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Fig. 1. Kaleidoscopic structured light. (a) We propose a system for full surround 3D imaging using an imaging setup that consists of a projector, a camera,
and a kaleidoscope. (b) The camera and projector observe the object from a large number of virtual viewpoints, which unravel the complex geometry of the
object. (c) To use the kaleidoscopic image for multi-view stereo, we label each pixel, i.e., identify the sequence of mirrors that the ray backprojected from the
pixel encounters before intersecting the object. (d) This labeling allows us to reconstruct the shape of the object using multi-view triangulation. Our system
enables us to reconstruct, with high accuracy and full coverage, highly complex objects that have intricate geometric features, including concavities and
self-occlusions. Reconstructed point clouds and full surround videos are available on the project webpage [Ahn et al. 2021].

Full surround 3D imaging for shape acquisition is essential for generating

digital replicas of real-world objects. Surrounding an object we seek to scan

with a kaleidoscope, that is, a configuration of multiple planar mirrors, pro-

duces an image of the object that encodes information from a combinatorially

large number of virtual viewpoints. This information is practically useful for

the full surround 3D reconstruction of the object, but cannot be used directly,

as we do not knowwhat virtual viewpoint each image pixel corresponds—the

pixel label. We introduce a structured light system that combines a projector

and a camera with a kaleidoscope. We then prove that we can accurately de-

termine the labels of projector and camera pixels, for arbitrary kaleidoscope

configurations, using the projector-camera epipolar geometry. We use this

result to show that our system can serve as a multi-view structured light

system with hundreds of virtual projectors and cameras. This makes our

system capable of scanning complex shapes precisely and with full coverage.

We demonstrate the advantages of the kaleidoscopic structured light system

by scanning objects that exhibit a large range of shapes and reflectances.
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1 INTRODUCTION
3D scanning of a single view of an object seldom suffices. Be it for

3D printing, augmented reality, or virtual reality, scanning of the

shape of the entire object in all its complexity—what we refer to as

full surround 3D—is critical to have a faithful digital twin.

A key factor in achieving a full surround 3D scan is the number

of viewpoints from which an object is imaged. Covering the entire

object that we seek to scan typically requires a large number of

diverse viewpoints. Furthermore, this number increases with the

complexity of the object. This requirement has led to the construc-

tion of light stages with multiple cameras, and potentially projectors,

that capture digital content at high fidelity. Unfortunately, the cost

and complexity of these systems place them beyond the reach of

the average consumer of 3D technology.

A simple way to achieve a very large number of viewpoints is

to surround the object we want to scan with mirrors, which con-

veniently provide additional viewpoints without the need to move

a camera or construct a multiple-camera system. In particular, a

kaleidoscope [Brewster 1858], which consists of multiple planar

mirrors, allows light to bounce around repeatedly until it hits the

camera, thereby providing a combinatorial increase in the number of

viewpoints. Thus, with a kaleidoscope and a single camera, we can

construct a virtual multi-view imaging system that is easy to build,

calibrate and deploy, with components that are easily available.

The key challenge when using a kaleidoscope, however, lies in

interpreting the captured image and decoding the numerous views

of the object that it provides. Specifically, we need to identify the

virtual viewpoint corresponding to each pixel on the captured image.

We call this the labeling problem. The labeling information allows us

to decompose the single captured image into multiple segments, one

for each virtual viewpoint. In the absence of this information, we

cannot estimate the 3D shape by triangulating from correspondences

across different views. The fact that in a kaleidoscope it is common
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Table 1. Comparison of surround reconstruction methods.

Method Registration Correspondence Labeling Cost

Single camera x x - low

Multi-camera system o x - high

Multi-projector camera system o o - very high

Camera + mirrors [Reshetouski et al. 2011] o x visual hull low

ToF + mirrors [Xu et al. 2018] o o path length high

Structured light + mirrors [Lanman et al. 2009] o o manual medium

Structured light + mirrors (ours) o o epipolar constraint medium

to observe hundreds of virtual views that are interwoven with each

other makes the labeling problem particularly challenging.

