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Abstract—Given images of translucent objects, of unknown shape and lighting, we aim to use learning to infer the optical parameters
controlling subsurface scattering of light inside the objects. We introduce a new architecture, the inverse transport network (ITN), that
aims to improve generalization of an encoder network to unseen scenes, by connecting it with a physically-accurate, differentiable
Monte Carlo renderer capable of estimating image derivatives with respect to scattering material parameters. During training, this
combination forces the encoder network to predict parameters that not only match groundtruth values, but also reproduce input
images. During testing, the encoder network is used alone, without the renderer, to predict material parameters from a single input
image. Drawing insights from the physics of radiative transfer, we additionally use material parameterizations that help reduce
estimation errors due to ambiguities in the scattering parameter space. Finally, we augment the training loss with pixelwise weight
maps that emphasize the parts of the image most informative about the underlying scattering parameters. We demonstrate that this
combination allows neural networks to generalize to scenes with completely unseen geometries and illuminations better than traditional
networks, with 38.06% reduced parameter error on average.

Index Terms—subsurface scattering, inverse scattering, differentiable rendering, inverse transport networks
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1 INTRODUCTION

Translucent materials are everywhere around us, ranging from
biological tissues to many industrial chemicals, and from the
atmosphere and clouds to minerals. The common cause of the
characteristic appearance of all these classes of materials is sub-
surface scattering: As photons reach the surface of a translucent
object, they continue traveling in its interior, where they scatter,
potentially multiple times, before reemerging outside the object.

The ubiquity of translucency has motivated decades of re-
search across numerous scientific fields on problems relating
to subsurface scattering. Broadly speaking, we can break these
problems down into two categories. The first category is forward
scattering problems, which attempt to predict the appearance of a
translucent object, assuming that the optical parameters control-
ling scattering of light at its interior are known. Computer vision
and computer graphics offer an array of algorithms for solving this
problem, known in this literature as volume rendering, including
Monte Carlo rendering algorithms that can reproduce translucent
appearance in a physically-accurate way [1].

The second category, and the focus of this paper, is inverse
scattering problems: Given images of a translucent object, they
attempt to predict its underlying scattering parameters. Inverse
scattering is an active research topic in many sciences outside
of computer vision and computer graphics, including medical
imaging, remote sensing, and material science. The fundamental
challenge in inverse scattering is the extremely multi-path and
multi-bounce nature of light propagation inside scattering vol-
umes. The complexity of volume light transport makes inverse
scattering a difficult problem even in the case where an object
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is characterized by a single set of, spatially-constant, material
parameters (homogeneous scattering).

Among existing approaches for inverse scattering, many are
based on simplifying assumptions about volume light transport,
such as single scattering (all photons scatter once) and diffu-
sion (all photons scatter a very large number of times). These
assumptions limit the applicability of these methods to very
optically-thin and thick materials [2], [3], excluding large classes
of important turbid materials. Alternatively, recent years have seen
the development of general-purpose inverse scattering techniques,
which combine analysis by synthesis and Monte Carlo volume
rendering in order to accurately estimate material parameters
without the need for simplifications [4], [5], [6], [7], [8]. Despite
their broad applicability, these techniques can be prohibitively
computationally expensive: processing measurements of a new
material often requires performing hundreds of expensive Monte
Carlo rendering operations.

We investigate the use of deep learning techniques for inverse
scattering problems, as a means to address the computational
challenges of analysis by synthesis, while maintaining its broad
applicability. We are inspired by recent successes of such tech-
niques in other inverse rendering problems [9], [10], such as in-
ferring shape, reflectance, and illumination from images [11], [12],
[13], [14]. Despite these successes, the use of neural networks for
inverse scattering remains unexplored, and we take first steps in
this direction.

We begin by proposing a physics-aware learning pipeline that
we term inverse transport networks (ITN), which aims to combine
the computational efficiency of learning-based approaches with
the generality of analysis by synthesis approaches for inverse
scattering. Taking inspiration from recent work on combining
physics and learning [11], [12], [13], [14], [15], these neural
networks are trained to produce output parameters that not only
match groundtruth values, but also reproduce the input images
when used as input to a forward physics-based renderer. To be



able to train these neural networks efficiently, we pair them with
a new efficient and physically-accurate Monte Carlo differentiable
rendering engine [5], [6], [7], [16]. We further tailor these neural
networks towards inverse scattering, by taking into account results
from the radiative transfer literature, characterizing the conditions
under which different scattering materials can produce similar
translucent appearance [17], [18]. We introduce ways for making
our networks robust to these ambiguities, including the use of non-
linear material parameterizations, and weight maps emphasizing
pixels where these ambiguities are weaker. We demonstrate the
effectiveness of our networks in experiments on synthetic and
real datasets, where we show that our networks can use a single
uncalibrated (completely unknown shape and illumination) image
input, to produce material parameter estimates that are on average
38.06% more accurate than those produced by baseline regression
networks. Furthermore, images rendered with our predictions are
on average 53.82% closer to the groundtruth. We release all of
our implementations and datasets, to facilitate reproducibility and
follow-up research [19].

