arrival of the first-arriving photons,
such as lidar and laser scanning systems. Continuous-wave time-
of-flight (CW-ToF) sensors combine an amplitude-modulated light
source with an exposure-modulated sensor, to measure a weighted
integral of a transient sequence [Gupta et al. 2015; Lin et al. 2014].
Both lidar and CW-ToF systems are primarily used for 3D sens-
ing and velocity sensing [Shrestha et al. 2016] in a wide range of
applications, including robotics and autonomous vehicles.

Time-gated imaging. Our focus is on time-of-flight imaging tasks
which require capturing individual images that receive non-zero con-
tributions from only photons with the time-of-travel within a very
narrow range. The time-gated cameras mentioned above naturally
fall under this category. Such time-gated sensors find applications
in a variety of areas. For example, SPAD sensors time-gated at a
few tens of picoseconds are used in biology and medical settings

for fluorescence lifetime imaging [Lakowicz et al. 1992], and opti-
cal sectioning of layers within scattering media [Das et al. 1993].
Time-gated sensors are also used to enhance visibility, for instance
by allowing imaging through fog and smoke [Satat et al. 2018]. The
recent decade saw a proliferation of advanced driver assistance sys-
tems (ADAS) to increase automobile safety, with fixed time-gated
cameras of gate widths as narrow as 200 ps used to avoid collision
and improve night-time navigation [David et al. 2006; Grauer and
Sonn 2015]). Coupled with machine learning algorithms, time-gated
sensors are also used as alternatives to lidar for dense depth sens-
ing [Gruber et al. 2019]. Gated laser ranging and short-wave-infrared
sensors are used in military applications, to survey objects at spe-
cific distances [las 2019; Baker et al. 2004]. Finally, even though
most non-line-of-sight imaging algorithms require entire transients,
some techniques use time-gated measurements [Laurenzis and Vel-
ten 2014; Pediredla et al. 2019a; Thrampoulidis et al. 2018]
Time-gated imaging scenarios can arise even when using ToF

technologies other than time-gated sensors. For example, even
though typical CW-ToF sensors accumulate non-zero contributions
from all photons regardless of their time-of-travel, it is possible to
use special modulation patterns to create a camera that almost exclu-
sivelymeasures photonswithin a specific time-of-travel range [Tadano
et al. 2015]. Such cameras have been used for applications such as
photography through partial occlusions, and optical Z-keying. An-
other example is when using transient cameras such as ICCDs or
Kerr gates to image dynamic scenes. These cameras capture entire
transients by progressively shifting a narrow time gate. In dynamic
scenes, such cameras effectively capture a single time-gated slice
within the time duration in which the scene can be assumed static.
During the time it takes to change the gate (a few milliseconds), the
scene motion effectively means that the next frame in the sequence
will be a time-gated slice of a (slightly) different scene.

Time-of-flight rendering. Analogously to the imaging case, we
use the term time-of-flight (ToF) rendering to refer to the simulation
of both transient image sequences, and time-gated images. The
theoretical framework for ToF rendering is provided by the time-
resolved versions of the radiative transfer equation [Chandrasekhar
1960], rendering equation [Smith et al. 2008], and path-integral
formulation of light transport [Jarabo et al. 2014].

Most prior research on ToF rendering focuses on simulating entire
transients. Several works have adapted steady-state Monte Carlo
rendering algorithms to the transient case, both for forward simu-
lations [Jarabo 2012; Jarabo et al. 2014] and for inverse rendering
problems [Gkioulekas et al. 2016; Naik et al. 2011; Tsai et al. 2019].
Most of these works directly repurpose algorithms such as bidirec-
tional path tracing (BDPT) to generate samples. Notably, Jarabo et
al. [2014] additionally introduced a modified BDPT procedure for
generating paths in scattering media with a more uniform path-
length distribution. An alternative approach to transient rendering,
which focuses on increased efficiency at the cost of introducing bias,
has been to extend to the transient setting reconstruction algorithms
based on density estimation, such as photon mapping [Ament et al.
2014; Jarabo et al. 2014; Marco et al. 2018, 2017b].

Unlike these previous works, our focus is on developing rendering
algorithms for time-gated imaging scenarios. In this case, directly
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repurposing steady-state algorithms such as BDPT is very ineffi-
cient, because most sampled paths end up being rejected. For biased
time-gated rendering, the transient photon mapping techniques
mentioned previously can be extended straightforwardly to this
case, by using kernels that weigh photons based on how much their
time-of-flight deviates from the target time gate. In the context of un-
biased time-gated rendering, some of the path sampling techniques
introduced by Jarabo et al. [2014] can help improve performance
when rendering volumetric media, by allowing to specify lower
and upper bounds on the length of sampled paths. Inspired from
this work, we aim to develop new path sampling techniques that
operate on surfaces, rather than volumetric media, and that provide
a more expansive range of options for controlling pathlength—for
example, allowing for specifying exact pathlength values. This flexi-
bility can help expand the range of applications for which unbiased,
physically-accurate time-gated rendering is practical.

3 BACKGROUND ON TIME-OF-FLIGHT RENDERING
The foundation of modern Monte Carlo rendering algorithms is the
path integral formulation of light transport [Veach 1997]. Accord-
ing to this formulation, the image I recorded by any steady-state
intensity sensor can be written as a path integral of the form,

I =

∫
P

f (x̄ )dµ (x̄ ). (1)

In this integral, x̄ = x0 → . . . → xB+1 is an ordered sequence of
B + 2 three-dimensional points, for any B ≥ 0, and represents a path
photons can follow from a light source (path vertex x0) to a sensor
(path vertex xB+1). The function f (x̄ ) is the radiance throughput of
the path, which depends on the geometry and material of the scene,
the spatio-angular emission of light sources, and the spatio-angular
sensitivity (or importance) of the sensor. Finally, P is the space of
all paths x̄ , and µ is its Lebesgue measure.