We propose a full surround 3D imaging system that we call kalei-

doscopic structured light, comprising a projector, a camera, and

a kaleidoscope. Our main technical result is to show that we can

correctly label the virtual projectors and virtual cameras for arbi-

trary kaleidoscope configurations, by using their epipolar geometry
and other physical constraints arising from image formation for

this setup. With this result, our kaleidoscopic structured light sys-

tem can serve as a multi-view structured light system with tens, if

not hundreds, of virtual projectors and cameras, which are hard to

construct with real devices. Our system allows us to reconstruct

shape (in the form of triangular meshes) of highly complex objects

with intricate features, by providing correspondences from multiple

viewpoints with full surround coverage.

Contributions. Our work advances the state of the art of 3D scan-

ning, by facilitating the reconstruction of challenging objects, such

as textureless or glossy objects, with complex 3D geometry. This is

made possible through the following contributions.

• Labeling using epipolar geometry.We develop a labeling technique

that takes as input correspondences between a projector pixel

illuminating a point on the object, and multiple camera pixels

observing that point. Our labeling technique uses constraints

specific to the kaleidoscopic setup, and in particular the epipolar

geometry across thesemultiple correspondences, to jointly decode

the mirror sequences at the projector and camera pixels.

• Theoretical guarantees on the recoverability of labels using epipolar
geometry.We prove a theoretical result that establishes the unique-

ness and correctness of the labels we decode with our labeling

technique. Specifically, we show that the labels we recover from

the projector-camera pixel correspondences are accurate, pro-

vided the epipolar planes corresponding to the projector-camera

geometry are not parallel to the mirror normals. This condition is

easy to achieve by placing the camera and projector in asymmetric

poses relative to the kaleidoscope.

• Fast scanning techniques.We develop heuristics for speeding up

our scan, exploiting the fact that the labeling problem is highly

over-constrained due to multiple camera pixels mapping to the

same projector pixel.

These advances in kaleidoscopic imaging allow us to push the bound-

aries of 3D scanning in terms of the complexity of the objects that

can be reconstructed. Fig. 1 shows an example 3D scan of an object

that fully encompasses another smaller object, and is characterized

by concavities, a large genus number, and complex self-occlusion.

We have released our code and data on the project website [Ahn

et al. 2021], to facilitate reproducibility and follow-up research.

Limitations. The main limitation of the proposed kaleidoscopic

structured light technique is the time it requires for scanning an ob-

ject. The baseline version of our technique relies on point scanning,

which can take a prohibitive amount of time. We provide paral-

lelized scanning techniques to speed up acquisition, but our scan

times remain considerably longer than those achieved by traditional

structured light acceleration techniques. Unfortunately, the com-

plex nature of kaleidoscopic light transport makes these traditional

techniques inapplicable to our setting.

2 RELATED WORK
We review prior work on full surround 3D reconstruction. We sum-

marize key features of our and prior techniques in Table 1.

2.1 Full Surround 3D Reconstruction
Common approaches for reconstructing a complete scan of an object

include rotating the object [Kang et al. 2019; NextEngine 2000; Park

et al. 2016; Xia et al. 2016; Zhou et al. 2013], moving a camera around

the object [Cui et al. 2010; Holroyd et al. 2010; Kolev et al. 2014; Lichy

et al. 2021; Nam et al. 2018; Newcombe et al. 2011; Ondrúška et al.

2015; Wu et al. 2015; Wu and Zhou 2015], or constructing a multi-

camera system [Ghosh et al. 2011; Joo et al. 2017; Schwartz et al.

2013]. However, rotating the object around a fixed axis (e.g., using

a turntable) constrains viewpoints to lie on a plane perpendicular

to the rotation axis; such viewpoints may be insufficient for the

full surround reconstruction of intricate objects. Moving a single

camera requires estimating the camera pose, whereas multi-camera

systems are generally costly and difficult to build. These approaches

are even more challenging when we try to scan textureless objects,

for which correspondences are hard to establish using only passive

illumination. Even though projector-camera systems can help solve

the correspondence problem, such systems are even more difficult

to scale to the full surround case, in part due to the complexity and

cost, and in part due to interference between multiple projectors.