2 RELATED WORK

Subsurface scattering. Forward scattering, also known as volume
rendering, algorithms in computer vision and computer graphics
are predominantly based on the radiative transfer framework [20].
Existing techniques include Monte Carlo volume rendering and
photon mapping algorithms [1]. Inverse scattering techniques in-
clude approaches relying on single-scattering approximations [2],
[21], [22], [23], which are appropriate for optically thin media;
as well as diffusion-based approaches [3], [24], [25], [26], [27],
[28], [29], [30], suitable for optically thick media. Intermediate
cases, so-called turbid scattering, can be tackled using techniques
based on combinations of analysis by synthesis and differentiable
Monte Carlo rendering, as discussed below. Recently, deep learn-
ing techniques have been used to accelerate forward scattering
simulation [31], [32]. To the best of our knowledge, we are the
first to consider deep learning techniques for the inverse scattering
problem.
Analysis by synthesis in physics-based vision. Analysis by
synthesis is a core methodology for recovering physical scene pa-
rameters from images, which conceptually comprises three steps:
(i) formulate an approximate image formation (or forward render-
ing) model as a function of the scene parameters; (ii) analytically
derive an expression for the derivative of the forward model with
respect to those parameters; (iii) use gradient-based optimization
to solve an analysis-by-synthesis objective comparing measured
and synthesized images. This approach has been used to recover
shape [33], [34], material [35], [36], [37], and illumination [38],
independently or jointly [39], [40], [41], [42].
Differentiable rendering. Analysis by synthesis requires formu-
lating a new forward model, as well as analytically computing its
derivatives, specifically for each reconstruction problem. Differ-
entiable renderers such as OpenDR [43] have been proposed to
remove this obstacle, by providing a general-purpose framework
that can be differentiated with respect to arbitrary scene parame-
ters. To ensure analytical differentiability, these approaches use
approximate forward models, ignoring complex light transport
effects such as inter-reflections and subsurface scattering. This
makes these methods inapplicable to situations where these effects
are dominant. Differentiable Monte Carlo rendering algorithms
overcome this limitation, by estimating derivatives of images

while accounting for all light transport effects. These algorithms
were first introduced in the context of differentiation with respect
to scattering parameters, and used for accurate inverse scatter-
ing [4], [5], [6], [7], [8]. Since then, they have been extended to
allow differentiation with respect to, and recovery of, arbitrary
scene parameters, including surface reflectance [44], [45], geome-
try [46], and visibility and pose [16], [47], [48].
Combining deep learning with rendering. Recently, a number
of works have proposed using renderers not for analysis-by-
synthesis, but as parts of learning architectures. The most popular
approach is to replace the decoder network in an auto-encoder
pipeline [49], [50] with a rendering layer that takes as input
the parameters predicted by the encoder and produces as output
synthesized images. This encoder-renderer architecture was first
proposed by Wu et al. [51], who used a non-photorealistic renderer
to achieve categorical interpretability. The same conceptual archi-
tecture was later used, together with approximate (direct lighting)
physics-renderers for inference of physical scene parameters such
as surface normals, illumination, and reflectance [11], [12], [13],
[14], [15], [52], [53], [54], [55], [56], [57], [58]. Inspired from
these works, we apply the encoder-renderer architecture to the
problem of inverse scattering, using for the first time a physically-
accurate Monte Carlo differentiable renderer instead of an approx-
imate one. Finally, differentiable Monte Carlo rendering has also
been combined with neural networks in the context of discovering
adversarial example scenes for classification tasks [16].

Compared to this prior work, we show a new use of differ-
entiable renderers, as regularization during the training of neural
networks for inverse scattering tasks. Despite their low dimen-
sionality, these tasks remain challenging due to the complexity of
subsurface light transport. Inverse scattering is of high relevance
to several other sciences (medicine, remote sensing, material
science). By combining neural networks with differentiable ren-
dering, we take first steps towards developing robust, physics-
aware, learning-based approaches for this problem.

3 BACKGROUND ON INVERSE SCATTERING

Problem setting. We are interested in the problem of homoge-
neous inverse scattering: Given an image of a translucent object,
of potentially unknown shape and lighting, we aim to determine
the optical material parameters that control the scattering of light
inside this object. These parameters are:

• The extinction coefficient σt is the scalar optical density
of the material, controlling the average distance between
consecutive volume events.

• The volumetric albedo α is the scalar probability of
whether photons are scattered or absorbed at volume
events.

• The phase function fp is the spherical probability distri-
bution controlling the direction scattered photons continue
to travel towards.

The phase function is typically assumed to be only a function
of the inner product between incoming and outgoing directions.
The first moment of the phase function, or average cosine,
c̄ = 2π

∫ 1
−1 cfp(c) dc, −1 ≤ c̄ ≤ 1, is commonly used

to characterize a material as predominantly forward-scattering
(c̄ > 0), backward-scattering (c̄ < 0), or isotropic (c̄ = 0). From
the above parameters, we can also derive the scattering coefficient
σs = α · σt and absorption coefficient σa = (1− α) · σt, which



describe how much light is scattered and absorbed, respectively,
at each scattering event. In general, all these parameters can
be spatially varying, but in our setting we assume they are
constant everywhere inside the object (homogeneous scattering).
Throughout the paper, we will be using different subsets of the
above parameters, as well as certain non-linear functionals, to
characterize scattering. We will be denoting each material as π,
with the corresponding parameterization inferred from context. We
discuss specific parameterizations in Section 5.

The primary difficulty of the inverse scattering problem lies
in the complexity of the underlying volumetric light transport
physics: Each photon propagating inside a scattering medium un-
dergoes a random walk, controlled non-linearly by the medium’s
parameters. These random walks, described by the radiative trans-
fer equation [20] typically involve more than one bounce. In turn,
a radiometric detector capturing an image of such an object ac-
cumulates a large number of photons, each performing a different
random walk. As a consequence of this extremely multi-path and
multi-bounce light transport, images of translucent objects are
highly non-linear functions of the underlying material parameters.
We will represent this complex image formation process using the
operator T (π), where π are the material parameters. We note that
T is also a function of other scene parameters, such as shape and
illumination; we omit this dependence for notational simplicity,
and to focus on the material parameters we are interested in
recovering.

