
3D Reconstruction with Fast Dipole Sums

HANYU CHEN, BAILEY MILLER, and IOANNIS GKIOULEKAS, Carnegie Mellon University, USA

structure
from motion

regularized
winding number

optimization

regularized
dipole sum

Figure 1. We introduce the regularized dipole sum, a point-based representation for multi-view 3D reconstruction. This representation can model both

implicit geometry and radiance fields using per-point attributes, and supports efficient ray tracing and differentiable rendering, thus facilitating optimization

using multi-view images. We initialize our regularized dipole sum representation using the dense point cloud output of a structure from motion procedure

(COLMAP). Bootstrapping from this initialization, we use inverse rendering to optimize per-point attributes (visualized in insets as varying point radii),

resulting in a higher-quality surface reconstruction. Images are from the “Komainu / Kobe / Ikuta-jinja” dataset by Open Heritage 3D.

We introduce a method for high-quality 3D reconstruction from multi-view

images. Our method uses a new point-based representation, the regularized

dipole sum, which generalizes the winding number to allow for interpolation

of per-point attributes in point clouds with noisy or outlier points. Using reg-

ularized dipole sums, we represent implicit geometry and radiance fields as

per-point attributes of a dense point cloud, which we initialize from structure

frommotion. We additionally derive Barnes-Hut fast summation schemes for

accelerated forward and adjoint dipole sum queries. These queries facilitate

the use of ray tracing to efficiently and differentiably render images with

our point-based representations, and thus update their point attributes to

optimize scene geometry and appearance.We evaluate our method in inverse

rendering applications against state-of-the-art alternatives, based on ray

tracing of neural representations or rasterization of Gaussian point-based

Authors’ address: Hanyu Chen, hanyuche@andrew.cmu.edu; Bailey Miller, bmmiller@

andrew.cmu.edu; Ioannis Gkioulekas, igkioule@cs.cmu.edu, Carnegie Mellon Univer-

sity, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 0730-0301/2024/12-ART192

https://doi.org/10.1145/3687914

representations. Our method significantly improves 3D reconstruction qual-

ity and robustness at equal runtimes, while also supporting more general

rendering methods such as shadow rays for direct illumination.

CCS Concepts: • Computing methodologies→ Point-based models;
Ray tracing.

Additional Key Words and Phrases: Winding number, point-based modeling,

inverse rendering

ACM Reference Format:
Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas. 2024. 3D Reconstruction

with Fast Dipole Sums. ACM Trans. Graph. 43, 6, Article 192 (December 2024),

18 pages. https://doi.org/10.1145/3687914

1 INTRODUCTION

The emergence of neural rendering methods [Tewari et al. 2022]

has led to the widespread adoption of a two-stage pipeline for 3D

reconstruction from multi-view images: The first stage uses tradi-

tional multi-view geometry methods such as structure from motion

[Schönberger and Frahm 2016] to estimate unknown parameters

required for the second stage—namely, camera poses. The second

stage uses gradient-based optimization and differentiable rendering

to optimize a scene representation so that it reproduces the multi-

view images—an inverse rendering process. The performance of this

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

HTTPS://ORCID.ORG/0009-0009-0881-0351
HTTPS://ORCID.ORG/0009-0009-0881-0351
HTTPS://ORCID.ORG/0000-0001-6932-4642
https://orcid.org/0009-0009-0881-0351
https://orcid.org/0009-0009-0881-0351
https://orcid.org/0000-0001-6932-4642
https://doi.org/10.1145/3687914
https://doi.org/10.1145/3687914

192:2 • Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas

pipeline depends critically on the choice of scene representation, mo-

tivating the development of various choices (e.g., neural [Mildenhall

et al. 2021; Wang et al. 2021b], grid-based [Fridovich-Keil et al. 2022;

Karnewar et al. 2022; Wu et al. 2023], hash-encoded [Müller et al.

2022; Wang et al. 2023; Li et al. 2023]) that offer different tradeoffs

between expressive power and computational efficiency.

This paper introduces a new scene representation for multi-view

3D reconstruction, the regularized dipole sum. This representation

uses tailored kernel-based interpolation of point cloud attributes,

to model both the scene geometry (an implicit surface) and scene

lightfield (a radiance field). Our representation continues a recent

shift towards point-based representations for neural rendering [Xu

et al. 2022]. In particular, point-based representations using 3D

Gaussian kernels have recently gained widespread popularity for

both novel-view synthesis tasks [Kerbl et al. 2023] and 3D recon-

struction [Dai et al. 2024; Huang et al. 2024b]: The use of Gaussian

kernels allows these methods to perform differentiable rendering

using image-space rasterization instead of ray tracing, resulting in

impressive computational acceleration. At the same time, the use of

rasterization precludes combinations of these representations with

advanced rendering features such as direct illumination methods

(e.g., shadow rays), which rasterization is incompatible with.

By contrast, we design the regularized dipole sum representation

to support efficient differentiable rendering with ray tracing. Our
representation is fundamentally based on the winding number for
point clouds [Barill et al. 2018]—an approximation to the indicator

function of the solid object represented by the point cloud, equal

to the sum of Poisson kernels centered at all point cloud locations.

The winding number has useful geometric regularization properties

[Lin et al. 2022; Lu et al. 2018; Xu et al. 2023; Metzer et al. 2021], as

a jump-harmonic function that approximates the output of robust

surface reconstruction algorithms [Kazhdan et al. 2006]. It is also

amenable to efficient computation using fast summation methods

[Beatson et al. 1997]. Lastly, it can be directly initialized with an

optional output of the first-stage structure from motion—a dense
3D point cloud of quality approaching that of reconstructions from

state-of-the-art neural rendering methods.

The regularized dipole sum generalizes the winding number in

several ways that preserve its desirable properties, while also turn-

ing it into a point-based representation suitable for inverse rendering

applications. As we explain in Section 4, we use regularized ker-

nels and general per-point attributes, to make this representation

compatible with point clouds that are noisy or contain outliers—as

point clouds from structure from motion typically do. Then, in Sec-

tion 5, we show how to use regularized dipole sums to represent

not only the geometry, but also the radiance field of a scene. Lastly,

in Section 6, we use fast summation methods to enable efficient

computation and backpropagation, as needed for inverse rendering.

With the resulting fast dipole sums, we can use ray tracing to

optimize a dense point-based representation initialized directly from

structure of motion, by simply updating point-based attributes. Fig-

ure 1 shows an example use of our approach: Structure from motion

[Schönberger and Frahm 2016] produces a dense point cloud that

we visualize as a continuous surface using (our regularized general-

ization of) the winding number. We then use inverse rendering with

fast dipole sums to optimize attributes of this point cloud (visualized

in the insets), resulting in an improved reconstructed surface. In

Section 7, we evaluate our approach against state-of-the-art neural

rendering methods for surface reconstruction, using neural [Li et al.

2023; Wang et al. 2023] and 3D Gaussian [Dai et al. 2024] representa-

tions. Our experiments show that our approach is both efficient and

effective, greatly improving reconstruction quality and robustness

at equal runtimes, while additionally supporting rendering with

methods such as shadow rays. We provide interactive visualizations

and an open-source implementation on the project website.
1

2 RELATED WORK

Structure frommotion. 3D reconstruction from uncalibrated multi-

view images, also known as structure from motion, is a classical prob-
lem in computer vision [Tomasi and Kanade 1990; Ullman 1979]. It

has been the subject of extensive theoretical study [Hartley and Zis-

serman 2003] and engineering efforts [Snavely et al. 2008, Bundler]—

we refer to Özyeşil et al. [2017] for a detailed review. Traditional

methods attacked this problem primarily by enforcing inter-image

geometric consistency, and triangulating correspondences across

different images. Mature structure from motion methods [Schön-

berger and Frahm 2016] can robustly produce sparse point cloud

reconstructions from thousands of images [Snavely et al. 2006].

Additionally, such methods provide optional shading-based refine-

ment capabilities [Schönberger et al. 2016] to turn sparse into dense
point clouds capturing high geometric detail. Lastly, these methods

can cover scenes ranging from individual objects [Schönberger and

Frahm 2016] to entire cities [Agarwal et al. 2011]. We focus on the

first setting, and aim to produce high-fidelity object-level reconstruc-
tions, by directly utilizing and optimizing dense point clouds from

structure from motion implementations (Figure 1).

Shading-based refinement and neural rendering. Geometric-only

structure-from-motion methods produce point clouds that can have

holes in textureless areas where there are no correspondences. They

also typically cannot reproduce fine surface details, because they do

not exploit shading cues that provide normal information. Shading-

aware refinement methods can refine initial structure from motion

reconstructions using either simple shading models [Dai et al. 2017;

Langguth et al. 2016; Zollhöfer et al. 2015; Wu et al. 2011] or complex

differentiable rendering procedures [Luan et al. 2021]. However,

accounting for shading requires also optimizing for ancillary scene

information, such as reflectance and global illumination, resulting

in a challenging and ill-posed inverse rendering problem.

Recent neural renderingmethods havemade tremendous progress

towards overcoming these challenges. We refer to Tewari et al.

[2022] for a detailed review, and discuss only the most relevant

works. Mildenhall et al. [2021] tackled multi-view reconstruction

problems through the combined use of differentiable volume ren-

dering (implemented through ray tracing), neural field representa-

tions for both geometry (implicit surfaces) and global illumination

(radiance fields), and structure from motion for pose estimation

(COLMAP [Schönberger and Frahm 2016]). Though they initially

focused on novel-view synthesis, subsequent methods have adapted

this methodological approach for surface reconstruction tasks [Yariv

et al. 2021; Oechsle et al. 2021; Wang et al. 2021b]. Unfortunately,

1
https://imaging.cs.cmu.edu/fast_dipole_sums

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

https://imaging.cs.cmu.edu/fast_dipole_sums

3D Reconstruction with Fast Dipole Sums • 192:3

the expressive power neural field representations provide comes

with two critical caveats: 1. It introduces a severe computational

overhead, resulting in very costly inverse rendering optimization.

2. It makes it difficult to leverage the 3D reconstruction output of

structure from motion in ways more direct and effective than as just

regularization during optimization [Deng et al. 2022; Fu et al. 2022].

We overcome these challenges by developing point-based field repre-

sentations that are amenable to efficient ray tracing, and can directly

optimize dense point clouds from structure from motion.

Geometry and radiance field representations. To alleviate the com-

putational complexity issues due to neural field representations,

recent work has made rapid progress towards alternative repre-

sentations for implicit geometry and radiance fields. Grid-based

methods replace neural fields with either dense [Karnewar et al.

2022] or adaptive [Fridovich-Keil et al. 2022; Wu et al. 2023] grids

that are efficient to ray trace [Museth et al. 2013] and interpolate,

though potentially memory intensive (for dense grids) or difficult to

optimize in an end-to-end manner (for adaptive grids). Hash-based

methods replace neural fields with multi-resolution hash encodings

[Müller et al. 2022; Wang et al. 2023; Li et al. 2023], which combine

expressive power and efficiency. All these approaches can optionally

be combined with shallow (thus more efficient) neural networks that

post-process interpolated or encoded features. These approaches

overcome computational efficiency issues associated with neural

fields, though they still do not provide a way to directly use point

clouds available from structure from motion.

Point-based field representations use a point cloud and kernel-

based interpolation to compute field quantities needed to express

implicit geometry and radiance fields. Xu et al. [2022] proposed this

approach for novel-view synthesis, though their use of complex

neural network post-processing of point features still introduces

significant computational overhead. Kerbl et al. [2023] introduced

a point-based representation that uses collections of 3D Gaussians

to represent both geometry (volumetric density) and radiance. Crit-

ically, they also combine this representation with rasterization—

through image-space Gaussian splatting—to eliminate the need for

costly ray tracing during volume rendering, thus achieving real-time

optimization and rendering performance. Though this method orig-

inally focused on novel-view synthesis, subsequent works [Guédon

and Lepetit 2023; Dai et al. 2024; Huang et al. 2024b] have provided

extensions for high-fidelity surface reconstruction. Being point-

based, these methods can directly leverage 3D information from

structure from motion. However, in transitioning from ray tracing

to rasterization, they sacrifice generality: for example, rasterization

rules out rendering methods such as shadow rays [Ling et al. 2023]

(also known as next-event estimation Pharr et al. [2023]) for ren-

dering direct illumination from know light sources. We contribute

a point-based representation that uses ray tracing—thus maintain-

ing compatibility with such rendering methods—yet is as efficient

as Gaussian splatting methods. Compared to these methods, and

to concurrent work [Yu et al. 2024] on ray tracing 3D Gaussian

representations, our method leverages and extends the advantages

afforded by winding number representations [Barill et al. 2018] to

produce 3D reconstructions of even higher quality (Section 7).

Point cloud surface reconstruction. Point-based geometry represen-

tations have a long history in computer graphics as methods for re-

constructing continuous surfaces (either implicit or, after isosurface

extraction [Lorensen and Cline 1987], explicit) from point clouds.

These methods often find use as post-processing of point clouds

from structure from motion methods, and thus are robust to imper-

fections such as noisy points, outlier points, or holes. Berger et al.