Following Jarabo et al. [2014], the path integral formulation can
be extended to time-of-flight sensors, by incorporating a pathlength
importance1 termWτ that depends on the length ∥x̄ ∥ of a path x̄ ,

I =

∫
P

Wτ (∥x̄ ∥) f (x̄ )dµ (x̄ ). (2)

The pathlength importance functionWτ is independent of the scene;
instead, it is uniquely determined by the technology, hardware
design, and parameters of the time-of-flight sensor. We will broadly
distinguish between three time-of-flight imaging modalities, which
can be modeled using Equation (2) with different functionsWτ .

Time-gated cameras. A time-gated camera captures only photons
with time-of-flight within some narrow range, and rejects all other
photons. If the time range is [τ − ∆τ

2 ,τ +
∆τ
2 ], then such a camera

can be modeled using a pathlength importance function,

Wτ (∥x̄ ∥) = rect
(
∥x̄ ∥ − τ

∆τ

)
. (3)

In this context, the pathlength importance function is also known as
the gate of the camera, a term that we will also use throughout the
paper. In practice, such cameras have imperfect gating mechanisms,
1We will be focusing on scenes that do not include refractive media. Therefore, we can
use the time-of-flight t of a photon and the length τ of its path interchangeably. The
two are related as τ = ct , where c = 1 is the speed of light in vacuum.

and therefore may be better modeled with lower-frequency but
narrow pathlength importance functions; for example, a Gaussian
of mean τ and standard deviation ∆τ ,

Wτ (∥x̄ ∥) = Gaussian (∥x̄ ∥;τ ,∆τ ) . (4)

Transient cameras. A transient camera records a sequence of im-
ages I (τ ), τ ∈ {τmin, . . . ,τmax}, with the entire sequence often
termed a transient image. Each frame I (τ ) in the sequence records
contributions only from photons accepted by a narrow time gate cen-
tered around τ . For an ideal transient camera, this gate only permits
photons with time-of-flight exactly τ , corresponding to a per-frame
pathlength importance function that is a Diract delta. In practice,
the per-frame time gates are imperfect, and are better modeled as
in Equations (3) and (4). We note that a transient camera captures
measurements equivalent to those captured by multiple time-gamed
cameras, each with a gate centered at a different pathlength τ .

Continuous-wave time-of-flight (CW-ToF) cameras. ACW-ToF cam-
era uses illumination with temporally-modulated amplitude, cou-
pled with a sensor with temporally-modulated sensitivity. This cor-
responds to a pathlength importance function [Lin et al. 2014],

Wτ (∥x̄ ∥) = C (∥x̄ ∥), (5)

whereC is the cross-correlation between the illumination and sensor
modulation functions. Typically, C is a sinusoid, with frequency in
the range of tens to hundreds of MHz. However, cross-correlations
of trapezoidal [Gupta et al. 2018] and narrow rectangular [Tadano
et al. 2015] shapes have also been demonstrated. In the latter case,
the camera effectively reduces to a time-gated camera for some
narrow pathlength importance functionWτ .

3.1 Rendering time-of-flight cameras
Simulating measurements of a time-of-flight sensor requires eval-
uating the integral of Equation (2). As in the steady-state case
(Wτ (∥x̄ ∥) = 1), analytic integration is impossible except for trivial
scenes. Instead, Monte Carlo rendering algorithms [Dutre et al. 2006;
Veach 1997] attempt to approximate the integral using Monte Carlo
integration, forming an estimate of the form,

Ĩ =
N∑
n=1

Wτ (∥x̄n ∥) f (x̄n )

p (x̄n )
, (6)

where each x̄n is a randomly sampled path, and p (x̄n ) is the proba-
bility of sampling this path. When the path-sampling distribution
p (x̄ ) has non-zero measure for all paths x̄ , estimators of this form
are both consistent (limN→∞ Ĩ = I ) and unbiased (E {x̄n }

[
Ĩ

]
= I ).

The efficiency of these Monte Carlo estimators critically depends
on the availability of path sampling algorithms with probability dis-
tributions p (x̄ ) that approximate the target integrand. For rendering
in the steady-state case, there exist powerful algorithms that approx-
imate the radiance throughput term f (x̄ ), including path tracing,
bidirectional path tracing (BDPT), Metropolis light transport, and
numerous variants; see Pharr et al. [2016] and Dutre et al. [2006] for
a review. The same algorithms can also be used to generate paths
for time-of-flight rendering. We will be focusing on using BDPT in
this way, an approach we term baseline BDPT.
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Baseline BDPT, however, is suboptimal for time-of-flight ren-
dering, as it does not approximate the correct integrand: Instead
of sampling paths with a probability proportional to the product
Wτ (∥x̄ ∥) f (x̄ ) of path integral (2), it samples proportionally to the
radiance throughput term f (x̄ ) of path integral (1). The effect of this
mismatch on performance is critically dependent on the pathlength
importance functionWτ . For example, regular CW-ToF cameras
with sinusoidal pathlength importance functions will still accept
most sampled paths with high importance; therefore baseline BDPT
remains a relatively efficient rendering algorithm for these cameras.
Baseline BDPT can also be used to efficiently render transient

sequences I (τ ): In this case, even though each individual image in
the transient sequence corresponds to a very narrow pathlength im-
portance function, collectively the entire sequence has an effective
pathlength importance function that covers all possible pathlengths.
Therefore, baseline BDPT can operate as follows: for each sampled
path x̄ , assign it to all images in the transient sequence with a gate
that is non-zero at ∥x̄ ∥. This procedure, termed temporal path reuse
in Jarabo et al. [2014], guarantees that all sampled paths contribute
to one image in the transient sequence I (τ ).