In certain cases, we can simplify this image formation model
by assuming that each photon only bounces either once or a
very large number of times inside the object. These approxi-
mations, known as single scattering and diffusion respectively,
are of limited applicability, as they are only accurate for very
optically thin [2] or thick [3] materials. Additionally, the diffusion
approximation cannot be used near thin geometric features such
as sharp edges.
Analysis by synthesis. The shortcomings of these approxima-
tions have motivated the development of general-purpose inverse
scattering techniques that accurately model the full complexity of
volumetric light transport [4], [5], [6], [7], [8]. These techniques
operate within the framework of analysis by synthesis, also known
in computer graphics as inverse rendering. Given image measure-
ments I , we search for parameters π that, when used to synthesize
images, can closely match the measurements. This approach can
be succinctly written as the following optimization problem:

π̂ = argminπ ‖I − T (π)‖2 . (1)

This procedure can be used for inverse scattering in objects
of arbitrary known shape and lighting. This is thanks to the
advent of graphics algorithms that can accurately simulate the
full complexity of volumetric light transport. Besides traditional
forward rendering algorithms that synthesize images as functions
of material parameters π [1], recent years have seen the develop-
ment of differentiable rendering algorithms that compute image
derivatives with respect to these parameters, ∂T (π) /∂π [4],
[5], [6], [7], [16]. Differentiable rendering algorithms can greatly
accelerate analysis by synthesis, by enabling the use of gradient
descent algorithms for solving the optimization problem (1).

Despite these advances, performing inverse scattering by anal-
ysis by synthesis remains challenging in many situations. First,
solving optimization (1), even with gradient descent, is compu-
tationally intensive, requiring performing hundreds or thousands
of expensive rendering operations. Second, the use of gradient

descent means that the analysis by synthesis optimization is
susceptible to local minima in the loss function of Equation (1).
This issue is particularly pronounced in inverse scattering, where
the highly-nonlinear function T (π) results in large classes of
different material parameters π that can produce similar images
I . These scattering parameter ambiguities are known as similarity
relations [17], [18]. Third and last, performing inverse scattering
requires accurate calibration of ancillary scene parameters such as
shape, illumination, and camera pose, which is not possible except
in controlled lab environments.

We aim to overcome these challenges by investigating the
use of data-driven algorithms for the inverse scattering problem.
In particular, in Section 4, we discuss how to alter the training
procedure of neural networks, to produce networks that, at test
time, can use a single uncalibrated input image to produce material
estimates π that are close to those we would obtain from analysis
by synthesis. Then, in Section 5, we discuss design choices,
inspired from the physics of scattering, that help these networks
overcome ambiguities due to similarity relations.

4 INVERSE TRANSPORT NETWORKS

Supervised learning provides an alternative to the analysis by
synthesis methodology for inverse rendering problems, and has
previously been successful for tasks such as reflectance, illumi-
nation, and shape inference [11], [12], [13], [14]. These prior
successes motivate us to investigate the use of learning techniques
for the inverse scattering problem.

Supervised learning assumes availability of a training set
of image measurements {Id}Dd=1 and corresponding groundtruth
material parameters {πd}Dd=1. Given a training dataset, learning
techniques use empirical risk minimization to train a parametric
regression modelN [w], e.g., a neural network, that directly maps
images to parameters:

ŵ = argminw
∑D

d=1 ‖πd −N [w] (Id)‖2 . (2)

The trained network N [ŵ] can be used to efficiently obtain
parameter estimates π̂ for new images I , through forward pass
operations: π̂ = N [ŵ] (I). This is in contrast with analysis
by synthesis, which requires solving the expensive optimization
problem (1) for every new input image. Additionally, the trained
network can be used with images where other scene parameters
are completely uncalibrated.

These advantages of supervised techniques come with the
caveat that it is difficult to guarantee the accuracy of the estimates
π̂ obtained for images of scenes that are not well represented in
the training set. Given the highly nonlinear mapping T from scene
to images in the case of subsurface scattering, it is challenging to
train networks that generalize well to scenes of, e.g., very different
shape or illumination

In order to combine the complementary advantages of learning
and analysis by synthesis, we propose to regularize the training
loss function (2) with a term that closely resembles the loss
function (1) of analysis by synthesis:

ŵ = argminw
∑D

d=1

[
‖πd −N [w] (Id)‖2︸ ︷︷ ︸

supervised loss

+ λ ‖Id − T (N [w] (Id))‖2︸ ︷︷ ︸
regularization

]
. (3)
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Fig. 1: Inverse transport networks: (a) Traditional autoencoders
use two networks, encoder and decoder, to learn to predict pa-
rameters from images. (b) Inverse transport networks replace the
decoder with a differentiable Monte Carlo renderer, to improve the
generalization and physical accuracy of the predictions. During
training, the renderer is provided with the material parameter out-
put by the encoder network, as well as with groundtruth geometry
and illumination, to perform forward and backward evaluations
of an additional appearance-matching regularization term used to
learn the network weights. During testing, the encoder network is
used on its own, without the renderer: It takes as input a single,
fully uncalibrated (unknown geometry and illumination) image,
and produces as output a set of material parameters.