[2014] and Huang et al. [2024a] provide detailed reviews. The meth-

ods by Fuhrmann and Goesele [2014] and Zagorchev and Goshtasby

[2011] use anisotropic Gaussian functions and their derivatives to

interpolate scalar fields from point locations, and thus bear a strong

similarity to the 3D Gaussian splatting representations we discussed

above. Carr et al. [2001] use instead more general radial-basis func-

tions for interpolation, combined with fast summation methods

[Beatson et al. 1997]. Among this extensive family of methods, we

build on the point-based winding number representation Jacobson

et al. [2013]; Barill et al. [2018]; Spainhour et al. [2024], because of

its attractive properties of geometric regularization, robustness, and

efficiency—we provide a review in Section 3. We generalize winding

numbers in Sections 4–6 into our regularized dipole sum represen-

tation, which we use for both implicit geometry and radiance fields.

Doing so allows us to achieve efficient inverse rendering of point

clouds for high-quality surface reconstruction.

3 BACKGROUND

We discuss background on volume rendering with radiance fields for

surface reconstruction, and the winding number for point clouds.

3.1 Inverse volume rendering with radiance fields

We follow the methodology introduced by NeRF [Mildenhall et al.

2021] and represent a 3D scene as a volume comprising two compo-

nents: 1. an attenuation coefficient 𝜎 : R3 × S2 → R≥0 representing

the scene’s geometry; and 2. a radiance field L : R3 × S2 → R3

≥0

representing the scene’s (RGB) lightfield. As Miller et al. [2024]

explain, at every scene point 𝑥 ∈ R3
and direction 𝜔 ∈ S2

, the

attenuation coefficient 𝜎 (𝑥,𝜔) is the probability density that a ray

passing through 𝑥 along 𝜔 will terminate instantly due to intersec-

tion with the scene’s geometry. Then, the radiance field L(𝑥,𝜔) is
the incident (RGB) global illumination at 𝑥 along 𝜔 .

This representation allows expressing the RGB intensity (color)
𝑐 captured by a camera ray 𝑟𝑜,𝑣 (𝜏) ≡ 𝑜 + 𝜏𝑣, 𝜏 ∈ R≥0 with origin 𝑜

and direction 𝑣 using the (exponential) volume rendering equation:

𝑐 (𝑜, 𝑣) =
∫ 𝜏

f

𝜏n

exp

(
−

∫ 𝜏

𝜏n

𝜎
(
𝑟𝑜,𝑣 (𝑡), 𝑣

)
d𝑡

)
· 𝜎

(
𝑟𝑜,𝑣 (𝜏), 𝑣

)
L

(
𝑟𝑜,𝑣 (𝜏),−𝑣

)
d𝑡, (1)

where 𝜏n and 𝜏
f
are near and far (resp.) integration limits due to the

scene’s bounding box. Rasterization approaches [Kerbl et al. 2023;

Zwicker et al. 2002; Dai et al. 2024] approximate Equation (1) by

projecting (a point-based representation of) 𝜎 and L on the image

plane, where integration becomes an efficient splatting operation. By

contrast, ray tracing approaches approximate 𝑐 (𝑜, 𝑣) with numerical

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

192:4 • Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas

quadrature [Max 1995] using ray samples 𝜏n = 𝜏0 < · · · < 𝜏𝐽 = 𝜏f
:

𝑐 (𝑜, 𝑣) ≈
𝐽∑︁
𝑗=1

exp

(
−

𝑗∑︁
𝑖=1

𝜎𝑖Δ𝑖

) (
1 − exp

(
𝜎 𝑗Δ 𝑗

))
L𝑗 (2)

where at each sample location 𝜏 𝑗 , Δ 𝑗 ≡ 𝜏 𝑗 −𝜏 𝑗−1, 𝜎 𝑗 ≡ 𝜎
(
𝑟𝑜,𝑣

(
𝜏 𝑗

)
, 𝑣

)
,

and L𝑗 ≡ L

(
𝑟𝑜,𝑣

(
𝜏 𝑗

)
,−𝑣

)
. Both approaches are differentiable, allow-

ing propagation of gradients from rendered colors 𝑐 to the atten-

uation coefficient 𝜎 and radiance field L. Rasterization is typically

faster but also less general than ray tracing, which allows, e.g., using

shadow rays to incorporate direct illumination from known light

sources [Bi et al. 2020a,b; Hasselgren et al. 2022; Verbin et al. 2024].

With this representation at hand, NeRF methods reconstruct a 3D

scene from multi-view images by using gradient descent methods

[Kingma and Ba 2015] to optimize 𝜎 and L, so as to minimize an

objective comparing real and rendered images—an inverse rendering
methodology [Loper and Black 2014; Marschner 1998].

Surface reconstruction. To improve the performance of thismethod-

ology in surface reconstruction tasks, prior work [Wang et al. 2021b;

Yariv et al. 2021; Oechsle et al. 2021; Miller et al. 2024] has repre-

sented 𝜎 as an analytic function of a scalar field F : R3 → R—which
we term the geometry field—controlling an implicit surface represen-

tation of the scene geometry ΓF ⊂ R3
, i.e., ΓF ≡

{
𝑥 ∈ R3

: F(𝑥) = 0

}
(with the convention that points where F(𝑥) < 0 are interior points).

We adopt the representation by Miller et al. [2024],
2
which first

defines a vacancy function in terms of F:

v(𝑥) ≡ Ψ(𝑠 F(𝑥)), (3)

where 𝑠 > 0 is a user-defined scale factor, and Ψ : R → [0, 1]
is a sigmoid function [Han and Moraga 1995; Glorot et al. 2011]

equal to the cumulative distribution function of a standard normal

distribution. Thus v equals 1/2 when F = 0 (points on the surface ΓF),

approaches 1 as F increases (exterior points), and 0 as F decreases

(interior points). Miller et al. [2024, Equation (12)] relate 𝜎 to v as :

𝜎 (𝑥, 𝜔) ≡ |𝜔 · ∇v(𝑥) |
v(𝑥) . (4)

Then, reconstruction uses the above inverse rendering methodology

to optimize (through the differentiable Equations (3) and (4)) the

geometry field F instead of the attenuation coefficient 𝜎 .

Structure-from-motion initialization. Inverse rendering requires
knowledge of camera locations 𝑜 and poses 𝑣 for each image in

a multi-view dataset, to render images with Equation (1). Inverse

rendering methods typically include an initialization stage that uses

structure from motion [Özyeşil et al. 2017] to estimate this camera

information. The initialization stage additionally outputs a sparse
point cloud reconstruction of the 3D scene, and Deng et al. [2022]

show that the final reconstruction can improve by leveraging this

output during subsequent inverse rendering optimization.

Modern structure-from-motionmethods such as COLMAP [Schön-

berger and Frahm 2016] provide an optional refinement process

[Schönberger et al. 2016] that outputs a dense point cloud recon-

struction. Inverse rendering methods skip this refinement process

2
This representation is similar to NeuS [Wang et al. 2021b], except enforces reciprocity

and uses a sigmoid corresponding to a Gaussian process. In our experiments we found

that these changes result in significantly improved performance.

Poissonε(,)
.

appearance attributes
geometry attributes

{ , }
min render ()

Eqs. (17), (20)

Eq. (21)

Eqs. (18), (3), (4)

Eq. (2)

Figure 2. Overview of our method. During forward rendering (indicated by

solid arrows), at each sample location along a ray, we interpolate geometry

and appearance attributes from a point cloud through a fast primal dipole

sum query. We pass appearance attributes through a shallowMLP to predict

colors, and use geometry attributes to compute attenuation coefficients. We

integrate along the ray to compute the rendered color and minimize the

𝐿1
-loss between the rendered and ground truth colors. During backpropa-

gation (indicated by dashed arrows), we optimize geometry and appearance

attributes of the point cloud through a fast adjoint dipole sum query.

during initialization, despite the fact that: 1. it produces reconstruc-

tions of quality competitive with or often even better than what

inverse rendering achieves [Wang et al. 2021b] (we revisit this point

in Section 7); and 2. its runtime is a lot shorter than the runtime

of inverse rendering. Thus, using this refinement process during

initialization and leveraging leveraging its dense point cloud output

for inverse rendering could help greatly improve performance in

terms of both reconstruction quality and computational efficiency.

Our contribution. Within this context, we develop a point-based

representation for the geometry field F and radiance field L that:

1. facilitates fast ray tracing, enabling efficient inverse rendering

(like rasterization) without sacrificing generality (shadow rays);

2. leverages dense point cloud outputs from structure-for-motion

initialization, optimizing only per-point attributes and a shallow

multi-layer perceptron (MLP) during inverse rendering;

3. reconstructs high quality surfaces by implicitly enforcing geo-

metric regularization (e.g., harmonicity).

Figure 2 overviews our overall method.

3.2 Winding number

We derive our point-based representation as a generalization of the

winding number, which we discuss next.

Continuous surfaces. We first consider the winding number for a

continuous surface Γ ⊂ R3
. Among its many equivalent definitions

[Feng et al. 2023], we use that as a Laplacian double layer potential
with unit moment, which facilitates the generalizations we consider

in Section 4. Then, the winding number w : R3 → R equals:

w(𝑥) ≡
∫
Γ

P(𝑥,𝑦)1 d𝐴(𝑦), P(𝑥,𝑦) ≡ 1

4𝜋

𝑛(𝑦) · (𝑦 − 𝑥)
∥𝑦 − 𝑥 ∥3

. (5)

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

3D Reconstruction with Fast Dipole Sums • 192:5

Here, 𝑛(𝑦) is the outward normal vector at point 𝑦 ∈ Γ, and P :

R3×R3 → R is the free-space Poisson kernel for the Laplace equation.
We make explicit the factor 1 in Equation (5), for reasons we will

explain in Section 4. The scalar field w is jump-harmonic and, when

the surface Γ is watertight, equals its binary indicator function (a

fact known as Gauss’ lemma [Folland 1995, Proposition 3.19]):

w(𝑥) =

1, 𝑥 inside Γ,

0, 𝑥 outside Γ,
1/2, 𝑥 on Γ.

(6)

Point clouds. Wenext consider thewinding number for an oriented
point cloud P ≡ {(p𝑚, n𝑚,A𝑚)}𝑀𝑚=1

, where for each𝑚 we assume

that: 1. the point p𝑚 is a sample from an underlying surface Γ; 2. the
vector n𝑚 is the outward normal of Γ at p𝑚 ; and 3. the scalar A𝑚 is

the geodesic Voronoi area on Γ of p𝑚 , i.e., the area of the subset of Γ
where points are closer (in the geodesic distance sense) to p𝑚 than

any other point in P. We use the dense point cloud from structure-

from-motion initialization, which provides points p𝑚 and normals

n𝑚 , and we estimate area weights A𝑚 as in Barill et al. [2018]. Then,

Barill et al. [2018] generalize the winding number to point clouds

using a discretization of the double layer potential (5).
3

Winding number for an oriented point cloud

For an oriented pointP ≡ {(p𝑚, n𝑚,A𝑚)}𝑀𝑚=1
, itswinding num-

ber w̃ : R3 → R is the scalar field:

w̃(𝑥) ≡
𝑀∑︁
𝑚=1

A𝑚 P(𝑥, p𝑚)1 =

𝑀∑︁
𝑚=1

A𝑚

4𝜋

n𝑚 ·(p𝑚 − 𝑥)
∥p𝑚 − 𝑥 ∥3

1. (7)

Winding number as a geometry field. Though w̃ is not a binary

scalar field (unlike its continuous counterpart w), its behavior is

still suggestive of the continuous surface Γ underlying P: As Barill
et al. [2018] show, it approaches 1/2 at points near the continuous
surface Γ underlying P, increases towards its interior, and decreases
towards its exterior. Thus at first glance, it appears we can use it to

represent a geometry field for inverse rendering (Section 3.1) as:

Fw (𝑥) ≡
1

2

− w̃(𝑥), (8)

corresponding to an implicit surface Γw ≡
{
𝑥 ∈ R3

: Fw (𝑥) = 0

}
.

This representation provides several critical advantages:

✓ Accurate approximation. Γw provides an approximation to Γ that

becomes exact as point density becomes infinite, and degrades

gracefully as the number of points𝑀 decreases.

✓ Geometric regularization. Fw is imbued with regularity properties

that provide geometric regularization. It is jump-harmonic, and
thus of a smooth nature that has proven useful for geometric

optimization tasks [Peng et al. 2021; Lipman 2021]. It is also related

to robust geometric representations [Kazhdan et al. 2006; Belyaev

et al. 2013] and interpolation schemes [Floater et al. 2005; Ju et al.

2005] that have found great success in reconstruction applications.

We elaborate on these relationships in Sections 4.1 and 5.

3
Throughout we use bars and tildes to indicate correspondences between quantities

involving continuous surface integrals and their point-cloud approximations (resp.).

✓ Direct initialization. Fw can be directly computed using the point

cloud from structure-from-motion initialization. Point queries for

w̃, and thus Fw, use only the point cloud attributes, and do not

require meshing or a proxy data structure (e.g., grid or neural).

✓ Fast queries. Such point queries, and backpropagating through
them, can bemade efficient with logarithmic complexityO(log𝑀)
relative to point cloud size 𝑀 , as we explain in Section 6. Thus,

Fw lends itself to efficient ray tracing (which requires multiple

point queries along each viewing ray (Equation (1))), even when

working with dense point clouds from structure from motion.