3.2 Our focus: time-gated rendering
Unfortunately, baseline BDPT becomes very inefficient for render-
ing tasks requiring the simulation of isolated images (rather than
sequences) corresponding to pathlength importance functionsWτ
with narrow support. As baseline BDPT does not provide control
over the length of sampled paths x̄ , its use in such cases results in
most sampled paths having zero net contribution, making baseline
BDPT a very wasteful path sampling procedure. Tasks like this arise
in a number of different time-of-flight imaging contexts, and we
discuss three of them as examples. An obvious first case is when sim-
ulating measurements from time-gated sensors, as described above.
A second case is simulating transient cameras operating in dynamic
environments, where the measured scene changes as the camera
captures a transient sequence. Then, each frame of the transient
sequence is a time-gated measurement of an effectively different
scene, and therefore temporal path reuse cannot be used. Finally,
a third case is when rendering CW-ToF cameras where the cross-
correlation of illumination and sensor modulation has very narrow
support, as in the depth-selective camera of Tadano et al. [2015].
We use the term time-gated rendering to describe these and all other
rendering tasks dealing with very narrow pathlength importance
functions; these tasks will be the focus of the rest of the paper.

BDPT with ellipsoidal connections. We introduce a path sampling
algorithm that helps ameliorate the inefficiency of baseline BDPT
for time-gated rendering tasks. Rather than directly approximate
the productWτ (∥x̄ ∥) f (x̄ ) of the path integral of Equation (2), our
algorithm operates in three steps:

(1) A target pathlength τ is selected, for instance through im-
portance sampling or stratified sampling of the narrow path-
length importance functionWτ (∥x̄ ∥).

(2) Standard BDPT is used to trace source and camera subpaths,
up until a path length that does not exceed τ .

(3) Complete paths are formed by connecting every pair of ver-
tices in the source and camera subpaths through an additional

𝑥𝑒
(ellipsoidal 

vertex)

𝑥𝑠 𝑥𝑐

(b) BDPT with ellipsoidal connections(a) BDPT with direct connections

𝑥𝑠 𝑥𝑐

Fig. 1. BDPT with direct and ellipsoidal connections. (a) Given sam-
pled source and camera subpaths, standard BDPT forms complete paths by
directly connecting every vertex in one subpath to every vertex in the other.
(b) By contrast, BDPT with ellipsoidal connections forms complete paths by
connecting each such pair of vertices through an additional vertex, which
lies on the intersection of an ellipsoid with the scene (shown in red).

vertex, rather than directly as in standard BDPT, with the
new vertex selected so that the total pathlength equals τ .

We call the new type of connections in the third step of our algorithm
ellipsoidal connections. We describe them in detail in the following
section, where we also explain the reasoning for this name.
By producing paths of a length τ sampled from the pathlength

importance functionWτ , BDPT with ellipsoidal connections guar-
antees that all sampled paths will have non-zero contribution to the
integral of Equation (2). This guarantee, however, comes at a price,
as each of these paths is considerably more expensive to generate
than with baseline BDPT, especially for scenes with complicated
geometry. This trade-off between high pathlength importance and
high sampling efficiency implies that there is a scene-dependent
upper-bound on the width of the gateWτ , beyond which it is better
to use baseline BDPT than BDPT with ellipsoidal connections. In
Section 5, we describe techniques for improving the efficiency of
BDPT with ellipsoidal connections, and in Section 6, we qualify the
resulting trade-off through extensive experiments.

We note that we are not the first to propose using a new vertex as
a means to control the pathlength of the final, complete path. Jarabo
et al. [2014] proposed a path sampling procedure that, likewise, uses
a new vertex when connecting BDPT subpaths, in order to improve
performance for time-of-flight rendering in volumetric media. Our
path sampling procedure is different in two ways: First, it targets
rendering of surfaces, rather than volumetric media. Second, it al-
lows for exact control of the length of sampled paths, instead of
ensuring uniform distribution within some pathlength range. Con-
ceptually, our proposed ellipsoidal connections can be extended for
sampling in volumetric media, in which case it would be interesting
to compare them to the corresponding path sampling technique of
Jarabo et al. [2014]. We leave this for future work.

4 COMPUTING ELLIPSOIDAL CONNECTIONS
Throughout this section, we assume that we are given source and
camera subpaths, x̄S and x̄C respectively, created using bidirectional
path tracing. Additionally, we are given a target pathlength τ sat-
isfying ∥x̄S ∥ + ∥x̄C ∥ < τ . Our objective is to form complete paths
of length τ , by using intermediate vertices xe to connect each ver-
tex xs ∈ x̄S , s ∈ {0, . . . , S } in the source subpath, to every vertex
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compute 

ellipse

transform 

to circle

reprojectreproject

intersect and 

compute arcs

Fig. 2. Ellipsoid-polygon intersection. We first compute the ellipse
formed by intersecting the ellipsoid and the plane containing the poly-
gon. We then transform both shapes so that the ellipse becomes a unit
circle. We identify the circular arcs contained inside the polygon. Finally, we
reproject these arcs to the original three-dimensional coordinate system.

xc ∈ x̄C , c ∈ {0, . . . ,C} in the camera subpath, where S + 1 and
C + 1 are the number of vertices in the two subpaths and S,C ≥ 0.