The regularization term in Equation (3) forces the neural network
to predict parameters πd that not only match the groundtruth,
but also can be used with forward rendering to reproduce the
input images. This has two desirable effects: First, the parameters
predicted by the network are likely to be close to what would have
been obtained from analysis by synthesis, as the regularization
term in Equation (3) is equivalent to the analysis by synthesis
loss (1). Second, the regularization term forces the neural network
N [ŵ] to be approximately equal to the inverse of the volumetric
light transport operator T , that is, N [ŵ] ≈ T −1. Given that
T models the physics of subsurface scattering for scenes of
arbitrary geometries and illumination, we expect the resulting
neural network to generalize well to novel scenes. We refer to
networks trained using the loss (2) as regressor networks (RN),
and to networks trained using (3) as inverse transport networks
(ITN), based on their above-discussed property.
Relationship to prior work. Regularization similar to Equa-
tion (3) has previously appeared in two general forms. The first
is autoencoder architectures [49], [50] that, in addition to the re-
gressor (encoder) network N [w] mapping images to parameters,
use a second decoder network D [u] that maps the parameters
back to images. Then, the regularization term in Equation (3) is
replaced with ‖Id −D [u] (N [w] (Id))‖2, and both the encoder
and decoder networks are trained simultaneously, potentially with-
out access to groundtruth parameters (self-supervised learning).
These architectures are of great utility when inferring semantic
parameters (e.g., a class label) of a scene, where there is generally
no analytical model for the forward mapping of these parameters
to images. However, when the unknowns π are scattering material
parameters, autoencoder architectures do not take advantage of
the rich knowledge we have about the physics governing the

forward operator T . Additionally, the forward mappingD [u] may
not generalize to novel scenes, as it is specific to the training
dataset. Figure 1 compares the autoencoder and inverse transport
architectures.

There are also networks that use regularization terms where
the light transport operator T is replaced with an approximate
rendering model [11], [12], [13], [14], [15]. These approximations
generally use direct lighting models, where photons are assumed
to only interact with the scene once between emission and detec-
tion (e.g., direct reflection without interreflections). Unfortunately,
these networks have limited applicability to the case of inverse
scattering, where the underlying physics are characterized by
extremely multi-path, multi-bounce light transport. Inspired by
these prior works, our ITNs are physics-aware learning pipelines
that can be used even in the presence of these higher-order
transport effects that are dominant in inverse scattering.
Training ITNs. The optimization problem (3) for ITN training is
computationally challenging: Evaluating the operator T requires
solving the radiative transfer equation [20]. In theory, training
could be performed using algorithms such as REINFORCE [51],
which do not require differentiating the regularization term and
only employ graphics rendering algorithms for forward evalua-
tions of T . However, such algorithms are known to suffer from
slow convergence.

Instead, we aim to optimize the loss (3) with state-of-the-art
stochastic gradient descent algorithms [59]. This requires using
differentiable rendering algorithms to estimate derivatives of T
with respect to material parameters π in an unbiased manner.
For this, we rely on prior work [4], [5], [6], [7] that devised
Monte Carlo rendering algorithms for simulating these derivatives
by simulating the full volumetric light transport in a physically-
accurate way. These algorithms have subsequently been general-
ized to scene parameters such as reflectance [44], [45], geome-
try [46], and pose [16], [47], [48]. For completeness, we provide
below an overview of the differentiable rendering formulation at
the basis of our work. We note that, because we optimize over
only material parameters, our differentiable rendering formulation
is significantly simpler than that required for dealing with global
geometry changes, and which has been developed extensively in
recent works [16], [47], [48].

Figure 1 provides an overview of our pipeline at training
and test time: During training, the network is connected to the
differentiable renderer. The network takes as input a single, high-
dynamic-range image, and produces as output a set of scattering
material parameters. During training, the network is connected
to the differentiable renderer. The renderer takes as input the
parameters produced by the network, as groundtruth geometry and
illumination, to compute values and gradients of the regularization
term in Equation (3). As we discuss in Section 6, because we
train the network using synthetic input images, the geometry and
illumination are readily available. During testing, the network is
used on its own, without the renderer. As our objective is to use
the network on testing images that are completely uncalibrated,
no geometry or illumination information is given as input to the
network during either training or testing.
Differentiable Monte Carlo volume rendering. To keep the
paper self-contained, we provide a brief overview of forward
and differentiable rendering in the context of subsurface scat-
tering. Our discussion largely follows [7]. The starting point for
both types of rendering is the path integral formulation of light
transport, which expresses the images captured by a radiometric
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Fig. 2: Monte Carlo rendering: (a) Monte Carlo forward
rendering estimates radiometric measurements by randomly sam-
pling light paths and aggregating their radiance contributions.
By evaluating additional terms for each path, we can use the
same procedure to estimate derivatives of measurements with
respect to physical scene parameters. (b) Example renderings of
the derivatives of a scene with subsurface scattering with respect
to different material parameters. The top row shows derivatives
estimated by our differentiable renderer, and the bottom row shows
derivatives estimated using finite differences.

detector as integrals over the space of possible light paths [1]:

T (π) =
∫
P f [π] (x̄) dx̄. (4)

The above integration is performed over the space P of all possible
light paths of the form x̄ ≡ (x0,x1, . . . ,xK), for any K > 1
and with xk ∈ R3 (for k = 0, 1, . . . ,K). For each such path,
x0 is located on a light source, xK on a sensor, and intermediate
vertices xk light-scene interactions via reflection, refraction, and
subsurface scattering. The throughput function f [π] describes the
amount of radiance contributed by a path as a function of the scene
geometry, material, illumination, and detector.

By differentiating Equation (4) and rearranging throughput
terms and their derivatives, we can obtain a similar path integral
expression for the derivatives ∂T (π) /∂π of images with respect
to the scattering parameters π:

∂T (π) /∂π =
∫
P f [π] (x̄)S [π] (x̄) dx̄. (5)

Compared to Equation (4), the path integral for this case includes
the score function S [π], that sums derivatives of the per-vertex
throughput with respect to π.