Barill et al. [2018] further discuss the benefits of the winding number

w̃ versus other point-based surface representations. At the same

time, w̃, and thus Fw, have critical shortcomings that make them

unsuitable for direct use for inverse rendering:

✗ Numerical instability. The Poisson kernel P(𝑥,𝑦) is singular as
𝑥 → 𝑦. The singularity makes the surface Γw numerical algo-

rithms interface with—e.g., during ray tracing [Gillespie et al.

2024, Section 4.3] or isosurface extraction [Barill et al. 2018, Sec-

tion 3 & Figure 9]—inaccurate and numerically unstable near P.
These numerical issues hinder inverse rendering performance

(e.g., due to rays passing near or through points in P, Section 7).

✗ Exact interpolation. The singularity makes the implicit surface

Γw an exact interpolant of the point cloud P. Exact interpolation
is undesirable when working with imperfect point clouds with

noisy point locations [Barill et al. 2018, Section 9], such as those

from structure-from-motion initialization.

✗ Outlier sensitivity. Such point clouds typically also suffer from

outlier points (e.g., due to incorrect correspondences) and inac-

curate or incorrectly oriented normals. As w̃ weighs all points

equally, it is can be very sensitive to such defects.

We explain how to overcome these shortcomings in the next section.

4 REGULARIZED DIPOLE SUMS

We introduce a generalization of w̃ in Equation (7) that facilitates

point-based representations in inverse rendering for both the geom-

etry field F and, as we explain in Section 5.1, the radiance field L. Our

generalization changes Equation (7) by replacing: 1. singular with

non-singular kernels (Section 4.1); and 2. unit with variable per–

point weights (Section 4.2). We also present two technical results

(Propositions 1 and 2) that lend theoretical support to our general-

ization, by relating it to Poisson surface reconstruction [Kazhdan

et al. 2006] and stochastic point clouds (resp.).

4.1 Regularization

To overcome shortcomings due to the singular Poisson kernel P, we

turn to regularization schemes common in methods for the simu-

lation of linear partial differential equations (e.g., method of fun-

damental solutions, boundary element method [Chen et al. 2024,

Section 2.2]). These methods use regularization to address numeri-

cal issues arising from singular potential kernels analogous to the

issues we encounter in inverse rendering.

A common regularization scheme [Beale et al. 2016; Cortez 2001;

Cortez et al. 2005]
4
starts from the definition of the Poisson kernel

4
An alternative to regularization is to “desingularize” the Poisson kernel by introducing

a small cutoff in the denominator [Lu et al. 2018; Lin et al. 2022]. We found that this

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

192:6 • Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas

through the Laplacian Green’s function G : R3 × R3 → R:

P(𝑥,𝑦) ≡ 𝑛(𝑦) · ∇𝑦 G(𝑥,𝑦), (9)

where G satisfies: Δ𝑥 G(𝑥,𝑦) = 𝛿 (𝑥 − 𝑦), (10)

and 𝛿 is the Dirac delta distribution in R3
. Regularization proceeds

by replacing 𝛿 with a nascent delta function, that is, a function

𝜙Y (𝑥 − 𝑦) satisfying limY→0 𝜙Y (𝑥 − 𝑦) = 𝛿 (𝑥 − 𝑦). Then, we can

define the regularized Green’s function GY and regularized Poisson
kernel PY exactly analogously to Equations (9) and (10):

PY (𝑥,𝑦) ≡ 𝑛(𝑦) · ∇𝑦 GY (𝑥,𝑦), (11)

where GY satisfies: Δ𝑥 GY (𝑥,𝑦) = 𝜙Y (𝑥 − 𝑦) . (12)

It follows that limY→0 GY = G and limY→0 PY = P. A common choice

of nascent delta function is the Gaussian function:

𝜙Y (𝑥 − 𝑦) ≡
1

Y
√

2𝜋
exp

(
− ∥𝑥 − 𝑦∥

2

2Y2

)
. (13)

The corresponding regularized Poisson kernel is [Beale et al. 2016]:

PY (𝑥,𝑦) ≡ S

(
∥𝑦 − 𝑥 ∥

Y

)
P(𝑥,𝑦), (14)

where S(𝑡) ≡ erf (𝑡) − 2𝑡/√𝜋 exp

(
−𝑡2

)
. Unlike P, PY is not singular, as

PY (𝑦,𝑦) = 3
−1Y−3𝜋−3/2

is finite for Y > 0. The parameter Y controls

the trade-off between regularization (restricting how fast PY (𝑥,𝑦)
increases as ∥𝑦 − 𝑥 ∥ → 0) and bias (bounding the difference PY − P).

We can use PY to generalize Equation (7) as follows.

Regularized winding number for an oriented point cloud

For an oriented point P ≡ {(p𝑚, n𝑚,A𝑚)}𝑀𝑚=1
, and a regu-

larization parameter Y ≥ 0, its regularized winding number
w̃Y : R3 → R is the scalar field:

w̃Y (𝑥) ≡
𝑀∑︁
𝑚=1

A𝑚 PY (𝑥, p𝑚)1, (15)

where PY is the regularized Poisson kernel in Equation (14).

Unlike w̃, w̃Y can be robustly evaluated arbitrarily close to points

in P, and its 1/2-level set does not exactly interpolate those points.

Thus, it escapes the first two shortcomings we identified at the end

of Section 3.2. During inverse rendering (Section 5.2), we can use

additional image-based losses to penalize large deviations between

the level set and P, while also allowing for inexact interpolation

to account for noise. Figure 3 uses the dense point cloud output

from dense structure-from-motion initialization for a scene from

the BlendedMVS dataset [Yao et al. 2020] to compare: 1. 2D slices of

the original and regularized winding number fields, and 2. meshed

isosurfaces extracted from them using marching cubes [Lorensen

and Cline 1987]. Simply using the regularized winding number on

this initial point cloud, without any training, already produces high-

quality meshes comparable to those from state-of-the-art inverse

rendering methods, as we quantify in Section 7.

approach results in worse performance in inverse rendering experiments (Section 7),

corroborating the arguments of Cortez [2001] in favor of regularization.

point cloud

winding number w/ regularization

Figure 3. Using the original and regularized winding number fields on the

unoptimized point cloud (left) for the BlendedMVS clock scene. The top row

shows planar slices of the two fields: The original winding number is very

noisy near point cloud locations due to the singular Poisson kernel, whereas

the regularized winding number is much smoother. The insets visualize the

singular and regularized kernels. The bottom row shows meshes extracted

from the two fields using marching cubes: The original winding number

results in strong artifacts, which the regularized winding number fixes.

Relationship to Poisson surface reconstruction. We remark on a

relationship between the regularized winding number w̃Y in Equa-

tion (15), and Poisson surface reconstruction (PSR) [Kazhdan et al.

2006; Kazhdan and Hoppe 2013]; this relationship highlights the

useful geometric regularization properties of w̃Y , and its generaliza-

tion in Equation (17). Like Equation (15), PSR uses an oriented point

cloud to compute a scalar field that approximates the continuous

winding number (5) for the underlying surface Γ. This scalar field
has proven to enable robust surface reconstruction, thanks to the

regularity properties of the Poisson equation used to compute it. As

a result, PSR has become a workhorse for point-based surface re-

construction [Berger et al. 2014; Huang et al. 2024a]. Unfortunately,

using PSR in inverse rendering is prohibitively expensive, as query-

ing (and differentiating) its scalar field output requires constructing

a grid and performing a global Poisson solve operation [Peng et al.

2021]. However, we prove in Appendix A.1 the following result.

Proposition 1: Poisson surface reconstruction

The regularized winding number w̃Y is the solution to the Pois-

son equation of Kazhdan et al. [2006].

Proposition 1 shows that we can use the regularized winding

number w̃Y in Equation (15) (and its generalization in Equation (17))

as a geometry representation for inverse rendering that has the same

regularity and robustness properties as PSR, while remaining effi-

cient to render and differentiate (Section 6). Feng et al. [2023, Section

1.1.2] and Barill et al. [2018, Section 2.1] have previously discussed

the relationship between the non-regularized winding number w̃ in

Equation (5) and PSR. However, the two are equivalent only asymp-
totically, at the limit of zero-variance Gaussian blurring of normals

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

3D Reconstruction with Fast Dipole Sums • 192:7

in PSR [Kazhdan et al. 2006, Equation (2)]. By contrast, the equiva-

lence Proposition 1 is exact for all blur variances—intuitively, the
Gaussian blurring of normals in PSR is equivalent to the Gaussian

regularization of the Green’s function and Poisson kernel in Equa-

tions (11) and (12). The need to incorporate Gaussian regularization

helps resolve, both theoretically and in practice (Figure 3) perfor-

mance discrepancies between the winding number and PSR in, e.g.,

isosurface extraction [Barill et al. 2018, Section 3 & Figure 9].

4.2 Variable moment

To overcome shortcomings due to outlier points and inaccurate

normals, wemodify Equation (15) to use variable per-point weights—

thus allowing to deemphasize outliers. This modification yields a

point-based representation suitable for both the geometry field and

radiance field (Section 5.1) in inverse rendering.

To this end, we can replace the unit moment in Equation (5) with a

variable moment f : Γ → R. Its corresponding double layer potential
f : R3 → R is the scalar field [Folland 1995, Section 3.C]:

f (𝑥) ≡
∫
Γ

P(𝑥,𝑦) f (𝑦) d𝐴(𝑦) . (16)

For any sufficiently smoothmoment f , f is jump-harmonic [Krutitskii
2001]: it satisfies Laplace’s equation at 𝑥 ∈ R3 \ Γ, and has a jump

discontinuity equal to f at 𝑥 ∈ Γ, analogously to Equation (6) for w.

Using the moment values on the point cloud, f𝑚 ≡ f (p𝑚), p𝑚 ∈
P, and the regularized kernel PY to circumvent singularity issues, we

arrive at a regularized point-cloud approximation of Equation (16).
5

Regularized dipole sum for an oriented point cloud

For an oriented point P ≡ {(p𝑚, n𝑚,A𝑚)}𝑀𝑚=1
, a regularization

parameter Y ≥ 0, and a moment function with point samples

f𝑚,𝑚 = 1, . . . , 𝑀 , the corresponding regularized dipole sum w̃Y :

R3 → R is the scalar field:

f̃Y (𝑥) ≡
𝑀∑︁
𝑚=1

A𝑚 PY (𝑥, p𝑚) f𝑚 . (17)

where PY is the regularized Poisson kernel in Equation (14).

The point-cloud winding number and its regularized form in

Equations (7) and (15) are special cases, i.e., w̃ = 1̃0 and w̃Y = 1̃Y .

The regularized dipole sum maintains the advantages of the point-

cloud winding number we listed in Section 3.2, while addressing

its shortcomings. We can thus treat f𝑚, 𝑚 = 1, . . . , 𝑀 as a learnable
per-point geometry attribute, and use its corresponding dipole sum

to define a point-based representation for the geometry field:

F(𝑥) ≡ 1

2

− f̃Y (𝑥), (18)

We then convert F to a vacancy v and attenuation coefficient 𝜎 using

Equations (3) and (4). We initialize f̃Y to equal the regularized wind-

ing number w̃Y in Equation (15) by using initial geometry attribute

values f𝑚 = 1, which we then optimize during inverse rendering to

update the scene geometry (Section 5.2). Figure 4 visualizes these

5
Following Barill et al. [2018, Section 3.1] and Gotsman and Hormann [2024, Section 2],

we use the term dipole because the Poisson kernel P(𝑥, 𝑦) equals the electric potential
of a dipole centered at 𝑦 and polarized in the direction of 𝑛 (𝑦) .

initial and optimized fields on the teaser scene. Compared to the

winding number, allowing non-unit values for f𝑚 during the in-

verse rendering process serves two goals: 1. It allows the process to

diminish the influence of point cloud outliers, by decreasing their

geometry attribute f𝑚 . The point cloud insets in Figure 1 visualize

this effect, by scaling point radii by their optimized geometry at-

tribute. 2. It allows the process to modify the scene geometry (e.g., to

correct noisy point locations or holes in textureless regions) without
changing the point locations p𝑚 in P; as we explain in Section 6.3,

fixing point locations facilitates faster inverse rendering.

Stochastic point cloud interpretation. Our generalization of the

winding number w̃ in Equation (5) into the regularized dipole sum f̃Y

in Equation (17) was motivated by the need for improved robustness

when working with imperfect point clouds that include noisy and

outlier points.We canmodel such a point cloud as stochastic, treating
both point locations and normals as random variables. The winding

number of such a stochastic point cloud is itself a random variable.

We then prove the following relationship between this random

variable and the regularized dipole sum.

Proposition 2: Stochastic point cloud

We assume that P is a stochastic point cloud such that, for

each point: 1. its location is a 3D Gaussian random variable

P𝑚 ∼ N(p𝑚, Y𝐼), where 𝐼 is the 3×3 identitymatrix; 2. its normal

N𝑚 is a spherical random variable with conditional mean direc-

tion n𝑚 and mean resultant length f𝑚 , i.e., E[N𝑚 | P𝑚] = f𝑚 n𝑚 .