We denote by x̄0:s the part of the source subpath from its start
until the vertex xs , and likewise for x̄0:c on the camera subpath.
Then, the intermediate vertex xe must be selected so that,

∥x̄0:s ∥ + ∥xe − xs ∥ + ∥xe − xc ∥ + ∥x̄0:c ∥ = τ (7)
=⇒ ∥xe − xs ∥ + ∥xe − xc ∥ = τ − ∥x̄0:s ∥ − ∥x̄0:c ∥︸                  ︷︷                  ︸

τe

. (8)

Equation (8) defines a three-dimensional prolate ellipsoid E (xs ,xc ,τe )
with foci xs and xc , and pathlength τe . This is our key observation:
For the complete path to have pathlength τ , we need to connect
xs and xc through an intermediate vertex xe that satisfies the el-
lipsoid constraint (8) (see also Figure 1). We refer to vertex xe as
an ellipsoidal vertex, and to path connections using such vertices
as ellipsoidal connections. This ellipsoidal constraint is well-known
in NLOS imaging applications, which reconstruct occluded geome-
try from pathlength measurements of partially observed paths; for
example, it underlies the ellipsoidal backprojection [Arellano et al.
2017] and space carving [Tsai et al. 2017] algorithms. To the best of
our knowledge, we are the first to use this constraint for rendering.

Ellipsoid-scene intersections. In addition to satisfying Equation (8),
the vertex xe must lie on the union of scene surfacesM. Therefore,
to create the complete path, we first need to compute the intersection
E (xs ,xc ,τe ) ∩M between the ellipsoid E (xs ,xc ,τe ) andM. Here
we address how to compute this intersection for the case whenM
is the union of oriented polygonal primitives. This subsumes the
case of a scene comprising polygonal meshes, arguably the most
common surface representation in computer graphics applications.

In particular, we develop an algorithm for analytically intersecting
the ellipsoid E (xs ,xc ,τe ) with an arbitrary polygon T . We can then
use this intersection operator to determine E (xs ,xc ,τe ) ∩M, by
applying it iteratively to all polygons inM (though see Section 5 for
strategies to accelerate this procedure). We outline here the steps
involved in this operation, and derive it in detail in the supplement.

We start by computing the two-dimensional ellipse arising as the
intersection of the ellipsoid E (xs ,xc ,τe ) with the plane containing

the polygon T . Then, we use the procedure shown in Figure 2
to determine the portions of this ellipse that are inside T : First,
we compute the transformation that converts the two-dimensional
ellipse to an axis-aligned unit circle, and apply this transformation to
T . Second, we compute the intersections of the unit circle with the
edges of the transformed oriented polygon, and determine whether
each intersection is moving towards the interior or exterior of the
circle. Third, we identify all circular arcs lying between an outgoing
and an ingoing intersection. Finally, we convert these circular arcs
back to elliptic curves in the original coordinate system by applying
the inverse of the transformation we used on T .

Ellipsoidal vertex sampling. After computing E (xs ,xc ,τe ) ∩M,
wemust sample from it a vertex xe to form a complete path, compute
the sampling probability of xe , and use these quantities to update
the Monte Carlo estimate of Equation (6). Effectively, by sampling
xe , we form a Monte Carlo approximation of the integral,

T∑
i=1

∫
E (xs ,xc ,τe )∩Ti

f (x̄0:s → xe (τ ,θ ) → x̄c :0) J (µ;τ ,θ ) dθ dτ , (9)

where {T1, . . . ,TT } are the polygons intersected by the ellipsoid
E (xs ,xc ,τe ), and xe (τ ,θ ) is a parameterization of the correspond-
ing elliptic arc on each polygon. As we reparameterize the polygon
surface in terms of τ and θ , in addition to the throughput term f
for area sampling [Veach and Guibas 1995b], we need to compute
the Jacobian J (µ;τ ,θ ) corresponding to this reparameterization.
In our implementation, we sample a point xe by first uniformly

selecting one of the polygons Ti , then parameterizing its elliptic
arc in terms of center angle θ , and finally sampling a point on it
uniformly with respect to θ . These sampling and parameterization
choices are motivated by the fact that they facilitate the computation
of the path sampling probability and the Jacobian J (µ;τ ,θ ). In the
supplement, we derive analytic and easy to compute expressions
for these quantities. We have verified these expressions numerically
through comparisons with automatic differentiation [Anderson et al.
2017], to ensure unbiasedness of our path sampling algorithm.

Spherical connections for direct illumination. In order for our path
sampling technique to be consistent, it must sample from the same
space of paths as BDPT with direct connections. Unfortunately, this
is not possible using only ellipsoidal connections: The addition of
the extra vertex xe means that the minimum number of vertices of
a resulting full path is 3 (B = 1), with the other two vertices being
on the source and camera. This excludes two-bounce paths (B = 0),
corresponding to source-camera connections for direct illumination.
To handle this type of path, we extend our path sampling tech-

nique by also performing spherical connections when creating paths
from the first points of the source and camera subpaths: Let x0 be
the first point of the camera subpath x̄C , located on the sensor. We
intersect the source with a sphere E (x0,τ/2), centered at x0 and of
radius τ/2 equal to half the target pathlength. Then, we form a full
two-bounce path by connecting x0 with the resulting intersection
point. And likewise for the first point of the source subpath. Most
aspects of ellipsoidal connections, such as Jacobian computation
and the acceleration techniques of the next section, can be extended
straightforwardly to spherical connections. By combining ellipsoidal
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(a) the bounding box is in the negative half-space of a focus point

(d) the primitive is in the negative half-space of a focus point

(b) the bounding box is contained inside the ellipsoid

(e) a focus point is in the negative half-space of the primitive (f) the primitive is contained inside the ellipsoid

(c) the bounding box does not intersect the ellipsoid’s AABB

𝑥𝑠 𝑥𝑐

𝑥𝑠 𝑥𝑐

𝑥𝑠 𝑥𝑐

𝑥𝑠 𝑥𝑐

𝑥𝑠 𝑥𝑐

𝑥𝑠 𝑥𝑐

Fig. 3. Accelerating ellipsoidal intersection queries. We use a bounding-volume-hierarchy (BVH) structure to store the scene triangles. We parse the
BVH tree in a depth-first manner to identify all the triangles intersecting the ellipsoid. At every level of the tree, we use pruning techniques to either reject an
entire subtree (top row) or individual triangles (bottom row).

and spherical connections, our path sampling technique samples
from the same path space as BDPT, and therefore is consistent.