Monte Carlo rendering algorithms evaluate the integrals of
Equations (4) and (5) using Monte Carlo integration: (i) paths
{x̄n : n = 1, . . . , N} are drawn from a probability density p over
the path space P; (ii) their throughputs fs [π] are computed; and
(iii) unbiased and consistent estimators of Equations (4) and (5)
are formed as

〈T (π)〉 = 1
N

∑N
n=1 f [π] (x̄n) /p (x̄n) , (6)

〈∂T (π) /∂π〉 = 1
N

∑N
n=1

f [π](x̄n)S[π](x̄n)
p(x̄n) . (7)

We use our own implementation of differentiable rendering: We
integrated the Stan Math Library [60] for automatic differentiation
of throughput terms, with the Mitsuba engine [61] for physically
accurate Monte Carlo rendering. We use Mitsuba’s volumetric
path tracing algorithm to sample paths for forming the estimates
of Equations (6) and (7). Even though our focus is on inverse
scattering, our implementation is a general-purpose differentiable
renderer that can compute derivatives for scene parameters such
as normals, reflectance, and illumination. We verified correctness

of our derivatives by comparing derivatives computed using finite
differences. An example comparison is shown in Figure 2. Note
that the finite-difference gradients required more than two million
samples-per-pixel, compared to 16384 samples-per-pixel used by
the differentiable renderer. This shows the critical performance
advantages of using differentiable rendering instead of numerical
differentiation, which have also been well-documented in the
past [4], [5], [6], [7], [16], [47], [48]. Our differentiable renderer
implementation is available on the project website [19].
Stochastic optimization. In addition to physical accuracy, Monte
Carlo differentiable rendering provides computational advantages
in the context of gradient-based optimization. In particular, train-
ing deep neural networks strongly relies on the ability to perform
backpropagation in a stochastic manner, by computing derivatives
of the loss function (2) using random subsets of the training set
(minibatches). Changing the minibatch size allows controlling the
tradeoff between the cost of gradient computations and the number
of iterations for convergence [62], [63].

Monte Carlo differentiable rendering offers control over a
similar capability: We can reduce the number of sampled paths
to accelerate derivative computation, at the cost of increased
variance. As the Monte Carlo derivative estimates are consistent
and unbiased, we can use this to take advantage of the same
convergence guarantees and tradeoffs as with stochastic back-
propagation. Therefore, our Monte Carlo differentiable rendering
engine is particularly well-suited for training of neural networks
using state-of-the-art stochastic gradient descent algorithms [59].
Post-learning refinement. Our focus is on using inverse transport
networks as an inference algorithm that can be used in place of
analysis by synthesis optimization when the latter is not possible,
e.g., when dealing with uncalibrated scenes of unknown geom-
etry and illumination. We mention though, that inverse transport
networks can be useful even when these scene parameters are
calibrated and analysis by synthesis can be performed. In par-
ticular, the trained network N can be used to produce a first
estimate of the unknown parameters π underlying an input image
I . This estimate can be used to warm-start subsequent analysis by
synthesis optimization, by serving as initialization for the gradient
descent minimization of the analysis by synthesis loss (1) for
the image I . The effect of this warm-starting procedure is that
the analysis by synthesis optimization can converge much faster
than if we had skipped the network-based estimation stage and
used a random initial point. We expect the ITN architecture to
be particularly effective for this kind of analysis by synthesis
acceleration, given that the regularization term in its training
loss function (3) encourages the network to produce estimates
that are close to the analysis by synthesis solution. Additionally,
the ITN-based initialization can help the analysis by synthesis
minimization avoid local minima due to similarity relations.

5 OVERCOMING SIMILARITY RELATIONS

Similarity relations describe classes of material parameters that
produce very similar appearance under certain geometry and
lighting conditions [17], [18]. These relations are derived from the
radiative transfer equation, and are well-studied in the subsurface
scattering literature. We focus on first-order similarity relations,
which are the most commonly-used class of material ambiguities:
Two materials π and π′ are considered similar if they satisfy,

σa = σ′a, σs · (1− c̄) = σ′s · (1− c̄′). (8)



These ambiguities can be problematic for both analysis by syn-
thesis and supervised learning techniques for inverse scattering.
In the following, we discuss two strategies for ameliorating the
negative effect of similarity relations.
Material parameterization. As discussed in Section 3, there are
several redundant parameters that are typically used to characterize
the space of scattering materials. Prior work has considered param-
eterizations in terms of non-linear functionals of these parameters
that, when used with analysis by synthesis, reduce estimation er-
rors due to similarity relations [18]. We take advantage of this prior
work, and use these parameterizations in the loss functions (2)
and (3). We parameterize the material space as π = {σa, σs, σr

s},
where σr

s is the reduced scattering coefficient,

σr
s = σs · (1− c̄). (9)

Intuitively, the robustness of this parameterization is due to the fact
that the reduced scattering coefficient exactly matches the second
similarity relation equation (8). The same parameterizaion also
arises when deriving the reduced scattering properties of diffusion-
based subsurface scattering [3]. Throughout the rest of the paper,
we refer to this as the similarity-aware parameterization. In
Section 6, we compare this with other naive parameterizations
in the context of supervised learning for inverse scattering.
Per-pixel weight maps. Similarity relations are derived under the
assumption that photons perform a large number of scattering
events inside an object. As a consequence, their accuracy is
strongly-dependent on scene conditions such as illumination and
shape. Specifically, at thin parts of the object or parts of the
surface with sharp geometric features (e.g., geometric edges), two
materials will have different appearance even if their scattering
parameters satisfy the similarity relations. The importance of thin
geometric features for translucent appearance is well-documented
in the literature, even beyond similarity considerations. These
features has been shown to provide rich information about the
scattering parameters of an object [64], and to be important for
the perception of translucency by humans [65], [66], [67].