We also assume that all other point cloud attributes are deter-

ministic. Then, the expected value of w̃ in Equation (7) equals:

E{P𝑚,N𝑚 }𝑀𝑚=1

[w̃(𝑥)] =
𝑀∑︁
𝑚=1

A𝑚 PY (𝑥, p𝑚) f𝑚 = f̃Y . (19)

We refer to Mardia and Jupp [2009, Chapter 9] for background on

spherical random variables, and prove Proposition 2 in Appendix A.2.

Proposition 2 lends theoretical support to our use of a regularized

dipole sum to represent the geometry of point clouds P with noisy

(Y > 0) and outlier (f𝑚 ≈ 0)
6
points. It also suggests the option to

use different values Y𝑚 , or even covariance matrices Σ𝑚 , to model

varying and anisotropic per-point uncertainty [Fuhrmann and Goe-

sele 2014]. Empirically, we did not find doing so beneficial, and thus

use a global Y value that we select as we explain in Section 5.2.

5 INVERSE RENDERING WITH POINT-BASED FIELDS

We derived a point-based representation for the geometry field

in inverse rendering. To complete our inverse rendering pipeline,

we introduce a point-based representation for the radiance field

(Section 5.1), and explain how to optimize both fields (Section 5.2).

5.1 Radiance field representation

Our derivation of the regularized dipole sum in Section 4 focused

on point-based representation of scene geometry. However, Equa-

tion (17) provides a way to interpolate any learnable per-point

6
In this stochastic interpretation, f𝑚 = 0 means that the random normal N𝑚 (con-

ditional on P𝑚) is uniformly distributed on the sphere. Then, the direction of the

corresponding dipole is completely uncertain, and on expectation the dipole vanishes.

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

192:8 • Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas

winding num. vacancy attenuation coeffs.

low high

point cloud

0 1neg pos

dipole sum

viewing directions

Figure 4. We visualize on the teaser scene geometry-related field quantities that we use for inverse rendering. From left to right: the initial geometry field

with unit geometry attributes (equal to the regularized winding number in Equation (15)), the optimized geometry field with learned geometry attributes

(Equation (18)), the optimized vacancy field (Equation (3)), and attenuation coefficients computed (Equation (4)) along two different viewing directions.

attributes—corresponding to point samples of the continuous mo-

ment of a double-layer potential, or equivalently the jump-Dirichlet

boundary condition of a Laplace equation—to scalar fields for use

in inverse rendering. Thus, the regularized dipole sum lends itself

as a point-based representation also for the radiance field.

To this end, we first interpolate a set of per-point appearance
attributes ℓ𝑘 using regularized dipole sums ℓ̃

𝑘
Y (𝑥) as in Equation (17),

ℓ̃
𝑘
Y (𝑥) ≡

𝑀∑︁
𝑚=1

A𝑚 PY (𝑥, p𝑚) ℓ𝑘𝑚, 𝑘 = 1, . . . , 𝐾 . (20)

We then represent the radiance field L(𝑥, 𝜔) as the output of a

shallow multi-layer perceptron (MLP) that takes as input the values

ℓ̃
𝑘
Y (𝑥), position 𝑥 and (encoded) direction 𝜔 , and the implicit surface
normal from the geometry field nimp (𝑥) ≡ ∇ F(𝑥)/∥∇ F(𝑥) ∥:7

L(𝑥,𝜔) ≡ MLP

(
𝑥, 𝜔, nimp (𝑥), ℓ̃

1

Y (𝑥), . . . , ℓ̃
𝐾
Y (𝑥)

)
. (21)

The radiance field L and the geometry field F (Equation (18)) are inter-

twined, as the regularized dipole sums for appearance (Equation (20))

and geometry (Equation (17)) share the same weights—determined

by point cloud locations p𝑚 , area weights A𝑚 , and normals n𝑚 .

Relationship to mean value interpolation. Our use of regularized
dipole sums in Equation (20) to interpolate per-point appearance

attributes ℓ is closely related to 3D interpolation with mean value
coordinates [Floater et al. 2005; Ju et al. 2005]. Using Equations (5)

7
We experimented with a representation where the interpolated appearance attributes

ℓ̃
𝑘

Y (𝑥) are spherical harmonic coefficients that are convertible to radiance L(𝑥,𝜔)
through a rotation operation, as advocated by Karnewar et al. [2022] and Fridovich-Keil

et al. [2022]. Unfortunately, this approach, though sufficient for rendering high-quality

novel views, resulted in surface artifacts around regions of strong specular appearance.

Dai et al. [2024, Section 5] report similar issues, which they alleviate by using monocular

normal priors. We instead followed Wu et al. [2023] and used an MLP to post-process

the interpolated appearance attributes, to elide supervised data-driven priors.

and (16), we can write the mean value interpolant (and its point-

cloud approximation) at 𝑥 ∈ R3
of a function ℓ : Γ → R as:

mv
ℓ (𝑥) ≡ ℓ (𝑥)

w(𝑥) ≈
ℓ̃ (𝑥)
w̃(𝑥) . (22)

Mean value interpolation has found widespread use in computer

graphics and other areas [Hormann and Sukumar 2017; Chen et al.

2024; de Goes andDesbrun 2024], a success in large part thanks to the

geometric regularization properties of the mean value interpolant

[Ju et al. 2005, Section 2]. These properties and empirical success

lend support to our choice of (regularized) dipole sums as a point-

based representation for the radiance field. In our representation,

we omit normalization (denominator in Equation (22)), as we found

empirically that the linear precision property it enforces inhibits the

ability of the radiance field to reproduce specular highlights.

5.2 Inverse rendering optimization

Our overall scene representation comprises a point cloud P ≡{(
p𝑚, n𝑚,A𝑚, f𝑚, ℓ

1

𝑚, . . . , ℓ
𝐾
𝑚

)}𝑀
𝑚=1

with per-point locations, nor-

mals, area weights, geometry attribute, and appearance attributes;

as well as the parameters of the MLP in Equation (21). We use

this representation to compute the geometry field F (Equations (17)

and (18)) and radiance field L (Equations (20) and (21)). During the

inverse rendering stage, we synthesize images using volume ren-

dering and ray tracing (Equation (2)) combined with F and L. We

then optimize the point cloud P and MLP by minimizing the loss:

L
rendering

+ Lentropy + Lwinding
+ L

normal
, (23)

where each summand includes an appropriate weight, and:

1. L
rendering

is the 𝐿1
-loss between input and rendered images;

2. Lentropy is a per-ray entropy loss inspired from Kim et al. [2022]

(we provide details in Appendix B);

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

3D Reconstruction with Fast Dipole Sums • 192:9

Algorithm 1 Barnes-Hut accelerated primal and adjoint queries for fast dipole sums.

1: struct TreeNode
2: p̂, Â, r̂, b̂← TreeUpdate ⊲Immutable node attributes initialized using Equations (24) and (25)

3: d̂b← 0 ⊲Mutable node gradient attribute
4: function GetContribution(𝑥, Y)

5: return Â S(∥ p̂−𝑥 ∥/Y) (p̂−𝑥)/∥ p̂−𝑥 ∥3 · b̂ ⊲Compute node contribution to dipole sum using Equation (26)

6: end function
7: function IncrementGradient(d̃bY , 𝑥, Y)

8: d̂b += Â S(∥ p̂−𝑥 ∥/Y) (p̂−𝑥)/∥ p̂−𝑥 ∥3 · d̃bY ⊲Increment node gradient attribute using Equation (53)

9: end function
10: function GetChildren

11: return listOfChildrenNodes ⊲Return a list of children nodes, or empty list if node is a leaf
12: end function
Input: A query point 𝑥 , the root node of a tree structure node, a control parameter 𝛽 .
Output: Dipole sum b̃Y (𝑥).
13: function PrimalQuery(𝑥, node, Y, 𝛽)
14: if ∥𝑥 − node.̂p∥ > 𝛽 · node.̂r then return node.GetContribution(𝑥, Y) ⊲If the query point is far from the cluster, terminate
15: listOfChildrenNodes← node.GetChildren ⊲Get list of children nodes
16: if IsEmpty(listOfChildrenNodes) then return node.GetContribution(𝑥, Y) ⊲If the node is a leaf, terminate
17: b̃Y ← 0 ⊲Initialize dipole sum value
18: for child in listOfChildrenNodes do
19: b̃Y += PrimalQuery(𝑥, child, Y, 𝛽) ⊲Iterate over all children nodes
20: return b̃Y

21: end function
Input: A gradient d̃bY , a query point 𝑥 , the root node of a tree structure node, a control parameter 𝛽 .
22: function AdjointQuery(d̃bY , 𝑥, node, Y, 𝛽)

23: if ∥𝑥 − node.̂p∥ > 𝛽 · node.̂r then node.IncrementGradient(d̃bY , 𝑥, Y) return ⊲If the query point is far from the cluster, terminate
24: listOfChildrenNodes← node.GetChildren ⊲Get list of children nodes
25: if IsEmpty(listOfChildrenNodes) then node.IncrementGradient(d̃bY , 𝑥, Y) return ⊲If the node is a leaf, terminate
26: for child in listOfChildrenNodes do
27: AdjointQuery(d̃bY , 𝑥, child, Y, 𝛽) ⊲Iterate over all children nodes
28: end function

3. L
winding

aggregates losses ∥f𝑚 −1∥2 on the point cloud;

4. L
normal

aggregates losses

n𝑚 − n𝑚,init

2

on the point cloud.

The loss L
winding

regularizes the geometry field F by penalizing

large deviations between the regularized dipole sum f̃Y and the

regularized winding number w̃Y . The loss Lnormal
penalizes large

changes to point normals compared to their initial values.

We initialize P with locations p𝑚 and normals n𝑚 using the dense
point cloud output of COLMAP [Schönberger and Frahm 2016], and

area weights A𝑚 computed as in Barill et al. [2018]. We initialize the

geometry attributes f𝑚 to 1 (equal to the regularized winding num-

ber), and appearance attributes ℓ𝑘𝑚 using Gaussian random variates.

Inverse rendering optimizes: the normals, geometry attributes, and

appearance attributes of P; the global scale 𝑠 and regularization Y

parameters in Equations (3) and (14) (resp.); and the MLP parameters

in Equation (21). Importantly, we do not optimize the area weights

and locations in P, to facilitate fast inverse rendering—we elaborate
in Section 6. Instead, the geometry and appearance attributes pro-

vide us with enough degrees of freedom to represent high-quality

geometry and appearance, and correct defects (noisy points, outliers,

holes) in the dense structure-from-motion point cloud.

6 BARNES-HUT FAST SUMMATION

Rendering with our point-based representations requires evaluating
dipole sums (Equations (17) and (20)) at multiple locations along

each viewing ray, to compute the geometry (Equation (18)) and

radiance (Equation (21)) fields in Equation (1). Inverse rendering

with these representations requires additionally backpropagating
through each dipole sum, to compute derivatives of per-point at-

tributes. We term such evaluation and backpropagation operations

primal and adjoint (resp.) dipole sum queries, using terminology from

differentiable rendering [Nimier-David et al. 2020; Vicini et al. 2021;

Stam 2020]. Implemented naively (i.e., as summations by iterating

over all points), primal and adjoint queries have linear complexity

O(𝑀) relative to point cloud size𝑀 . Consequently, during inverse

rendering, these queries become the main computational burden

when working with even moderately large point clouds; and become

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

192:10 • Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas

prohibitively expensive when working with the dense point clouds

output by structure-from-motion initialization.

Fortunately, it is possible to dramatically accelerate both types

of queries, enabling inverse rendering at speeds competitive with

rasterization methods [Dai et al. 2024]. In particular, Barill et al.

[2018] show how to perform primal queries for the winding number

with logarithmic complexity O(log𝑀), using the classical Barnes-
Hut fast summation method [Barnes and Hut 1986]. We adopt their

approach, which we adapt below to regularized dipole sums. Then,

we show how to use Barnes-Hut fast summation to perform also

adjoint queries with logarithmic complexity. To simplify discussion,

throughout this section we use b as a stand-in for any of themoment
attributes stored in P—namely, the geometry attribute f and the

appearance attributes ℓ𝑘 , 𝑘 = 1, . . . , 𝐾 .

6.1 Acceleration of primal queries

The Barnes-Hut method first creates a tree data structure (e.g., octree

[Meagher 1982]) whose nodes hierarchically subdivide the point

cloud P into clusters, with leaf nodes corresponding to individual

points. Each tree node 𝑡 is assigned a centroidal radius and attributes

representative of the set L(𝑡) of all leaf nodes that are successors
of 𝑡 in the tree hierarchy. We follow Barill et al. [2018] and assign

the node area, location, area, and radius (resp.) attributes:

Â𝑡 ≡
∑︁

𝑚∈L(𝑡)
A𝑚, p̂𝑡 ≡

1

Â𝑡

∑︁
𝑚∈L(𝑡)

A𝑚 p𝑚, r̂𝑡 ≡ max

𝑚∈L(𝑡)
∥p𝑚 − p̂𝑡 ∥,

(24)

as well as vector-valued moment attributes:

b̂𝑡 ≡
1

Â𝑡

∑︁
𝑚∈L(𝑡)

A𝑚 n𝑚 b𝑚, (25)

which absorb the leaf nodes’ moment and normal attributes.