Multiple importance sampling. A critical component for the perfor-
mance of standard BDPT algorithms is the use of multiple important
sampling (MIS) [Veach and Guibas 1995b]: The contribution of each
complete path is weighed based on the probability of sampling this
path using different combinations of source and camera subpath ver-
tices. Even though the exact MIS formulation from standard BDPT
can be adapted for the case ellipsoidal connections, doing so would
require performing multiple additional ellipsoid-scene intersections
per path, which is computationally expensive. Instead, we use the
following approximation: For each complete path, we form an MIS
weight by considering the probabilities of sampling the path with
direct connections, for every possible pair of adjacent edges in the
path (as ellipsoidal connections add two edges). We have verified nu-
merically that the resulting estimate remains unbiased, and shows
a strong reduction in variance (e.g., by suppressing “fireflies”).

5 ACCELERATING ELLIPSOIDAL CONNECTIONS
We now discuss techniques for accelerating BDPT rendering with
ellipsoidal connections.

Space partitioning. Space-partitioning data structures such as k-d
trees, octrees, and bounding volume hierarchies (BVH) have been
central for accelerating the ray-mesh intersection operations re-
quired by all path tracing algorithms. We use these data structures
to also accelerate the computation of the ellipsoid-scene intersection
E (xs ,xc ,τe ) ∩ M described in Section 4. We describe our use of
BVH, though our arguments extend to other similar data structures.

We first form an axis-aligned bounding box (AABB) for the ellip-
soid E (xs ,xc ,τe ), and a BVH for the scene polygon soupM (usually
one already exists for BDPT). Then, we traverse the BVH tree in a
depth-first manner, to form a list of all primitives that the ellipsoid
may intersect. At every tree node, we can prune an entire child
sub-tree if its AABB satisfies any of the following conditions:

• It is contained in the negative half-space of a primitive con-
taining at least one of the foci of E (xs ,xc ,τe ) (Figure 3(a)).
• It is contained within the E (xs ,xc ,τe ) (Figure 3(b)).
• It does not intersect the ellipsoid’s AABB (Figure 3(c)).

Early rejection of primitives. The BVH traversal produces a list of
polygon primitives that we need to examine for intersections with
the ellipsoid E (xs ,xc ,τe ). We devise a set of criteria for rejecting
some of these primitives without having to perform the ellipsoid-
polygon intersection operation of Section 4. Namely, we reject a
candidate primitive if it satisfies any of the following conditions:

• Its negative half-space includes at least one of the foci of
E (xs ,xc ,τe ) (Figure 3(d)).
• It is contained in the negative half-space of a primitive con-
taining at least one of the foci of E (xs ,xc ,τe ) (Figure 3(e)).
• It is contained within E (xs ,xc ,τe ) (Figure 3(f)).

Multiple ellipsoidal connections. In standard BDPT, there is only
one possible direct connection between two vertices xs and xc
of the source and camera subpaths. By contrast, in our setting,
many possible ellipsoidal connections can be used to form complete
paths. In particular, after computing the ellipsoid-scene intersection
E (xs ,xc ,τe ) ∩M, we can amortize the cost of path generation by
sampling from it multiple ellipsoidal vertices xe and using them to
form multiple complete paths. These paths are correlated, as they
have the same source and camera sub-paths, and therefore do not
reduce the variance of the image estimate Ĩ by the same amount as
paths that are sampled completely independently. However, this is
outweighed by the fact that these paths are a lot cheaper to generate
than sampling a new path, since they reuse the already computed
E (xs ,xc ,τe ) ∩ M. These correlated paths can critically improve
performance when rendering scenes that include meshes with very
large numbers of polygons. We note that, despite being correlated,
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Fig. 4. Effect of gate width, scene complexity, and reflectance. (a) We compare the variance (computed over 50 renderings) of BDPT with direct and
ellipsoidal connections, as a function of: (a) gate width ∆τ ; (b) number of triangles in the scene (increased by tessellating the Stanford bunny); and (c)
specularity (increased by changing the roughness parameter of GGX BRDF). In all cases, we additionally visualize renderings produced by the two algorithms
for the corresponding most extreme settings. All images are rendered for 60 s. In (b) and (c), a gate width of ∆τ = 12.5 ps (0.8% of scene size) is used.

these additional path samples do not introduce bias: They effec-
tively correspond to using multiple samples xe for the Monte Carlo
approximation of the integral of Equation (9).

Computational complexity. Using the above acceleration tech-
niques, the average complexity of ellipsoidal connections is logarith-
mic in the number of scene triangles, but with a worse constant than
for ray intersections due to the need for multiple BVH traversals. We
note, though, that after the first ellipsoidal connection, subsequent
amortized connections have constant complexity.