A fascinating approach for full surround 3D reconstruction is the

so-called dip transform, where the object is dipped into a fluid at

multiple orientations [Aberman et al. 2017]. Measuring the liquid

displacement, which encodes the submerged volume, provides suffi-

cient information to recover the shape of the object. Although this
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method provides superior results for intricate objects, it requires

immersing the object in the fluid, which is not always feasible.

2.2 3D Reconstruction with Mirrors
Label-free approaches. There is extensive literature on the use

of mirrors for 3D reconstruction, in combination with passive-

illumination camera systems [Forbes et al. 2006; Fuchs et al. 2013;

Gluckman and Nayar 2001, 2002; Goshtasby and Gruver 1993; Hu

et al. 2005; Huang and Lai 2006; Mitsumoto et al. 1992; Murray 1995;

Nene and Nayar 1998; Taguchi et al. 2010a,b; Ying et al. 2010], time-

of-flight (ToF) cameras [Nobuhara et al. 2016], and projector-camera

systems [Bangay and Radloff 2004; Garg et al. 2006; Han and Perlin

2003; Lanman et al. 2009; Tahara et al. 2015]. The use of mirrors

is in large part due to the increase in viewpoints they provide. In

most systems using mirrors this way, the number of reflections and

virtual viewpoints are carefully controlled to be few in number,

which makes manual labeling practical.

Lanman et al. [2009] propose a structured light system that com-

bines an orthographic projector, a camera, and mirrors, and is de-

signed to remove the interference between reflected projector pat-

terns. They solve the interference problem by illuminating with

patterns that are perfectly aligned after one or multiple mirror reflec-

tions. However, achieving this requires using a special configuration

of mirrors, which in turn constrains the locations of virtual cameras

to lie on a plane. Such a viewpoint set can be insufficient for full sur-

round 3D coverage when scanning complex objects. Additionally,

their configuration has only four virtual cameras, to make man-

ual labeling of the virtual images observed in the camera practical.

Tahara et al. [2015] extend this approach to perspective projectors,

again with manual labeling. Kaleidoscopes have also been used for

measuring bidirectional texture functions [Bangay and Radloff 2004;

Han and Perlin 2003]; in these works, the underlying shapes are

nearly planar, which simplifies solving the labeling problem.

Approaches that estimate labels. Using numerous virtual view-

points for better full surround coverage requires being able to esti-

mate labels automatically. Reshetouski et al. [2011] solve the labeling

problem in a passive-illumination kaleidoscopic system by using

space carving [Kutulakos and Seitz 2000]. As the background pixels

on the captured image do not intersect with the object, even after

repeated mirror reflections, the rays corresponding to those pixels

can be backprojected and “carved”. This provides a visual hull of

the object inside the kaleidoscope, which can be combined with

ray tracing to obtain the label map. Ihrke et al. [2012] combine this

labeling method with a structured light system that illuminates

only one label at a time, to obtain correspondences while avoiding

interference. As these methods rely on space carving for labeling,

they are inaccurate when the visual hull is not a good approxima-

tion to the object; typically, this is the case for concave objects. Xu

et al. [2018] combine a kaleidoscope with a ToF camera. The ToF

information provides the total path length from the camera to the

object. This allows estimating the label and 3D point, by folding

the ray using the known mirror configuration. Unfortunately, this

approach requires using a pulsed ToF system, which can be costly.

3 OVERVIEW
We provide an overview of the proposed kaleidoscopic structured

light system and its associated reconstruction pipeline.

3.1 Imaging Setup
Hardware. We construct the kaleidoscopic structured light sys-

tem by combining a projector, a camera, and a kaleidoscope. We

create the kaleidoscope by placing four planar mirrors in a pyrami-

dal shape, which Xu et al. [2018] report empirically to provide good

scanning coverage. We place the projector and camera at the bottom

of the pyramid, oriented to look at its tip. We calibrate the intrinsic

parameters of the projector and camera, and the extrinsic pose of

the projector and mirrors relative to the camera. Then, we place the

object inside the mirror system, either by hanging it with strings, or

by placing it on the mirrors directly. The kaleidoscopic arrangement

provides hundreds of virtual projectors and cameras. We show a

schematic of our setup in Fig. 1, and provide details about our hard-

ware prototype and calibration procedure in Section 6. Fig. 1 also

outlines the steps of the imaging pipeline—scanning, labeling, and

shape reconstruction—which we review next.