Then, for a primal query at point 𝑥 , the Barnes-Hut method

performs a depth-first tree traversal: at each node 𝑡 , if 𝑥 is sufficiently

far from the node’s centroid (i.e., ∥𝑥 − p̂𝑡 ∥ > 𝛽r𝑡 , where 𝛽 is a user-

defined parameter), the node’s successors are not visited. Instead,

the sum of contributions from all leaf nodes in L(𝑡) to the dipole

sum is approximated using the node’s attributes:∑︁
𝑚∈L(𝑡)

A𝑚 PY (𝑥, p𝑚) b𝑚 ≈ Â𝑡 S

(
∥p̂𝑡 − 𝑥 ∥

Y

)
b̂𝑡 · (p̂𝑡 − 𝑥)
∥p̂𝑡 − 𝑥 ∥3

. (26)

This approximation expresses the fact that, due to the squared-

distance falloff of PY , the far-field influence of a cluster of points can

be represented by a single point at the cluster’s centroid. Algorithm 1

(lines 13–21) summarizes the accelerated primal queries.

6.2 Acceleration of adjoint queries

A naive implementation of adjoint queries by using automatic differ-

entiation (e.g., autograd [Paszke et al. 2017]) would result in linear

complexity O(𝑀), even though the differentiated primal query has

logarithmic complexity O(log𝑀). The reason is that, even if the

primal query stopped tree traversal at a node 𝑡 , the node’s attributes

would be functions of those of all successor leaf nodes. Thus, the

adjoint query would still end up visiting all leaf nodes.

To maintain logarithmic complexity during inverse rendering, we

use at each gradient iteration a two-stage backpropagation scheme:

1. At the start of the iteration, after the tree updates, we detach
the node attributes from the corresponding leaf node attributes.

During inverse rendering, each adjoint query backpropagates

gradients to only the nodes visited by the corresponding primal

query. Each node locally accumulates rendering gradients.

2. After inverse rendering concludes, we perform a single full tree
traversal to propagate accumulated gradients from all nodes to

the leaf nodes. The resulting gradients are used to update point

cloud attributes at the end of the iteration.

This two-stage process requires storing at each tree node a set

of additional mutable gradient attributes d̂b𝑡 (one for each of the

geometry and appearance attributes), to accumulate backpropagated

gradients. Overall, if we perform a total of 𝑄 queries during each

gradient iteration, naive backpropagationwould result in complexity

O(𝑄𝑀). Our two-stage backpropagation has instead complexity

O(𝑄 log𝑀 +𝑀 log𝑀): O(𝑄 log𝑀) for the adjoint queries in the

first stage; and O(𝑀 log𝑀) for the full traversal at the second stage
(updating𝑀 leaf nodes, each with O(log𝑀) ancestors).

Algorithm 1 (lines 22–28) summarizes the accelerated adjoint

queries in the first stage, which we implement exactly analogously

to primal queries. The second stage is likewise easy to implement

automatic differentiation. We provide details in Appendix C.

6.3 Acceleration details

We conclude this section by highlighting some salient details re-

garding our Barnes-Hut acceleration scheme.

Tree construction and update. We construct the octree data struc-

ture after structure from motion, using its dense point cloud output.

The node hierarchy in the tree depends on only the point cloud lo-

cations p𝑚 . Thus, as we choose not to update these locations during

inverse rendering (Section 5.2), we create the tree structure only

once rather than after each gradient operation. Choosing otherwise

would introduce significant computational overhead.

At each iteration, we must twice update the moment attributes

b̂𝑡 of the tree nodes: once at the start of the iteration, to account

for updated point cloud attributes after a gradient step; and once at

its end, during the second-stage of backpropagation. Both updates

are efficient, introducing an overhead analogous to about a couple

additional ray casting queries during rendering.

Queries for multiple moment attributes. Primal and inverse ren-

dering with Equation (1) requires performing, at every sampled ray

location 𝑥 , dipole sum queries for all moment attributes b stored

in the point cloud—namely, the geometry attribute f and the ap-

pearance attributes ℓ𝑘 , 𝑘 = 1, . . . , 𝐾 . As the tree traversal pattern

depends on only 𝑥 , we can return all these attributes with a single

primal query and tree traversal—and likewise for adjoint queries.

Further accelerating performance by using packet queries [Wald

et al. 2014] for multiple query points 𝑥 is an exciting future direction.

7 EXPERIMENTAL EVALUATION

We evaluate our method against state-of-the-art methods for multi-

view surface reconstruction: Gaussian surfels [Dai et al. 2024], which

combines a point-based representationwith rasterization; andNeus2

[Wang et al. 2023] and Neuralangelo [Li et al. 2023], which both

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

3D Reconstruction with Fast Dipole Sums • 192:11

combine a hybrid hashgrid-neural representation with ray tracing.

All three methods aim for high-quality surface outputs, but place

different emphasis on computational efficiency (Gaussian surfels,

NeuS2) versus reconstruction fidelity (Neuralangelo). In summary,

our results suggest that our method provides, at equal runtimes,

improved reconstruction quality and robustness compared to these

alternatives. Additionally, though we do not include direct compar-

isons, our results (Table 1) additionally suggest that our method

improves reconstruction quality compared to other concurrent 3D

Gaussian methods, including 2D Gaussian splatting [Huang et al.

2024b, Table 1] and Gaussian opacity fields [Yu et al. 2024, Table 2].

We provide additional results and code on the project website.

7.1 Implementation details

We built our codebase in PyTorch [Paszke et al. 2019] based on the

NeuS codebase [Wang et al. 2021a]. We implemented custom C++

and CUDA extensions for building the octree and performing fast

primal and adjoint dipole sum queries, following the original C++

implementation of fast winding numbers [Barill et al. 2018] in libigl

[Jacobson et al. 2018]. Our code is available on the project website.

Radiance field details. We design the MLP in Equation (21) sim-

ilarly to the appearance network of NeuS [Wang et al. 2021b]—4

hidden layers, each with 256 neurons and ReLU activations. We en-

code viewing directions with real spherical harmonics up to degree

3, and use 𝐾 = 32 appearance attributes ℓ𝑘 , for which we found it

beneficial to skip the foreshortening term when computing dipole

sums (Equation (20)). We apply weight normalization [Salimans and

Kingma 2016] for stable training. We limit the radiance field inside a

bounding sphere, and use a background network based on NeRF++

[Zhang et al. 2020] to model the exterior of the sphere.

Ray sampling. We sample ray locations in Equation (2) as inMiller

et al. [2024]: For each camera ray, we identify the first zero-crossing

of the geometry field F by densely placing 1024 samples along the

ray between the near and far limits. If a zero-crossing is found, we

place 24 sparse samples between the near limit and the first crossing,

48 dense samples around the first crossing, and 8 sparse samples

between the first crossing and the far limit. Otherwise, we place 80

samples uniformly between the near and far limits.

An advantage of representing the geometry field as a dipole sum

is that we can compute the first zero-crossing along a ray efficiently

(with logarithmic complexity in terms of number of dipole sum

queries) using Harnack tracing [Gillespie et al. 2024, Section 4.3]—a

method analogous to sphere tracing for signed distance functions

[Hart 1996], except designed for (near-)harmonic functions. In prac-

tice, because our fast primal queries contribute only minor overhead

to the overall inverse rendering runtime, we found that Harnack trac-

ing provided negligible acceleration compared to the ray marching

procedure we described above; thus we use the latter for simplicity.

Training. We use Adam [Kingma and Ba 2015] with a batch size

4096 rays for optimization. We use a learning rate of 1 × 10
−2

for

point cloud attributes, and 3 × 10
−3

for the radiance field MLP. We

use a linear warmup schedule for the first 200 iterations, and a

cosine decay schedule for the remaining iterations. We use different

numbers of iterations depending on the experiment—training for

implicit surfacemeshoptimized point cloud

Figure 5. Our regularized dipole sum representation allows us to directly

ray trace the optimized point cloud (where we use color to visualize normals,

and size to visualize geometry attributes), achieving the same results as ray

tracing a mesh without the need to extract one.

1000, 3000, and 20000 iterations takes 3 min, 8 min, and 1 hour (resp.)

on a single NVIDIA RTX 4090 GPU.

Point growing. Aswementioned in Section 4.2, the use of non-unit

geometry attributes for the geometry field F helps fill point cloud

holes due to textureless regions. In practice, we found it useful to also
grow a small number of additional points during inverse rendering.

We perform point growing every 500 iterations, by sampling random

rays and computing their first intersection with the geometry field.

At each intersection, we add a point if the distance to the closest

point in the point cloud is greater than a threshold. For each new

point, we initialize its attributes by averaging those of its neighbors,

compute a normal using PCA [Hoppe et al. 1992], then recompute

the area weights of the entire point cloud. We found that we need to

grow only about 10% additional points relative to the original dense

point cloud from structure from motion, as we show in Figure 10.

Mesh extraction. We produce meshes by extracting the zero-level

set of F using marching cubes [Lorensen and Cline 1987], at a grid

resolution of 512
3
for DTU and 1024

3
for BlendedMVS.Wemake two

observations: 1. Barill et al. [2018] suggest using bisection root-find-

ing to extract meshes from the winding number field, to avoid

artifacts due to the singular Poisson kernel. By contrast, thanks to

the regularized Poisson kernel, we can extract artifact-free meshes

using marching cubes, as we show in Figure 3. 2. We need to extract

meshes only for quantitative comparisons with other methods. We

can directly and efficiently ray trace our geometry field using ray

marching with fast primal queries (and optionally Harnack tracing

[Gillespie et al. 2024]), as we show in Figure 5.

7.2 Comparison to prior work

We evaluate our method against NeuS2 [Wang et al. 2023], Gaussian

surfels [Dai et al. 2024], and Neuralangelo [Li et al. 2023], on the

DTU [Aanæs et al. 2016] and BlendedMVS [Yao et al. 2020] datasets.

We train our method, NeuS2, and Gaussian surfels without mask

supervision and evaluate their extracted meshes using the DTU

evaluation script. For each method, we present results for runtimes
of 5 minutes, 10 minutes, and 1 hour, which we measure as follows

to ensure fair comparisons: For NeuS2 and Gaussian surfels, runtime

equals training time; for our method, runtime includes the time of

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

192:12 • Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas

reference Gaussian surfels NeuS2 ours reference Gaussian surfels NeuS2 ours

Figure 6. Qualitative comparisons on the BlendedMVS (left) and DTU (right) datasets. The dashed circles indicate areas of interest. NeuS2 captures fine

details, but produces noisy meshes with structural artifacts. Gaussian surfels produces floater artifacts that require manual filtering. By contrast, our method

produces clean meshes with correct and artifact-free geometry. We provide interactive visualizations of results on the entire datasets on the project website.

the refinement process in COLMAP (which the other two methods

do not require), thus decreasing training time (e.g., about 2 minutes

COLMAP refinement and 3 minutes training for a total runtime

of 5 minutes). For Neuralangelo, we report DTU evaluation scores

from their paper, and do not report scores on BlendedMVS as on

multiple scenes it failed to produce meaningful reconstructions (e.g.,

second row of Figure 7). Lastly, we also compare against meshes

extracted using our regularized winding number (Equation (15))

on the dense point cloud output by COLMAP without training—

effectively, the initialization of our method. We provide quantitative

results in Tables 1 and 2, qualitative results in Figures 6–8, and

interactive visualizations on the project website.

Quantitatively, we observe that our method overall outperforms

Gaussian surfels and NeuS2 at all runtimes on both DTU and Blend-

edMVS. Moreover, our method consistently improves reconstruc-

tion quality with additional training time. By contrast, NeuS2 and

Gaussian surfels either stagnate or even degrade performance with

additional training time. Our method at 1 hour of runtime also out-

performs Neuralangelo at 18 hours of training on the DTU dataset.

In all cases, the quantitative improvements also translate to vi-

sual qualitative improvements on the extracted meshes. Figures 6

and 7 show some examples, but we encourage using the interac-

tive visualization on the project website to better assess qualitative

differences. Our method occasionally takes longer to recover finer

reference Neuralangelo (18 h) ours (1 h)

Figure 7. Our method produces higher-quality reconstructions than Neu-

ralangelo on DTU scenes at 1/18 of the runtime (top row). Neuralangelo fails

on BlendedMVS scenes when few views are available (bottom row).

details, because it keeps point cloud positions fixed to regularize

geometry and prevent introduction of geometric defects. Even with

this regularization, as training time increases, our method only im-

proves reconstructed geometry; and with sufficient training time,

it reliably recovers finer geometric details. Figure 8 shows some

examples visualizing the training progression of our method.