6 EXPERIMENTS
We evaluate the performance of BPDT with ellipsoidal connections,
both quantitatively and qualitatively, for various time-gated render-
ing tasks. In all experiments, we additionally ran both standard and
our proposed versions of BDPT to convergence and compared the
resulting images, verifying that both algorithms converge to the
same result. We did this to numerically confirm the unbiasedness
and consistency of our proposed rendering algorithm. We use scene
dimensions comparable to real-world scenes, and gate widths based
on real cameras used in analogous situations. To enable meaning-
ful comparisons, we also report gate widths relative to scene size
(percentage of half the maximum time-of-flight of directly-reflected
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Fig. 5. Comparison with transient photon mapping [Jarabo et al.
2014].We compare squared error (computed over 50 renderings and com-
pared to groundtruth rendered with standard BDPT for 40,000 samples-per-
pixel) and visualize renderings produced, for the same scene and different
gate widths, using BDPT with ellipsoidal connections and transient photon
mapping. All images are rendered for 60 s.

photons). All of the comparisons shown are same-time comparisons,
with rendering times reported separately for each experiment. Ex-
cept where mentioned otherwise, we use our own implementation
of BDPT for time-of-flight rendering, with either direct or ellipsoidal
connections. Our implementation is publicly available [Pediredla
et al. 2019b], and is based on the Mitsuba renderer [Jakob 2010]. All
experiments are run on an Amazon EC2 c4.8xlarge instance with 36
cores. All rendered images are shown in the linear RGB color space.

Quantitative comparison. We perform a series of experiments to
quantify the relative performance of BDPT with ellipsoidal and
direct connections. For these experiments, we use variants of the
Cornell box scene, scaled to approximately one-meter length on all
sides. We image this scene with a time-gated sensor, with pathlength
importance functionWτ as in Equation (3). We compare the perfor-
mance of the two algorithms as we vary three parameters: temporal
gate width, geometric scene complexity, and BRDF specularity.

In Figure 4(a), we compare the performance of the two BDPT vari-
ants for different gate widths ∆τ . For each gate width, we perform
50 renderings and compute variance statistics, shown at the top of
Figure 4(a). We observe that, for very small gate widths, ellipsoidal
connections result in a strong reduction in variance. Conversely,
as the gate width increases, the increased cost of ellipsoidal con-
nections starts to outweigh the utility of generating paths that are
guaranteed to be within the time gate. Note that, as shown in the
insets of Figure 4(a), at ∆τ = 3200 ps, the rendering is almost an
instance of steady-state rendering, where all paths are accepted
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Gate location  = 4 ns Gate location  = 20 ns Gate location  = 23.4 ns

Fig. 6. Transient imaging in dynamic scenes. To render transients of
dynamic scenes as captured by gated transient cameras, we have to render
a sequence of time-gated frames, each for a slightly different scene due to
motion. From top to bottom, we show steady-state renderings, transient
renderings with direct connections, and transient renderings with ellipsoidal
connections. Different columns are different frames of the video. All images
are rendered for 15 s, with a gate width ∆τ = 200 ps (1.74% of scene size),
and per-gate exposure 50 ms. See supplement for entire video.

regardless of pathlength. The insets of Figure 4(a) visualize these dif-
ferences, where we observe that for the narrow gate, the rendering
produced using ellipsoidal connections is visibly less noisy.

In Figure 4(b), we characterize the effect of geometric scene com-
plexity on the two BDPT variants. For this comparison, we replace
the square boxes with a Stanford bunny, which we tessellate to pro-
gressively increase the total number of triangles in the scene. The
top of Figure 4(b) plots variance as a function of triangle number,
with variance computed as before. We observe that the performance
of direct connections remains relatively unaffected by the increase
in triangles, whereas ellipsoidal connections become considerably
slower. The tipping point between the two algorithms is at around
44,000 triangles. The insets compare renderings from the two algo-
rithms for the cases of the simplest and most complex scene.
Finally, in Figure 4(c), we quantify how changes in reflectance

affect the two BDPT variants. For this, we assign to each box in
the scene a rough-specular BRDF (using the GGX model [Walter
et al. 2007]), and we progressively decrease the roughness parameter,
making the boxes more specular. For each specularity setting, we
compute variance statistics as before, and plot them in the top of
Figure 4(c). We observe that the performance of both direct and
ellipsoidal connections worsens as the objects in the scene become
more specular. Ellipsoidal connections deteriorate faster, eventually
becoming worse than direct connections for the most specular BRDF.
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Fig. 7. Proximity detection camera. We simulate measurements from
such a camera, equipped on a travelling automobile. From top to bottom, we
show steady state renderings, time-gated renderings with direct connections,
and time-gated renderings with ellipsoidal connections. Different columns
are different frames of the video. All images are rendered for 10 s, with gate
width ∆τ = 200 ps (1.14% of scene size). The MSE improvement for the
shown frames is 9.25×, 9.39×, 2.73×. See supplement for entire video.

The worse performance, in that case, can be attributed to the fact
that ellipsoidal connections create two path edges (xe → xs and
xe → xc ) that are not importance-sampled from the BRDF, whereas
direct connections add only one such edge (xc → xs ).