Motivated by the above, we modify the regularization term in
the training loss (3), to use a per-pixel weight map,∑

i,j

∥∥∥wij
d (Iijd − T (N [w] (Id))

ij
)2
∥∥∥ . (10)

where the superscript ij indicates indexing an image at pixel
coordinates [i, j], and summation is done over all pixels. For each
image Id in the training dataset, the per-pixel weights are selected
to emphasize pixels corresponding to parts of the object with thin
geometry, where similarity relations are not accurate.

Determining optical thickness, that is, the average distance
light travels inside the object, requires knowing the groundtruth
shape and illumination. In lieu of these, we use a simple algorithm
for generating a weight map from only the input image Id: Consid-
ering that, in a textureless homogeneous material, all image-space
edges correspond to geometric discontinuities, we first process the
image Id with an edge detector, then assign to each pixel [i, j] a
weight wij

d equal to its distance from the nearest edge. Figure 3
shows example weight maps created this way. As this weight map
is computed from only the input image without requiring any
additional information, we additionally provide it as an input to the
network during both training and testing. Despite its simplicity, the
figure and the results of Section 6 show that our algorithm is robust
enough to produce meaningful weight maps resulting in significant
performance improvements for a large variety of geometries.

Fig. 3: Weight maps: We use per-pixel weights equal to each
pixel’s distance from the nearest image edge, in order to emphasize
image pixels where similarity relations are violated.

6 EXPERIMENTS

We evaluate the performance of different neural networks through
experiments on simulated datasets and real images. We show
additional results in the supplement.
Network details. We compare neural networks trained with five
different loss functions. First, a regressor network (RN), trained
using the purely supervised loss (2), and the naive parameter-
ization π = {σt, α, c̄}. Second, an RN using the similarity-
aware parameterization of Section 5, π = {σa, σs, σr

s}. Third,
an inverse transport network (ITN), trained using the regularized
loss (3), and the naive parameterization. Fourth, an ITN that uses
the regularization (3) and the similarity-aware parameterization.
Fifth and last, an ITN that uses the weighted regularization (10)
and the similarity-aware parameterization.

All networks take as input a single high-dynamic-range image.
For all networks, we use a state-of-the-art architecture for inverse
rendering problems relating to homogeneous reflectance [11],
[13]: Each network is composed of seven convolutional layers,
and the size of the output channel for each layer is reduced to half
the size of its input. The kernel size for the convolutional layer is 3
by 3, with a stride of 2 and padding of 1. Each convolutional layer
is followed by a rectified linear unit (ReLU) and a max-pooling
layer. A fully-connected layer is used at the end. We visualize this
architecture in Figure 4. We select this architecture as it reflects
the state-of-the-art in the supervised deep material task that is
closest to ours: inferring homogeneous BRDF parameters (as far
as we know, there is no prior work on estimating homogeneous
subsurface scattering). The use of this architecture ensures that
the RN with the naive parameterization can serve as meaningful
baselines for evaluating the importance of our various innovations
(similarity-aware parameterization, regularization using the differ-
entiable Monte Carlo renderer, and weight map).

When training ITNs, we use as initialization an RN trained for
a few epochs. We set λ in Equation (3) so that the supervised and
regularization terms have approximately the same magnitude. All
networks are trained using Adam [59] for 50 epochs, with a batch
size of 60 and learning rate of 10−4. Our trained networks are
available at the project website [19].
Datasets. For our quantitative comparisons, we use a synthetic
dataset containing images of translucent objects with varying ge-
ometry, illumination, and material parameters. We use ten different
object shapes, selected to have a variety of thin and thick geo-
metric features, each placed under ten different illumination con-
ditions created using the Hošek-Wilkie sun-sky model [68]. For
each shape and illumination combination, we render images for
different parameters π that include σt ∈

[
25 mm−1, 300 mm−1

]
,



α ∈ [0.3, 0.95], and Henyey-Greenstein phase functions fp
with parameter g ∈ [0, 0.9]. We use the Mitsuba physics-based
renderer [61] to simulate 30,000 high-dynamic range images under
these settings. This dataset is available at the project website [19].

We focus on evaluating the ability of the different networks
to generalize to scenes containing new shapes and illuminations.
For this, we separate our rendered images into training and testing
sets that do not contain any overlapping shapes or illuminations. In
particular, we use the images for six shapes and four illuminations
as the training set, and use images under the remaining shape
and illumination combinations for testing (Figure 4). This yields
a training set of 6,000 images and a testing set of 7,000 images
(we exclude a few thousand images available in the dataset that
mix training illuminations with testing shapes, or vice versa). Our
use of a training set that is relatively small compared to testing,
and a testing set that contains only completely unseen shapes and
illuminations, both reflect our goal to evaluate the generalization
properties of the five networks we consider.

Finally, we note that, even though all networks are trained
on grayscale images, they can handle color images by processing
each color channel independently. Throughout this paper and in
the supplement, we visualize results using color images, synthe-
sized by combining grayscale images from our dataset that have
the same illumintion and shape cnditions, but different material
parameters. These color images are processed by the networks in
the above-described channel-by-channel manner.

(b) network architecture
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(a) shapes and illuminations used in training (left) and testing (right)

Fig. 4: Datasets and architecture: (a) We render 30,000 images
for the task of homogeneous inverse scattering. These are split
into training and testing sets of different shapes, illuminations, and
materials. Rendered grayscale images under the same illumination
and shape but with different material parameters are combined to
form color images. (b) We use these datasets to train and evaluate
regressor and inverse transport networks of the same architecture.