Scanning. We first scan the object by turning “on” a number of

projector pixels, which illuminate a set of object locations, and thus

camera pixels. To simplify exposition, we describe our approach

assuming that we activate only a single projector pixel at a time.

In Section 6, we discuss techniques for speeding up acquisition by

simultaneously activating multiple projector pixels. The projector

pixel that we activate illuminates a single point on the object surface,

either directly or after one or multiple reflections on the kaleido-

scope. The illuminated point is observed at multiple camera pixels,

each via a different sequence of mirror reflections, and we save the

locations of these pixels. This provides us with a correspondence

between a single projector pixel and multiple camera pixels, all of

which also correspond to a single object point. This interpretation

assumes that interreflections on the object are weak enough to not

overwhelm the direct observation of the illuminated point; in our

experience, this is generally true except for when the scanned object

is a mirror or highly-specular.

Labeling. We now have a correspondence between a single pro-

jector pixel and multiple camera pixels. However, we cannot directly

use this correspondence for triangulation, because we do not know

the mirror sequence encountered by the rays corresponding to the

projector and camera pixels. For each projector or camera pixel, we

refer to the sequence of mirrors that the ray from the pixel encoun-

ters before intersecting the object as the pixel’s label [Reshetouski
et al. 2011]. We refer to the task of determining the labels for all

projector and camera pixels as the labeling problem. Solving the

labeling problem is the core challenge of kaleidoscopic imaging.

Labeling and shape reconstruction are interwoven, as labeling re-

quires reasoning about the object shape, and shape reconstruction

requires using the labels to perform triangulation. We will define

the labeling problem more formally in Section 3.3, and show how

to solve it using epipolar geometry constraints in Section 4.

Shape reconstruction. The projector-camera correspondences and

labeling information allow us to reconstruct 3D geometry using
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(a) Wide pyramid (b) Sharp pyramid

Fig. 2. Mirror design. Virtual projectors and cameras produced by pyra-
midal kaleidoscopes with different tip angles. A sharp pyramid produces
more virtual projectors and cameras, which can provide better coverage.
The angles of pyramid tips are (a) 72◦ and (b) 36◦, and the number of the
virtual cameras (or projectors) are 27 and 145, respectively.

multi-view triangulation: For each projector pixel, we use its corre-

spondence with multiple camera pixels to estimate a 3D point that

comes closest to intersecting all pixel rays (Section 5).

3.2 Kaleidoscope Design and Coverage
We use the pyramid mirror configuration from Xu et al. [2018], with

one modification: We adjust the angle of the pyramid to increase

the number of virtual viewpoints. Having more viewpoints is im-

portant for improving the accuracy of the multi-view triangulation

procedure our technique uses. This is different from the methodol-

ogy of Xu et al. [2018], where the ToF depth-sensing mechanism

does not require having multiple views of the same point. Having

more views also helps improve coverage, and thus can enable recon-

structing occluded parts of objects with highly complex visibility.

Fig. 2 shows that the sharp pyramid provides significantly more vir-

tual projectors and cameras than one with a larger angle. Our new

configuration also provides good scanning coverage, as we show

empirically in Fig. 3, where we visualize the number of projector

and camera pixels that observe each vertex of an object mesh. We

leave the systematic optimization of the kaleidoscope configuration

as an important future research direction.

3.3 Basics of Kaleidoscopic Imaging
Before we introduce how to solve the labeling problem, we review

the transformation of rays and points by planar mirrors, and the

epipolar geometry between the virtual projectors and cameras.

Transformation by planar mirrors. To represent the transforma-

tion by a single planar mirror𝑚, we define the mirror as a plane

with normal n and distance from origin 𝑑 (represented in world

coordinates). Then, the 4 × 4 reflection matrix in homogeneous

coordinates can be written as

D𝑚 =

[
I − 2nn⊤ 2𝑑n

0 1

]
. (1)

Note that D𝑚 is an involutory matrix (i.e., D2

𝑚 = I), as the reflection
of a reflected point is the same as the original point.
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erates hundreds of virtual projectors and cameras, which densely sample
the light-view space. The heatmaps visualize the number of camera and
projector pixels that intersect each surface facet (normalized in each object).