Comparison with transient photon mapping. We additionally com-
pare our algorithm with the transient photon mapping technique
of Jarabo et al. [2014]. This is an extension to the transient setting
of steady-state photon mapping techniques [Hachisuka et al. 2008;
Jensen 2001], which operate in two passes: In the first pass, a pho-
ton map is created using paths traced from the light source. In the
second pass, the contributions of rays traced from the detector are
computed through kernel-density estimation based on the photon
map from the first pass. In the time-gated setting, the kernel used
for density estimation additionally weights photons based on how
much their time-of-flight deviates from the target time gate.
In Figure 5, we compare BDPT with ellipsoidal connections and

the implementation of transient photon mapping provided by Jarabo
et al. [2014].We use the settings of Figure 4(a), with three differences:
First, as the photon mapping implementation only supports point
sources, we replace the area source on the roof of the Cornell box
with a point source slightly below the roof. Second, as the photon
mapping implementation is single-threaded, we run it for 36 × 60 s,
to achieve a same-time comparison with our multi-threaded code for
ellipsoidal connections (60 s on a 36-core machine). Third, as photon
mapping is biased, we use squared error (bias2 + variance) for this

(a) Scene setting (b) Steady state rendering

(c) Time gated rendering 

with direct connections

(d) Time gated rendering 

with ellipsoidal connections

MSE = 18.81 MSE = 5.58

Fig. 8. Imaging through partial occluders.We simulate lens-based cam-
eras used to image through a fence. All images are rendered for 6 min, with
gate width ∆τ = 1 ns (2.35% of scene size). The MSE improvement is 3.37×.

comparison. We observe that BDPT with ellipsoidal connections
results in lower error and less noisy images for all gate widths.

Transient cameras in dynamic scenes. As discussed in Section 2,
transient cameras such as ICCDs or Kerr gates operate by capturing
sequences of time-gated images, one at a time. In dynamic scenes,
each such time-gated frame effectively images a different scene
due to scene motion. Consequently, simulating this situation re-
quires performing a sequence of time-gated rendering operations.
We demonstrate this in Figure 6, where we compare the relative
performance of BDPT with direct and ellipsoidal connections for
this time-gated rendering task. We show a few frames of transient
sequences from a dynamic scene, rendered for a transient camera
with a per-frame gate width of 200 ps, typical of ICCDs [Cester
et al. 2019]. We observe that, at all frames, ellipsoidal connections
produce renderings that are considerably less noisy.

We emphasize that, when transient rendering a static scene, ellip-
soidal connections would not offer a performance advantage over
direct connections. In that case, temporal path reuse means that all
paths sampled by BDPT with direct connections have high impor-
tance, and therefore it is not necessary to use ellipsoidal connections.

Proximity sensors. As discussed in Section 2, fixed time-gated sen-
sors are increasingly used as proximity sensors in automobiles. Sim-
ulating these sensors is a time-gated rendering task, for which ellip-
soidal connections can be beneficial. We show this in Figure 7, where
we simulate a vehicle traveling through a road scene, equipped with
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(a) BDPT with direct connections (b) BDPT with ellipsoidal connections
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Fig. 9. CW-ToF depth-selective camera.We simulate a CW-ToF camera
using modulation codes resulting in depth-selectivity [Tadano et al. 2015].
The inset at the top shows the corresponding pathlength importance func-
tion, with a high-importance area of width ∆τ = 20 ps (1.28% of scene size).
All images are rendered for 60 s. The MSE improvement is 5.49×.

a time-gated proximity camera. The figure shows a few frames of the
rendered sequence, where we observe that ellipsoidal connections
outperform direct connections.

Imaging through partial occluders. As discussed in Section 2, nar-
row time-gated cameras can be used to enhance images captured
through partial occluders such as semi-blocking interfaces (e.g.,
fences) or participating media (e.g., fog). We simulate such a sce-
nario in Figure 8. We create a zoo scene with a giraffe inside a
fence and a photographer outside the fence (Figure 8(a)). Using a
lens-based steady-state camera results in a blurry image (8(b)). By
contrast, using a time-gated camera produces cleaner images (Fig-
ure 8(c,d)). We also observe that, even though the time gate used is
not as narrow as before (∆τ = 1 ns, or 2.35% of scene size), rendering
with ellipsoidal connections is still beneficial for this larger scene.

Depth-selective CW-ToF cameras. Depth selectivity analogous to
the previous case can also be achieved using a CW-ToF camera, as
shown by Tadano et al. [2015]. We simulate this camera in Figure 9,
where we compare renderings produced with direct connections
and ellipsoidal connections. The functionWτ in this case has low
(but non-zero) values for all pathlengths, except for a narrow trape-
zoidal area of width ∆τ = 20 ps (1.28% of scene size). Therefore,
unlike the case of a time-gated sensor, here the contributions of all
paths are non-zero, albeit in most cases very small. Comparing to
ellipsoidal connections, we observe that the ability to importance
sample the pathlength importance functionWτ results in significant
improvement in the quality of the rendered image.

We emphasize again that ellipsoidal connections would not offer
an advantage for simulating a conventional CW-ToF camera with a
sinusoidal pathlength importance function. The performance ben-
efits in Figure 9 are due to the special modulation codes used by
Tadano et al. [2015], which result in depth-selectivity.

Non-line-of-sight imagingwith temporal focusing. Finally, we show
simulations for an NLOS imaging application. We follow Pediredla
et al. [2019a], who use a temporal focusing technique to scan voxel-
by-voxel a “looking around the corner” scene, as in Figure 10. Such
a temporal focusing camera requires narrow time-gating for high-
fidelity reconstruction. Following Pediredla et al. [2019a], we simu-
late such a camera with gate width ∆τ = 4 ps. In Figure 10(b,c), we

(a) Scene (b) Temporal Focusing with 

Direct Connections

(c) Temporal Focusing with 

Ellipsoidal Connections

5 cm

Fig. 10. Non-line-of-sight imaging with temporal focusing.We simu-
late the system of Pediredla et al. [2019a]. The full scene is shown in (a), with
a time-gated camera on one side of a barrier, and three objects (alphanu-
merics S, 1, 9) on the other side. The temporal focusing camera scans one
hidden voxel at a time.We render these per-voxel measurements using direct
connections (b) and ellipsoidal connections (c). Each voxel measurement is
rendered for 17 s, with gate width ∆τ = 4 ps (0.4% of scene size).

show scanning results simulated by rendering temporal focusing
measurements with direct and ellipsoidal connections. For the same
rendering time of around 17 s per voxel measurement, the scene is
rendered with high fidelity using ellipsoidal connections, whereas
it is indistinguishable from noise using direct connections.