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

3D Reconstruction with Fast Dipole Sums • 192:13

Table 1. Chamfer distances on DTU for different runtimes. (N.2: Neus2, G.S.:

Gaussian surfels, N.A.: Neuralangelo, init.: regularized winding number on

the dense COLMAP point cloud without training.)

init. 5 m 10 m 18 h 1 h

ours N.2 G.S. ours N.2 G.S. ours N.A. ours

24 1.82 0.78 0.68 0.80 0.75 0.62 0.64 0.37 0.45

37 1.34 0.64 0.77 0.77 0.65 0.76 0.69 0.72 0.67

40 0.54 1.04 0.56 0.38 1.06 0.49 0.35 0.35 0.32

55 0.60 0.30 0.47 0.39 0.28 0.48 0.36 0.35 0.31

63 0.76 1.01 0.86 0.91 1.00 0.84 0.90 0.87 0.93

65 1.37 0.62 1.06 0.94 0.59 1.08 0.79 0.54 0.67

69 1.45 0.68 0.86 0.78 0.67 0.88 0.76 0.53 0.53

83 0.95 1.17 1.09 0.69 1.18 1.09 0.72 1.29 0.79

97 1.78 1.00 1.31 1.00 1.04 1.31 0.97 0.97 0.91

105 0.88 0.71 0.74 0.61 0.74 0.75 0.59 0.73 0.63

106 0.80 0.55 0.83 0.73 0.54 1.05 0.60 0.47 0.48

110 1.43 0.89 1.76 0.93 0.84 1.76 0.83 0.74 0.57

114 0.60 0.36 0.52 0.47 0.37 0.52 0.39 0.32 0.32

118 0.94 0.47 0.64 0.55 0.43 0.67 0.49 0.41 0.40

122 0.71 0.45 0.59 0.49 0.43 0.61 0.42 0.43 0.39

avg. 1.06 0.71 0.85 0.70 0.70 0.86 0.63 0.61 0.56

Table 2. Chamfer distances on BlendedMVS for different runtimes. (N.2:

Neus2, G.S.: Gaussian surfels, init.: regularized winding number on the dense

COLMAP point cloud without training; ✗ indicates failure to converge.)

init. 5 m 10 m 1 h

ours N.2 G.S. ours N.2 G.S. ours N.2 G.S. ours

bas. 0.52 0.76 0.55 0.62 0.72 0.54 0.61 0.75 0.47 0.45

bea. 0.51 0.88 0.62 0.44 0.89 0.65 0.42 0.94 0.71 0.39

bre. 1.06 0.72 0.44 0.45 0.77 0.48 0.27 0.58 0.68 0.22

cam. 0.60 0.86 0.92 0.53 0.84 0.83 0.56 0.82 0.89 0.57

clo. 0.82 1.40 1.71 0.68 1.33 1.14 0.66 1.41 1.44 0.65

cow 0.52 0.66 1.95 0.56 0.64 2.01 0.54 0.64 2.69 0.56

dog 0.98 1.22 1.53 0.77 1.23 1.54 0.69 1.21 1.71 0.61

dol. 0.84 0.74 0.85 0.70 0.71 0.87 0.70 0.70 0.84 0.75

dra. 1.86 0.96 2.46 0.83 0.91 1.75 0.66 0.97 1.58 0.50

dur. 1.22 ✗ 1.43 1.04 ✗ 1.38 1.00 ✗ 1.47 0.98

fou. 1.22 1.23 1.54 0.97 1.30 1.68 0.96 1.22 1.71 0.88

gun. 0.61 0.34 0.84 0.37 0.35 0.45 0.36 0.41 0.55 0.32

hou. 0.71 0.96 0.82 0.72 1.01 0.83 0.70 1.07 0.89 0.51

jad. 2.15 1.64 1.59 1.83 1.54 2.10 1.80 1.63 1.67 1.66

man 1.10 0.55 0.97 1.09 0.54 1.08 0.82 0.55 1.55 0.55

mon. 0.67 0.39 0.73 0.42 0.35 0.87 0.41 0.35 1.43 0.36

scu. 0.67 0.62 1.23 0.66 0.59 1.86 0.62 0.58 2.01 0.56

sto. 0.79 0.92 0.64 0.64 0.78 0.68 0.63 0.79 0.70 0.53

avg. 0.94 0.87 1.16 0.74 0.85 1.15 0.69 0.86 1.28 0.61

By contrast, the alternative methods occasionally recover finer

details earlier in training, but are prone to introducing geometric

defects that cannot be resolved with additional training time (e.g.,

NeuS2 and Gaussian surfels reconstructions of the dog head and

camera screen, in second and third row (resp.) of Figure 6). These

defects can even result in complete failure to extract a meaningful

initial reg. wn. 5 min 10 min 1 hour

Figure 8. Progression of our method on DTU (top two rows) and Blend-

edMVS (bottom two rows) scenes. The leftmost column shows the mesh

extracted from the initial regularized winding number field, and the remain-

ing columns show meshes at runtimes of 5 minutes, 10 minutes, and 1 hour.

Our method significantly improves the initial mesh within 5 minutes (3

minutes training), and continues to refine details with additional training.

mesh (e.g., Neuralangelo in second row of Figure 7). Additionally, the

alternative methods often add higher frequency details not present

in the input images (e.g., NeuS2 reconstruction of the bear first row

of Figure 6) giving the false impression of increased detail.

Lastly, our method reconstructs more accurate meshes than its ini-

tialization. Notably, this initialization already provides a high quality

3D reconstruction, and in several cases better than what NeuS2 and

Gaussian surfels after an hour of training (Table 2)! This behavior

highlights the importance of leveraging dense point cloud initializa-

tion from structure from motion in subsequent inverse rendering.

To summarize, our method overall ensures robust performance by

providing reliable geometry improvement and fine feature recovery,

and outperforms alternative methods at equal (NeuS2, Gaussian

surfels) or order-of-magnitude shorter (Neuralangelo) runtimes.

7.3 Ablation study

To evaluate the impact of different components of our method in

overall performance, we perform an ablation study using the Blend-

edMVS dataset and the same experimental protocol as in Section 7.2.

We evaluate the following variants of our method: 1. removing each

of the entropy, winding, and normal losses in Equation (23) during

inverse rendering optimization; 2. removing kernel regularization;

3. removing point growing; and 4. removing normal training and

keeping normals fixed to their initial values. We provide quantita-

tive results in Table 3. We observe that performance deteriorates in

all cases, suggesting that each of the components we consider in

this ablation study contributes positively to overall performance.

The component that has the largest impact in performance is

removing kernel regularization. We were not able to completely

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

192:14 • Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas

Table 3. Chamfer distances on BlendedMVS for ablation study. Labels indi-

cate components we remove from the full method we evaluate in Table 2.

✗ entropy

loss

winding

loss

normal

loss

kernel

reg.

point

grow.

normal

train.

avg. 0.66 0.65 0.69 0.73 0.64 0.68

remove regularization (i.e., use Y = 0 in Equation (14)), as doing

so resulted in training failures in all scenes because of numerical

errors (undefined values). Instead, we resorted to using a small

cutoff in the denominator of the Poisson kernel in Equation (9)—an

approach termed “desingularization” by Cortez [2001]. In addition

to significantly worsening quantitative scores in Table 3, using

desingularization results in extracted meshes with strong artifacts,

similar to those we show in Figure 3 for the unoptimized mesh.

7.4 Rendering with shadow rays

Compared to other fast point-based methods such as Gaussian sur-

fels [Dai et al. 2024], our method uses ray tracing instead of raster-

ization. Ray tracing provides greater flexibility than rasterization

in terms of rendering algorithms and light transport effects it can

be used for. A salient example in the context of 3D reconstruction

is rendering direct illumination via shadow rays [Ling et al. 2023]

when reconstructing scenes with known illumination—doing so is

not possible with rasterization methods. We use a synthetic example

to demonstrate that this additional flexibility translates to improve-

ments in both mesh reconstruction and novel view synthesis.

Experiment setup. We re-render the Lego scene from the NeRF

Realistic Synthetic dataset [Mildenhall et al. 2021] with Lambertian

materials and illumination from two point light sources. We render

200 images from random viewpoints and point-light positions that

vary from image to image. We process these images with COLMAP

to extract an initial dense point cloud, normals, and camera poses—

we use ground truth point light positions for each view.

Inverse rendering. Weoptimize this initialization using ourmethod

with and without shadow rays. Without shadow rays, our method

works exactly as before, using the radiance field representation of

Equation (21) to model global (direct and indirect) illumination.

With shadow rays, we augment Equation (21) to include direct

illumination terms for the two point light sources:

L
sh.rays

(𝑥, 𝜔) ≡
∑︁

𝑖=1,2
L
𝑖
d
(𝑥, 𝜔)

+MLP

(
𝑥,𝜔, nimp (𝑥), ℓ̃

1

Y (𝑥), . . . , ℓ̃
𝐾
Y (𝑥)

)
, (27)

where for each light source:

L
𝑖
d
(𝑥,𝜔) ≡ 𝛼 (𝑥) T(𝑥, 𝑙𝑖)

nimp (𝑥) · (𝑙𝑖 − 𝑥)
∥𝑙𝑖 − 𝑥 ∥3

. (28)

Here, 𝑙𝑖 is the position of the 𝑖-th light source, 𝛼 is the albedo at 𝑥 ,

and T(𝑥, 𝑙𝑖) is the exponential transmittance between 𝑥 and 𝑙𝑖 . We

compute albedo as an additional output of the MLP, and transmit-

tance using quadrature (Equation (2)) and fast queries.

Results. We compare in Figure 9 extracted meshes and images

rendered under novel lighting, after optimizing with and without

shadow rays.We observe that optimizingwith shadow rays results in

3D
 s

ha
pe

w/o shadow rays w/ shadow rays

re
lig

ht
in

g

reference w/o shadow rays w/ shadow rays

Figure 9. Comparison of extracted meshes and rendered images from train-

ing with and without shadow rays on the NeRF Realistic Synthetic Lego

scene. Optimizing with shadow rays results in extracted meshes that have

fewer artifacts and finer details. Additionally, it results in images rendered

under novel lighting that have more accurate shadows.

extracted meshes with fewer artifacts and finer details. Additionally,

the corresponding images have accurate shadows, compared to

clearly implausible shadows otherwise. These results demonstrate

that our method benefits from the generality of ray tracing, while

achieving efficiency comparable to rasterization.

8 LIMITATIONS AND DISCUSSION

We introduced the regularized dipole sum, a point-based represen-

tation for inverse rendering of 3D geometry. This representations

allows modeling, ray tracing, and optimizing both implicit geome-

try and radiance fields using point cloud attributes. Coupled with

Barnes-Hut acceleration, dipole sums enable multi-view 3D recon-

struction at speeds comparable to and reconstruction quality better

than rasterization methods, while maintaining the generality af-

forded by ray tracing. Starting from dense structure-from-motion

initialization, dipole sums additionally produce surface reconstruc-

tions of better quality than neural representations, while escaping

overfitting issues or computational overheads those encounter. We

conclude with a discussion of some limitations of our work, and the

future research directions they suggest.

Dealing with specular appearance. Both our work and prior work

studying representations other than neural (e.g., Gaussian surfels

[Dai et al. 2024] for point-based, and Voxurf [Wu et al. 2023] for

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

3D Reconstruction with Fast Dipole Sums • 192:15

final meshinitial meshpoint cloud

added
original

Figure 10. Visualization of original and added points on the point cloud for

the DTU skull scene (left), and extracted meshes from the original (middle)

and final (right) point clouds. Our point-growing method fills in regions

with large gaps in the point cloud (e.g., top of the skull) and, together with

optimized geometry attributes, fixes these gaps in the final extracted mesh.

grid-based) report difficulties producing accurate surface recon-

structions in areas of strong specular appearance. Our method and

Voxurf alleviate the issue using shallow MLPs to predict appearance

from interpolated features, which inevitably introduces a compu-

tational overhead. Gaussian surfels instead rely on data-driven pri-

ors, which in turn introduces reliance on supervised training and

generalizability issues. Previous work on neural representations

showed improved handling of specular appearance through the use

of “roughness” [Verbin et al. 2022] or “anisotropy” [Miller et al.

2024] features that are combined with spherical-harmonic radiance

representations during ray tracing. As our method also uses ray

tracing, it could adapt this approach by incorporating such features

as point attributes rather than neural network outputs.

Dealing with large textureless regions. Our method directly uses

the dense point cloud from structure-from-motion initialization,

which makes it sensitive to artifacts such as large holes and miss-

ing surfaces in that point cloud (e.g., due to textureless regions

where structure from motion fails). Our method mitigates these

artifacts through the use of learnable per-point geometry attributes

(Section 4.2) and point growing (Section 7.1), but the resulting re-

construction of very large textureless regions can still be noisy—

Figure 10 shows an example. Adoptingmore elaborate point growing

procedures from prior work [Xu et al. 2022; Kerbl et al. 2023] could

enable our technique to more effective mitigate such artifacts.

Global illumination and surface rendering. Our dipole sum repre-

sentation is designed for efficient ray tracing. Thus, it is compatible,

in principle, with more general (primal and differentiable) rendering

algorithms. We have demonstrated this compatibility only in a re-

stricted fashion, through a combination of dipole sums with shadow

rays for direct illumination estimation (Section 7). Additionally, we

focused on volume rendering, but our dipole sum representation is

also compatible with surface rendering formulations, which lead to

improved surface reconstruction [Cai et al. 2022; Luan et al. 2021]

at the cost of needing to account for visibility discontinuities in the

represented implicit surface [Vicini et al. 2022; Bangaru et al. 2022].

In the future, it would be interesting to investigate combinations of

dipole sums with other direct illumination [Bitterli et al. 2020] and

global illumination [Pharr et al. 2023] algorithms, in both volume

and surface rendering formulations.

Applications beyond 3D reconstruction. We evaluated our point-

based representation only in the narrow context of inverse rendering

for 3D reconstruction. However, representations such as our dipole

sum—comprising a tailored combination of point cloud attributes,

an interpolation kernel, and fast summation queries—can be useful

more broadly for a variety of graphics and vision tasks, analogously

to multiresolution hashgrids [Müller et al. 2022]. Broader adoption

could be facilitated by investigation of alternative fast summation

methods [Beatson et al. 1997], and data-driven optimization of in-

terpolation kernels [Chen et al. 2023; Ryan et al. 2022].