Quantitative Evaluation. We evaluate the five networks in two
ways: First, we consider how accurately they predict material
parameters for images in the testing dataset. Accuracy is quantified
using the L2 error between groundtruth and predicted parameters.
Second, we examine how well images rendered with the predicted
parameters match the appearance of the input images. We compare
rendered and input images using L2 error and MS-SSIM [69] (a
benchmark perceptually-motivated image similarity metric).

TABLE 1: Network performances: Average MSE for individual
scattering parameters, as well as L2 and 1 − MS-SSIM image
appearance errors, for five different networks.

network
parameters appearance

σt α c̄ L2 1 - MS-SSIM
RN+naive 90.81 0.180 0.400 0.314 0.069
RN+similar 77.45 0.141 0.374 0.180 0.036
ITN+naive 71.23 0.093 0.253 0.222 0.031
ITN+similar 64.62 0.116 0.273 0.144 0.032
ITN+similar+map 60.32 0.088 0.282 0.145 0.024

Table 1 summarizes the results. The ITN with similarity-aware
parameterization and weight maps outperforms the other three
networks in most metrics, except for c̄ where its performance is
a close second. In terms of parameter prediction, it is noteworthy
that the similarity-aware parameterization outperforms the naive
pameterization for both the RN and ITN cases, despite the fact
that errors are computed directly on the parameters optimized
by the naive parameterization (σt, α, and c̄). This highlights the
importance of accounting for similarity relations when design-
ing networks for inverse scattering. When comparing ITNs with
RNs, the ITN produces strong improvements in both parameter
and appearance predictions regardless of what parameterization
is used. These improvements provide strong evidence that the
regularization term in Equation (3) allows the ITN to generalize
better to unseen shapes and illuminations. Finally, Figures 5 and
6 show images rendered with parameters predicted by the five
networks, for materials of varying optical thickness, including
diffusive, turbid, and very optically thin materials. In all cases,
the ITN with similarity-aware parameterization and weight map
produces the images that best match the reference.
Evaluation under novel scene. The previous results already
focus on the generalization performance of the trained networks,
considering that the testing images have shape and illumination
conditions that are completely absent from the training dataset.
To further emphasize generalization performance, we perform an
additional set of experiments: We use the networks to predict ma-
terial parameters for all test images. We then use these parameter
estimates, as well as their groundtruth values, to render images
for a scene of completely new geometry and lighting, absent from
both training and testing datasets. We compare these renderings
using the same image similarity metrics as above. Table 2 shows
the results, and Figure 5 (rightmost column) visualizes a few
example images rendered on this novel scene. We see that the ITN
with similarity-aware parameterization and weight map signifi-
cantly outperforms all other networks, and produces images very
similar to those rendered with the groundtruth parameters. This
provides evidence that this network can infer reliable estimates
of the true scattering paremeters underlying a translucent object,
from just a single, completely uncalibrated image of that object.
Initialization of analysis by synthesis. As we discussed in
Section 4, our main focus is on using neural networks to predict
scattering parameters from completely uncalibrated photographs,
where analysis by synthesis optimization is not possible due to
lack of information on geometry and illumination. When this in-
formation is available, analysis by synthesis will typically produce
more accurate material parameters than our method, considering
that analysis by synthesis uses significantly more information
about the object. However, even in such cases, our networks can
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Fig. 5: Images rendered with predicted material parameters: Each column corresponds to a different input image drawn from our
synthetic testing set. The last column shows images rendered under the novel scene used to emphasize generalization performance. For
each image, different rows compare the groundtruth (row 1) to images rendered using the parameters predicted by the five networks we
evaluate (rows 2-6).
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Fig. 6: Images rendered with predicted material parameters: Each row corresponds to a different input image drawn from our
synthetic testing set. For each image, different columns compare the groundtruth (column 1) to images rendered using the parameters
predicted by the five networks we evaluate (columns 2-6).

TABLE 2: Network performances: Average L2 and 1 −
MS-SSIM image appearance errors, for five different networks,
on the novel scene used to emphasize generalization performance.

network
appearance

L2 1 - MS-SSIM
RN+naive 0.250 0.067
RN+similar 0.144 0.035
ITN+naive 0.186 0.031
ITN+similar 0.140 0.035
ITN+similar+map 0.133 0.021

still be useful, as they provide a way to warm-start subsequent
analysis by synthesis optimization, accelerating its convergence
and improving the quality of the resulting material estimates.

To quantify the performance difference between our networks
and analysis by synthesis, as the well as the advantage that can be
gained from warm-starting, we perform the following experiment:
We randomly select a subset of 40 images from the testing set (10
for each shape in that set), and use our five networks to predict
material parameters. Then, we use these parameters to initialize
analysis by synthesis optimization for each image: We use our
differentiable renderer together with the groundtruth scene infor-
mation (e.g., geometry and illumination) to compute derivatives of
the loss of Equation (1) with respect to the parameters π, and use
ADAM to optimize the values of these parameters, starting from

the values predicted by the networks. Each optimization procedure
is run for 150 iterations, and we record the average MSE of
individual parameters across all 40 images at every 30 iterations.
The results are shown in Table 3. We make two observations: First,
as expected, analysis by synthesis optimization takes advantage of
the additional scene information it has access to, to significantly
improve the initial parameter predictions of the networks (average
MSE reduction of 43.8%). Second, initializing with our ITN
with similarity-aware parameterization and weight map provides
more than 2x convergence speedup compared to the baseline RN,
resulting in 53.5% better average MSE at the same number of
iteratons. Our ITN with similarity-aware parameterization and
weight map additionally outperforms all other neworks.