7 LIMITATIONS AND FUTURE DIRECTIONS
We proposed combining BDPT with ellipsoidal connections as a way
to sample paths that satisfy a predetermined pathlength constraint.
We have used this new path sampling technique to take first steps
towards addressing critical shortcomings of existing algorithms for
time-gated rendering tasks, namely the rejection of large numbers
of sampled paths. In the rest of this section, we discuss limitations
of path sampling using BDPT with ellipsoidal connections, future
directions towards addressing these limitations, as well as some
interesting research directions that arise from the availability of
techniques for pathlength-constrained path sampling.

Scalability to large meshes. In Section 5, we showed that data
structures used to accelerate ray-mesh intersections can also be
used to accelerate ellipsoid-scene intersections. While this provides
modest speed-ups, the number of primitives that remain as candi-
dates for intersection after tree traversal is typically much larger
than in the case of ray-mesh intersection operations. Consequently,
BDPTwith ellipsoidal connections does not scale well to scenes with
very large meshes, compared to standard BDPT. We quantified this
scaling behavior in the experiments of Section 6. As we discuss in
Section 5, and show in experiments, the scalability of our technique
can be improved by amortizing each ellipsoid-scene intersection to
perform multiple ellipsoidal connections (Section 5). Still, investi-
gating techniques to further reduce the number of primitives that
need to be intersected is an important future research direction.

Importance sampling of ellipsoidal vertices. Currently, after per-
forming an ellipsoid-scene intersection, we select an ellipsoidal ver-
tex uniformly at random. This is suboptimal, as ideally ellipsoidal
vertices should be importance-sampled based on their throughput.
Unfortunately, we do not know of an efficient algorithm to perform
this sampling operation, which requires evaluating the throughput
along multiple one-dimensional elliptical arcs. We experimented
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with an approximate importance sampling scheme, where candidate
ellipsoidal vertices are sampled with a probability proportional to
the throughput evaluated at the barycenter of their correspond-
ing triangles. However, this resulted in negligible improvement,
indicating that we should explore better approximations.

Combining direct and ellipsoidal connections. Direct and ellipsoidal
connections can both produce paths with zero contributions, but
their failure cases occur under different conditions. A direct con-
nection always creates a complete path, but that path may have
pathlength importance Wτ zero. By contrast, an ellipsoidal con-
nection may fail to produce a complete path altogether when the
ellipsoid-scene intersection E (xs ,xc ,τe ) ∩M is empty. Addition-
ally, both types of connections can produce zero-contributing paths
because of visibility terms, with this issue being more severe for
ellipsoidal connections (two visibility terms, xe → xc and xe → xs )
than for direct ones (one visibility term, xs → xc ).

As we demonstrated empirically in Section 6, ellipsoidal connec-
tions perform better as the support ofWτ decreases, and conversely
for direct connections. This motivates the question: Rather than
committing to one type of connections, is there a way to optimally
combine the two? It will be interesting to investigate randomized
procedures that alternate between the two types of connections,
in a way that adapts to the characteristics of the simulated sensor
and scene, and potentially that takes advantage of information from
previously sampled paths [Hachisuka et al. 2014].

Adaptive sampling and Metropolis light transport. Adaptive sam-
pling techniques have been successful for steady-state rendering,
with the key idea being that we can allocate more samples to spa-
tial pixels that are difficult to render (e.g., edges, textures, caus-
tics) [Zwicker et al. 2015]. BDPT with ellipsoidal constraints pro-
vides a way to adapt these techniques to time-of-flight rendering
tasks, by making it possible to allocate more samples to temporal
frames I (τ ) that require them (e.g., high-frequency parts of a tran-
sient [Wu et al. 2014b]). This was not possible previously, as there
was no way to sample paths for frames corresponding to specific
pathlengths. Experimentally, we found that the increased cost of
ellipsoidal connections generally outweighs the benefit of adaptive
sampling, but any future discoveries improving the efficiency of
ellipsoidal connections would make this approach worth revisiting.
Ellipsoidal connections additionally show promise within the

framework of path-space Metropolis light transport [Veach and
Guibas 1997]: Given a path, we can perturb it by removing one of
its vertices and replacing it with a new ellipsoidal vertex, selected
so that the new path has the same length as the original one. Us-
ing ellipsoidal connections as pathlength-preserving perturbation
operations open up the possibility of using Metropolis light trans-
port algorithms to efficiently explore path manifolds defined by
pathlength constraints [Jakob and Marschner 2012].

Inverse rendering. We have focused on forward rendering tasks,
that is, simulating sensor measurements of a known scene. However,
physics-based rendering is also an indispensable tool for inverse
rendering tasks [Li et al. 2018; Marschner and Greenberg 1998]:
Rendering operations are used within optimization procedures that
attempt to match a set of sensor measurements, in order to infer

properties of the scene these measurements were captured from.
Different types of time-of-flight imaging have recently been used,
together with inverse rendering optimization, for inverse scatter-
ing [Gkioulekas et al. 2016] and non-line-of-sight imaging [O’Toole
et al. 2018; Tsai et al. 2019; Velten et al. 2012] applications. We expect
that our algorithm will be useful for such inverse rendering tasks.
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