ACKNOWLEDGMENTS

We thank Keenan Crane, Rohan Sawhney, and Nicole Feng for many

helpful discussions, and the authors of Dai et al. [2024]; Wang et al.

[2023]; Li et al. [2023] for help running experimental comparisons.

This work was supported by NSF award 1900849, NSF Graduate

Research Fellowship DGE2140739, an NVIDIA Graduate Fellowship

for Miller, and a Sloan Research Fellowship for Gkioulekas.

REFERENCES

Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and An-

ders Bjorholm Dahl. 2016. Large-Scale Data for Multiple-View Stereopsis. In-
ternational Journal of Computer Vision (2016).

Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, StevenM

Seitz, and Richard Szeliski. 2011. Building rome in a day. Commun. ACM (2011).

Sai Praveen Bangaru, Michael Gharbi, Fujun Luan, Tzu-Mao Li, Kalyan Sunkavalli,

Milos Hasan, Sai Bi, Zexiang Xu, Gilbert Bernstein, and Fredo Durand. 2022. Differ-

entiable rendering of neural sdfs through reparameterization. In ACM SIGGRAPH
Asia Conference Papers.

Gavin Barill, Neil G Dickson, Ryan Schmidt, David IW Levin, and Alec Jacobson. 2018.

Fast winding numbers for soups and clouds. ACM Trans. Graph. 37, 4 (2018), 1–12.
Josh Barnes and Piet Hut. 1986. A hierarchical O (N log N) force-calculation algorithm.

Nature (1986).
James Thomas Beale, Wenjun Ying, and Jason R Wilson. 2016. A simple method for

computing singular or nearly singular integrals on closed surfaces. Communications
in Computational Physics (2016).

Rick Beatson, Leslie Greengard, et al. 1997. A short course on fast multipole methods.

Wavelets, multilevel methods and elliptic PDEs (1997).
Alexander Belyaev, Pierre-Alain Fayolle, and Alexander Pasko. 2013. Signed Lp-distance

fields. Computer-Aided Design (2013).

Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Joshua A Levine,

Andrei Sharf, and Claudio T Silva. 2014. State of the art in surface reconstruction

from point clouds. In Eurographics State of the Art Reports.
Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan,

Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020a. Neural

reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 (2020).
Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David

Kriegman, and Ravi Ramamoorthi. 2020b. Deep reflectance volumes: Relightable

reconstructions from multi-view photometric images. In European Conference on
Computer Vision. Springer.

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech

Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with

dynamic direct lighting. ACM Trans. Graph. (2020).
Guangyan Cai, Kai Yan, Zhao Dong, Ioannis Gkioulekas, and Shuang Zhao. 2022.

Physics-based inverse rendering using combined implicit and explicit geometries.

In Computer Graphics Forum.

Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell, W Richard Fright,

Bruce C McCallum, and Tim R Evans. 2001. Reconstruction and representation of

3D objects with radial basis functions. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques.

Jiong Chen, Florian Schaefer, and Mathieu Desbrun. 2024. Lightning-fast Method of

Fundamental Solutions. ACM Trans. Graph. (2024).
Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi Yu, Junsong Yuan, and Yi Xu.

2023. Neurbf: A neural fields representation with adaptive radial basis functions. In

IEEE/CVF International Conference on Computer Vision.
Ricardo Cortez. 2001. The method of regularized Stokeslets. SIAM Journal on Scientific

Computing (2001).

Ricardo Cortez, Lisa Fauci, and Alexei Medovikov. 2005. The method of regularized

Stokeslets in three dimensions: analysis, validation, and application to helical swim-

ming. Physics of Fluids (2005).
Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian Theobalt.

2017. Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

192:16 • Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas

surface reintegration. ACM Trans. Graph. (2017).
PinxuanDai, Jiamin Xu,Wenxiang Xie, Xinguo Liu, HuaminWang, andWeiwei Xu. 2024.

High-quality Surface Reconstruction using Gaussian Surfels. In ACM SIGGRAPH
Conference Papers.

Fernando de Goes and Mathieu Desbrun. 2024. Stochastic Computation of Barycentric

Coordinates. ACM Trans. Graph. (2024).
Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. 2022. Depth-supervised

nerf: Fewer views and faster training for free. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition.

Lawrence C Evans. 2022. Partial differential equations. American Mathematical Society.

Nicole Feng, Mark Gillespie, and Keenan Crane. 2023. Winding Numbers on Discrete

Surfaces. ACM Trans. Graph. (2023).
Michael S Floater, Géza Kós, and Martin Reimers. 2005. Mean value coordinates in 3D.

Computer Aided Geometric Design (2005).

Gerald B Folland. 1995. Introduction to partial differential equations. Princeton University
Press.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and

Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural networks. In

IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Qiancheng Fu, Qingshan Xu, Yew-Soon Ong, and Wenbing Tao. 2022. Geo-Neus:

Geometry-Consistent Neural Implicit Surfaces Learning for Multi-view Reconstruc-

tion. In Advances in Neural Information Processing Systems.
Simon Fuhrmann and Michael Goesele. 2014. Floating scale surface reconstruction.

ACM Trans. Graph. (2014).
Mark Gillespie, Denise Yang, Mario Botsch, and Keenan Crane. 2024. Ray Tracing

Harmonic Functions. ACM Trans. Graph. (2024).
Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural

networks. In International Cconference on Artificial Intelligence and Statistics.
Craig Gotsman and Kai Hormann. 2024. A Linear Method to Consistently Orient

Normals of a 3D Point Cloud. In ACM SIGGRAPH Conference Papers.
Antoine Guédon and Vincent Lepetit. 2023. SuGaR: Surface-Aligned Gaussian Splatting

for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering. arXiv
preprint arXiv:2311.12775 (2023).

Jun Han and Claudio Moraga. 1995. The influence of the sigmoid function parameters

on the speed of backpropagation learning. In International Workshop on Artificial
Neural Networks.

John C Hart. 1996. Sphere tracing: A geometric method for the antialiased ray tracing

of implicit surfaces. The Visual Computer (1996).
Richard Hartley and Andrew Zisserman. 2003. Multiple view geometry in computer

vision. Cambridge university press.

Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. 2022. Shape, Light, and

Material Decomposition from Images using Monte Carlo Rendering and Denoising.

In Advances in Neural Information Processing Systems.
Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.

1992. Surface reconstruction from unorganized points. In Proceedings of the 19th
annual conference on computer graphics and interactive techniques.

Kai Hormann and N Sukumar. 2017. Generalized barycentric coordinates in computer
graphics and computational mechanics. CRC press.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2024b. 2D

Gaussian Splatting for Geometrically Accurate Radiance Fields. In ACM SIGGRAPH
Conference Papers.

Zhangjin Huang, Yuxin Wen, Zihao Wang, Jinjuan Ren, and Kui Jia. 2024a. Surface

reconstruction from point clouds: A survey and a benchmark. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2024).

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside

segmentation using generalized winding numbers. ACM Trans. Graph. (2013).
Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing

library. https://libigl.github.io/.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed

triangular meshes. ACM Trans. Graph. (2005).
Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy Mitra. 2022. Relu fields:

The little non-linearity that could. In ACM SIGGRAPH Conference Proceedings.
Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface recon-

struction. In Eurographics Symposium on Geometry processing.
Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.

ACM Trans. Graph. (2013).
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.

3d Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph.
(2023).

Mijeong Kim, Seonguk Seo, and BohyungHan. 2022. Infonerf: Ray entropyminimization

for few-shot neural volume rendering. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In International Conference on Learning Representations.
Pavel A Krutitskii. 2001. The jump problem for the Laplace equation. Applied Mathe-

matics Letters (2001).

Fabian Langguth, Kalyan Sunkavalli, Sunil Hadap, and Michael Goesele. 2016. Shading-

aware multi-view stereo. In European Conference on Computer Vision. Springer.
Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath, Ming-

Yu Liu, and Chen-Hsuan Lin. 2023. Neuralangelo: High-Fidelity Neural Surface

Reconstruction. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Siyou Lin, Dong Xiao, Zuoqiang Shi, and Bin Wang. 2022. Surface Reconstruction from

Point Clouds without Normals by Parametrizing the Gauss Formula. ACM Trans.
Graph. (2022).

Jingwang Ling, ZhiboWang, and Feng Xu. 2023. Shadowneus: Neural sdf reconstruction

by shadow ray supervision. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

Yaron Lipman. 2021. Phase Transitions, Distance Functions, and Implicit Neural Repre-

sentations. In International Conference on Machine Learning.
Matthew M Loper and Michael J Black. 2014. OpenDR: An approximate differentiable

renderer. In European Conference on Computer Vision. Springer.
William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution

3D Surface Construction Algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques.

Wenjia Lu, Zuoqiang Shi, Jian Sun, and Bin Wang. 2018. Surface Reconstruction Based

on the Modified Gauss Formula. ACM Trans. Graph. (2018).
Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. 2021. Unified shape and svbrdf

recovery using differentiable monte carlo rendering. In Computer Graphics Forum.

Kanti V Mardia and Peter E Jupp. 2009. Directional statistics. John Wiley & Sons.

Stephen Robert Marschner. 1998. Inverse rendering for computer graphics. Cornell

University.

Nelson Max. 1995. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics (1995).

Donald Meagher. 1982. Geometric modeling using octree encoding. Computer graphics
and image processing (1982).

Gal Metzer, Rana Hanocka, Denis Zorin, Raja Giryes, Daniele Panozzo, and Daniel

Cohen-Or. 2021. Orienting point clouds with dipole propagation. ACM Trans. Graph.
(2021).

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2021. NeRF: Representing scenes as neural radiance fields

for view synthesis. Commun. ACM (2021).

Bailey Miller, Hanyu Chen, Alice Lai, and Ioannis Gkioulekas. 2024. Objects as volumes:

A stochastic geometry view of opaque solids. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph.
(2022).

Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden,

Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: an open-source data

structure and toolkit for high-resolution volumes. In ACM SIGGRAPH courses.
Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, andWenzel Jakob. 2020. Radiative

backpropagation: An adjoint method for lightning-fast differentiable rendering.

ACM Trans. Graph. (2020).
Michael Oechsle, Songyou Peng, and Andreas Geiger. 2021. Unisurf: Unifying neural

implicit surfaces and radiance fields for multi-view reconstruction. In IEEE/CVF
International Conference on Computer Vision.

Onur Özyeşil, Vladislav Voroninski, Ronen Basri, and Amit Singer. 2017. A survey of

structure from motion. Acta Numerica (2017).
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-

matic differentiation in pytorch. (2017).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems 32 (2019).

Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas

Geiger. 2021. Shape as points: A differentiable poisson solver. Advances in Neural
Information Processing Systems (2021).

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically based rendering: From
theory to implementation. MIT Press.

John P Ryan, Sebastian E Ament, Carla P Gomes, and Anil Damle. 2022. The fast kernel

transform. In International Conference on Artificial Intelligence and Statistics. PMLR.

Tim Salimans and Durk P Kingma. 2016. Weight normalization: A simple reparameteri-

zation to accelerate training of deep neural networks. Advances in neural information
processing systems (2016).

Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion

Revisited. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. 2016.

Pixelwise view selection for unstructured multi-view stereo. In European Conference
on Computer Vision.

Noah Snavely, Steven M Seitz, and Richard Szeliski. 2006. Photo tourism: exploring

photo collections in 3D. In ACM SIGGRAPH papers.

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

3D Reconstruction with Fast Dipole Sums • 192:17

Noah Snavely, Steven M Seitz, and Richard Szeliski. 2008. Modeling the world from

internet photo collections. International journal of computer vision (2008).

Jacob Spainhour, David Gunderman, and Kenneth Weiss. 2024. Robust Containment

Queries over Collections of Rational Parametric Curves via Generalized Winding

Numbers. ACM Trans. Graph. (2024).
Jos Stam. 2020. Computing Light Transport Gradients using the Adjoint Method. arXiv

preprint arXiv:2006.15059 (2020).
Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, Wang

Yifan, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lom-

bardi, et al. 2022. Advances in neural rendering. In Computer Graphics Forum.

Carlo Tomasi and Takeo Kanade. 1990. Shape and motion without depth. In Proceedings
of the DARPA Image Understanding Workshop.

Shimon Ullman. 1979. The interpretation of structure from motion. Proceedings of the
Royal Society of London. Series B. Biological Sciences (1979).

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and

Pratul P Srinivasan. 2022. Ref-NeRF: Structured view-dependent appearance for

neural radiance fields. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

Dor Verbin, Ben Mildenhall, Peter Hedman, Jonathan T Barron, Todd Zickler, and

Pratul P Srinivasan. 2024. Eclipse: Disambiguating illumination and materials

using unintended shadows. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path replay backpropagation:

Differentiating light paths using constant memory and linear time. ACM Trans.
Graph. (2021).

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable signed distance

function rendering. ACM Trans. Graph. (2022).
Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014.

Embree: a kernel framework for efficient CPU ray tracing. ACM Trans. Graph.
(2014).