The improvements observed above are in part due to the
fact that a better initialization can help the analysis by synthesis
procedure avoid local minima due to similarity relations. Figure
7 shows a simple demonstration: The ITN with similarity-aware
parameterization and weight map produces an initialization that
is closer to the true parameters than the one by the ITN with
naive parameterization. Additionally, after 50 gradient descent
iterations, the optimization initialized by the ITN with similarity-
aware parameterization and weight map has converged to param-
eters closer to the groundtruth, also producing 7.7% lower image
error. From the optimization trajectories at the top of Figure 7,
we observe that, after a few iterations, the optimization initialized
by the ITN with naive parameterization moves along a contour of
constant σr

s (visualized by the color map). This indicates that it



TABLE 3: Network performances on initialization of analysis
by synthesis: Average MSE for individual scattering parameters
over iterations for five different networks.

number of iterations
1 30 60 90 120 150

σt

RN+naive 90.40 72.87 60.93 55.58 52.22 49.26
RN+similar 59.23 43.96 34.36 28.87 25.41 23.67
ITN+naive 60.02 57.82 51.36 47.27 43.69 40.51
ITN+similar 50.45 39.47 33.09 28.78 25.53 23.27
ITN+similar+map 43.98 32.42 26.08 23.71 22.48 21.36

α

RN+naive 0.138 0.095 0.096 0.093 0.089 0.084
RN+similar 0.078 0.058 0.053 0.049 0.046 0.044
ITN+naive 0.102 0.090 0.084 0.077 0.071 0.066
ITN+similar 0.073 0.057 0.051 0.046 0.043 0.040
ITN+similar+map 0.057 0.052 0.047 0.043 0.041 0.038

c̄

RN+naive 0.304 0.279 0.266 0.268 0.264 0.252
RN+similar 0.232 0.229 0.202 0.178 0.158 0.145
ITN+naive 0.284 0.246 0.224 0.207 0.190 0.178
ITN+similar 0.233 0.234 0.210 0.178 0.158 0.143
ITN+similar+map 0.240 0.202 0.172 0.151 0.139 0.128

Fig. 7: Post-learning refinement: We use predictions from two
ITNs to initialize analysis by synthesis optimization. The top
row shows how parameters change during gradient descent, in
the {σs, σa, c̄} parameter space, and in its 2D projection {σs, c̄}
colored by reduced scattering coefficient value σr

s . The bottom
row compares groundtruth to renderings using the initial and final
parameter estimations from the green optimization trajectory.

may be trapped at a local minimum. The bottom row of Figure 7
compares the groundtruth image with renderings using the initial
and optimized material predictions from the ITN with similarity-
aware parameterization and weight map.
Experiments on real photographs. Figure 8 shows results
from using our top-performing networks, the three ITNs, on
photographs of two translucent objects: a silicone cube, and a
soap bar. The networks take as input a single high-dynamic-
range photograph of the object, with completely uncalibrated
geometry and illumination. To evaluate the network predictions,
we created virtual scenes that crudely approximate the shape (by
fitting rectangles) and lighting conditions (by matching shadows)
of the original photographs. We then used these scenes to render
images with the predicted parameters. We emphasize that these
approximate scene conditions are used for validation only, and
they are not used by the networks when making predictions.

We observe that, even though the renderings do not reproduce

the appearance of the original objects perfectly, in all cases the
parameter predictions produce plausible appearance, especially
considering the complete lack of calibration. The appearance er-
rors are in part because of the mismatched geometry and lighting,
and the fact that we do not model surface reflectance. In particular,
the rendered images reproduce important features of translucent
appearance, e.g., the intensity gradients near geometric edges.
Qualitatively, the ITN with similarity-aware parameterization and
weight map performs the best among the three networks, in terms
of both matching the overall intensity of the real objects, and
intensity gradients at geometric edges. We consider these results a
promising start towards uncalibrated and computationally efficient
inverse subsurface scattering on images captured in-the-wild.

7 CONCLUSIONS

We have taken first steps towards using deep learning techniques
for the problem of homogeneous inverse scattering. Starting from
a state-of-the-art regression network architecture as baseline, we
made three innovations, informed from the physics of radiative
transfer: First, we introduced inverse transport networks as an
architecture that can combine the efficiency of neural networks
with the generality properties of analysis by synthesis. Second, we
used material parameterizations that can ameliorate ambiguities in
the scattering parameter space due to similarity relations. Third,
we utilized per-pixel weight maps to emphasize parts of the image
that are informative about the underlying scattering parameters.
Our experiments show that the combination of these innovations
results in networks that can produce convincing scattering material
parameter estimates, when provided with a single photograph
without any calibration (completely unknown geometry and il-
lumination). Additionally, the performance of our networks shows
strong improvements in both parameter estimation accuracy and
appearance reproduction compared to the baseline. We hope that
these results will motivate follow-up work on using data-driven
learning techniques to improve upon and complement existing
physics-based approaches for inverse subsurface scattering.

At the core of our approach is the use of Monte Carlo
differentiable renderers. The use of physically-accurate rendering
allows us to enhance the generalization of neural networks, and
the differentiability allows us to efficiently train these networks.
Together with other work on combining differentiable rendering
with learning [16], our results point towards a new direction of
exploration: the investigation of more general learning architec-
tures that intelligently combine neural networks with physics-
based light transport simulation. We hope that our paper and our
publicly-available implementations and datasets [19] will facilitate
further research in this direction.
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