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c = ∫ L(x(t)) σ(x(t)) e ∫ σ(x(s)) ds dt

volume rendering equation:
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f(x) = ∑ Pε (x, yi, ̂ni) ⋅ fi

ℓ (x) = ∑ Pε (x, yi, ̂ni) ⋅ ℓ i

volume rendering

geometry

appearance
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autodiff:             

our method: 

O(N ⋅ M)

O((N + M) ⋅ log M)
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importance of geometric regularization

reference neuralangelo (14 hrs) ours (10 mins)
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code & data 
available on our 
website!

https://imaging.cs.cmu.edu/
fast_dipole_sums/  

extensive 
visualizations & 
additional results

https://imaging.cs.cmu.edu/fast_dipole_sums/
https://imaging.cs.cmu.edu/fast_dipole_sums/