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping

Wang. 2021a. NeuS codebase. https://github.com/Totoro97/NeuS.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping

Wang. 2021b. NeuS: Learning neural implicit surfaces by volume rendering for

multi-view reconstruction. Advances in Neural Information Processing Systems
(2021).

Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and

Lingjie Liu. 2023. NeuS2: Fast Learning of Neural Implicit Surfaces for Multi-view

Reconstruction. In IEEE/CVF International Conference on Computer Vision.
Chenglei Wu, Bennett Wilburn, Yasuyuki Matsushita, and Christian Theobalt. 2011.

High-quality shape from multi-view stereo and shading under general illumination.

In IEEE Conference on Computer Vision and Pattern Recognition.
Tong Wu, Jiaqi Wang, Xingang Pan, Xudong Xu, Christian Theobalt, Ziwei Liu, and

Dahua Lin. 2023. Voxurf: Voxel-based Efficient and Accurate Neural Surface Recon-

struction. In International Conference on Learning Representations.
Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and

Ulrich Neumann. 2022. Point-nerf: Point-based neural radiance fields. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition.

Rui Xu, Zhiyang Dou, Ningna Wang, Shiqing Xin, Shuangmin Chen, Mingyan Jiang,

Xiaohu Guo, Wenping Wang, and Changhe Tu. 2023. Globally consistent normal

orientation for point clouds by regularizing the winding-number field. ACM Trans.
Graph. (2023).

Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and

Long Quan. 2020. BlendedMVS: A Large-scale Dataset for Generalized Multi-view

Stereo Networks. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020).

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of neural

implicit surfaces. Advances in Neural Information Processing Systems 34 (2021).
Zehao Yu, Torsten Sattler, and Andreas Geiger. 2024. Gaussian opacity fields: Effi-

cient and compact surface reconstruction in unbounded scenes. arXiv preprint
arXiv:2404.10772 (2024).

Lyubomir G Zagorchev and Arthur Ardeshir Goshtasby. 2011. A curvature-adaptive

implicit surface reconstruction for irregularly spaced points. IEEE Transactions on
Visualization and Computer Graphics (2011).

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. NeRF++: Analyzing

and Improving Neural Radiance Fields. arXiv:2010.07492 (2020).
Michael Zollhöfer, Angela Dai, Matthias Innmann, Chenglei Wu, Marc Stamminger,

Christian Theobalt, and Matthias Nießner. 2015. Shading-based refinement on

volumetric signed distance functions. ACM Trans. Graph. (2015).
Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. 2002. EWA

splatting. IEEE Transactions on Visualization and Computer Graphics (2002).

A PROOFS

We prove the two propositions we presented in Section 4.

A.1 Proof of Proposition 1

Poisson surface reconstruction computes a scalar field as the solution

to the following Poisson equation [Kazhdan et al. 2006, Section 3]:
8

Δ u(𝑥) = −∇ · N(𝑥), 𝑥 ∈ R3, (29)

where the normal field N : R3 → R3
in the right-hand side equals:

N(𝑥) ≡
𝑀∑︁
𝑚=1

𝜙Y (𝑥 − p𝑚) A𝑚 n𝑚, (30)

and 𝜙Y is the Gaussian function in Equation (13). As the domain of

Equation (29) is R3
, which is unbounded: 1. existence of a solution

requires that the right-hand side term decays sufficiently fast, which

is true for ∇ · N thanks to the Gaussians in Equation (30); 2. unique-

ness of that solution requires imposing a condition at infinity, and as

u should approximate the indicator in Equation (6), the appropriate

condition is that |u| → 0 as ∥𝑥 ∥ → ∞. Under these conditions,

the solution of Equation (29) equals the Newtonian potential with
moment ∇ · N [Evans 2022, Section 2.2.1.b, Theorem 1]:

u(𝑥) = −
∫
R3

G(𝑥,𝑦)∇𝑦 · N(𝑦) d𝑦. (31)

From Equation (30), this solution becomes:

u(𝑥) = −
𝑀∑︁
𝑚=1

A𝑚

≡g𝑚 (𝑥)︷ ︸︸ ︷∫
R3

G(𝑥,𝑦)∇𝑦 · 𝜙Y (𝑦 − p𝑚) n𝑚 d𝑦 . (32)

We consider each of the𝑀 integrals separately. Denoting byB(𝑥, 𝑅) ⊂
R3

the ball with center 𝑥 and radius 𝑅, we have:

g𝑚 (𝑥) = lim

𝑅→∞

∫
B(𝑥,𝑅)

G(𝑥,𝑦)∇𝑦 · 𝜙Y (𝑦 − p𝑚) n𝑚 d𝑦 (33)

= lim

𝑅→∞

{ ∫
𝜕 B(𝑥,𝑅)

G(𝑥,𝑦)𝜙Y (𝑦 − p𝑚) n𝑚 ·𝑦−𝑥/𝑅 d𝐴(𝑦)

−
∫

B(𝑥,𝑅)
∇𝑦 G(𝑥,𝑦) · n𝑚 𝜙Y (𝑦 − p𝑚) d𝑦

}
(34)

= 0 +
∫
R3

∇𝑥 G(𝑥,𝑦) · n𝑚 𝜙Y (𝑦 − p𝑚) d𝑦 (35)

= ∇𝑥 GY (𝑥 − p𝑚) · n𝑚 (36)

= − PY (𝑥, p𝑚) . (37)

In this sequence: (33) reexpresses the unbounded integration do-

main; (34) uses integration by parts; (35) uses the distributive prop-

erty of limits and the facts that G(𝑥,𝑦)𝜙Y (𝑦 − p𝑚) = 𝑜 (∥𝑦 − 𝑥 ∥−2)
and ∇𝑦 G(𝑥,𝑦) = −∇𝑥 G(𝑥,𝑦); (36) follows from the definition in

(12) and the properties of the Green’s function; and (37) follows

from the definition in (11). Then, from Equations (15), (32) and (37),

u(𝑥) =
𝑀∑︁
𝑚=1

A𝑚 PY (𝑥, p𝑚) = w̃Y (𝑥). (38)

This concludes our proof. We note two differences with the numeri-

cal implementation of PSR by Kazhdan et al. [2006]:

8
The minus sign at the right-hand side is because we use outward normals, whereas

Kazhdan et al. [2006] use inward ones.

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

https://github.com/Totoro97/NeuS

192:18 • Hanyu Chen, Bailey Miller, and Ioannis Gkioulekas

1. To make the Poisson equation (29) amenable to a linear-system

solver, Kazhdan et al. [2006] impose Dirichlet boundary condi-

tions on a bounding volume of the point cloud. For the true indi-

cator function in Equation (6), these conditions and our condition

that u→ 0 at infinity are equivalent. However, for point-cloud

approximations, they are not equivalent and the choice between

them is arbitrary [Kazhdan and Hoppe 2013, Section 4.4].

2. Kazhdan et al. [2006] suggest variable per-point standard devia-

tions Y𝑚 . Proposition 1 still holds in that case, except using Y𝑚 in

Equation (15). We comment on this suggestion in Section 4.2.

A.2 Proof of Proposition 2

Under the assumptions of Proposition 2, we have from Equation (7):

E{P𝑚,N𝑚 }𝑀𝑚=1

[w̃(𝑥)]=
𝑀∑︁
𝑚=1

A𝑚 EP𝑚,N𝑚
[P(𝑥, P𝑚)] (39)

=

𝑀∑︁
𝑚=1

A𝑚 ·EP𝑚

[
EN𝑚
[P(𝑥, P𝑚) | P𝑚]

]
(40)

=

𝑀∑︁
𝑚=1

A𝑚 EP𝑚

[
EN𝑚
[N𝑚∇G(𝑥, P𝑚) | P𝑚]

]
(41)

=

𝑀∑︁
𝑚=1

A𝑚 EP𝑚
[f𝑚 n𝑚 ∇G(𝑥, P𝑚)] (42)

=

𝑀∑︁
𝑚=1

A𝑚 n𝑚 ∇EP𝑚
[G(𝑥, P𝑚)] f𝑚 (43)

=

𝑀∑︁
𝑚=1

A𝑚 n𝑚 ∇GY (𝑥, p𝑚) f𝑚 (44)

=

𝑀∑︁
𝑚=1

A𝑚 PY (𝑥, p𝑚) f𝑚 (45)

= f̃Y . (46)

In this sequence: (39) follows from linearity of expectation; (40)

follows from the law of total expectation; (41) follows from the

definition in (9); (42) follows from the assumptions on N𝑚 ; (43)

follows from the fact that differentiation and expectation commute;

(45) follows from the definition in (11); and (46) follows from the

definition in Equation (17). The only non-trivial step is (44). From

the assumption that P𝑚 is a Gaussian random variable, we have (up

to a constant scale that we omit for simplicity):

EP𝑚
[G(𝑥, P𝑚)] ∝

∫
𝑦∈R3

G(𝑥,𝑦) exp

(
− ∥𝑥 − 𝑦∥

2

2Y2

)
d𝑦 (47)

∝
∫
𝑦∈R3

G(𝑥,𝑦)𝜙Y (𝑥 − 𝑦) d𝑦 (48)

= GY (𝑥,𝑦), (49)

where (48) follows from the definition in (13). The step (49) follows

from the fact that (46) is equivalent, by the properties of the Green’s

function, to the solution of the partial differential equation in (12).

B ENTROPY LOSS

The free-flight distribution [Miller et al. 2024] of a ray 𝑟𝑜,𝑣 (𝜏),

𝑝ff

𝑜,𝑣 (𝜏) ≡ exp

(
−

∫ 𝜏

0

𝜎
(
𝑟𝑜,𝑣 (𝑡), 𝑣

)
d𝑡

)
𝜎
(
𝑟𝑜,𝑣 (𝜏), 𝑣

)
, (50)

is the probability density function for a first intersection occurring

at 𝜏 . For surface-like volumes, the free-flight distribution should ap-

proximate a Dirac delta. We can encourage such behavior by penal-

izing the Shannon entropy of the free-flight distribution along each

ray—low entropy favors peaked unimodal distributions. To do so, we

use quadrature (Equation (2)) to form a discrete approximation of the

free-flight distribution at the ray samples 𝜏n = 𝜏0 < · · · < 𝜏𝐽 = 𝜏f
:

𝑝 𝑗 ≡ exp

(
−

𝑗∑︁
𝑖=1

𝜎𝑖Δ𝑖

) (
1 − exp

(
𝜎 𝑗Δ 𝑗

))
. (51)

We then compute the Shannon entropy of the vector

[
𝑝1, . . . , 𝑝 𝐽

]
,

𝐻 (𝑜, 𝑣) ≡ −
𝐽∑︁
𝑗=1

𝑝 𝑗 log 𝑝 𝑗 . (52)

We accumulate such entropies for all rays in the loss Lentropy.

C BACKPROPAGATION DETAILS

As in Section 6, throughout this section we use b as a stand-in for

any of the moment attributes stored in P—namely, the geometry

attribute f and the appearance attributes ℓ𝑘 , 𝑘 = 1, . . . , 𝐾 . As we

discuss in Section 6.3, in practice we implement the backpropagation

operations in Equations (25) and (53) for all these attributes as vector

operations updating all attributes in parallel.

Backpropagation to nodes. An adjoint query backpropagates a

derivative d̃bY (𝑥)—provided by differentiable rendering—to all tree

nodes that contributed to this dipole sum during the correspond-

ing primal query. At each such node 𝑡 , the query increments the

(vector-valued) gradient attribute d̂b𝑡 by an amount that follows

from differentiating Equation (26):

Â𝑡 S

(
∥p̂𝑡 − 𝑥 ∥

Y

)
p̂𝑡 − 𝑥
∥p̂𝑡 − 𝑥 ∥3

· d̃bY (𝑥) . (53)

Second-stage backpropagation to leaf nodes. This stage backprop-
agates accumulated gradient attributes d̂b𝑡 from all nodes to leaf

nodes corresponding to individual points p𝑚,𝑚 = 1, . . . , 𝑀 in P.
For each such leaf node, we denote by A(𝑚) the set of its ancestor
nodes in the tree. Then, by differentiating Equation (25), we can

express this backpropagation stage as simply:

db𝑚 =
∑︁

𝑡 ∈A(𝑚)

A𝑚

Â𝑡

n𝑚 d̂b𝑡 . (54)

Each leaf node has O(log𝑀) ancestors, thus total complexity of the

second stage is O(𝑀 log𝑀). In practice we implement Equation (54)

as a matrix-vector multiplication that has negligible cost.

ACM Trans. Graph., Vol. 43, No. 6, Article 192. Publication date: December 2024.

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Inverse volume rendering with radiance fields
	3.2 Winding number

	4 Regularized dipole sums
	4.1 Regularization
	4.2 Variable moment

	5 Inverse rendering with point-based fields
	5.1 Radiance field representation
	5.2 Inverse rendering optimization

	6 Barnes-Hut fast summation
	6.1 Acceleration of primal queries
	6.2 Acceleration of adjoint queries
	6.3 Acceleration details

	7 Experimental evaluation
	7.1 Implementation details
	7.2 Comparison to prior work
	7.3 Ablation study
	7.4 Rendering with shadow rays

	8 Limitations and discussion
	Acknowledgments
	References
	A Proofs
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2

	B Entropy loss
	C Backpropagation details