Mirror 1 Mirror 2

𝐗

𝐗! = 𝐃𝟐𝐗

𝐗!! = 𝐃#𝐗! = 𝐃#𝐃$𝐗

Real camera

Mirror 1 Mirror 2

Virtual camera

(a) Virtual-object interpretation (b) Virtual-camera interpretation

Virtual object

Real object

Fig. 4. Mirror transformation interpretations.We can interpret the mir-
ror transformation in two mathematically equivalent ways: (a) Virtual ob-
ject—the location of the virtual point in the real camera coordinate system,
corresponding to unfolding the ray from the object side. (b) Virtual cam-
era—the location of the real point in the virtual camera coordinate system,
corresponding to unfolding the ray from the camera side.

The transformation by multiple planar mirrors can be represented

by multiplying the reflection matrices {D𝑚} corresponding to each

mirror. Consider the example of Fig. 4: a ray from a 3D point X
bounces off mirrors 2 and 1 before being observed at a camera pixel,

as shown in Fig. 4. Then, the intermediate virtual point after the

first reflection at mirror 2 equals X′ = D2X, and the final virtual

point seeing X′
through mirror 1 equals X′′ = D1X′ = D1D2X.

Labels. As mentioned earlier, successful shape recovery requires

us to decode the light path between a scene point and the projector

or camera pixel observing it. Following Reshetouski et al. [2011],

we represent this path using a sequence of mirror labels; for a

kaleidoscope with 𝑀 mirrors, and a light path with 𝐾 reflections,

the label sequence is:

ℓ ≡ (𝑙𝑘 )𝐾𝑘=1 = (𝑙1, 𝑙2, 𝑙3, . . . , 𝑙𝐾 ), (2)
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Projector Camera

Mirror 2

M
irror 3

Object

𝐱! : P → M1 → M2 → O
: (1, 2)

𝐱"! : C ← M2 ← O
: (2)

𝐱"" : C ← M3 ← M2 ← O
: (3, 2)

Mirror sequence
(Label)

Fig. 5. Label definition. The label of a projector or camera pixel is the
sequence of mirrors that the ray backprojected from the pixel reflects off of
before reaching the scanned object.

where 𝑙𝑘 ∈ {1, 2, ..., 𝑀} denotes a mirror label. We use the conven-

tion that the labeling starts at the pixel and ends at the object. For

instance, in Fig. 5, the number of mirrors are𝑀 = 3, the labels for

the light path shown are ℓ𝑝 = (1, 2), ℓ𝑐1 = (2), and ℓ𝑐2 = (3, 2). With

this label definition, the mirror transformation matrix D(ℓ) can be

written as a function of the label ℓ as

D(ℓ) =
𝐾∏
𝑘=1

D𝑙𝑘 = D𝑙1D𝑙2D𝑙3 · · ·D𝑙𝐾 . (3)

Virtual cameras and projectors. As Fig. 4 shows, the transformed

3D point X′′ = DX can be interpreted in two ways: (i) virtual ob-
ject—the location of the virtual point in the real camera coordinate

system; or (ii) virtual camera—the location of the real point in the

virtual camera coordinate system. The first interpretation corre-

sponds to unfolding the ray from the object side, and the second to

unfolding the ray from the pixel side. Each of these equivalent inter-

pretations has its own advantages. For example, the virtual-object

interpretation is useful when we derive the transformation by mul-

tiple mirrors, as it lets us avoid the change of camera coordinates.

By contrast, the virtual-camera interpretation is useful when we

derive expressions for triangulated 3D points.

We can use the mathematical equivalence of these two interpreta-

tions to represent the extrinsic matrix of the virtual camera T
virtual

:

Let T
real

be the 4× 4 extrinsic matrix of the real camera (i.e., camera

pose in the world coordinate system). Then, the virtual 3D point

X
virtual

= DX
real

in the real camera coordinate system equals

T
real

X
virtual

= T
real

DX
real

= T
virtual

X
real

. (4)

This can be interpreted as a real 3D point in the local coordinate

system of a virtual camera whose extrinsic matrix equals

T
virtual

= T
real

D. (5)

The above derivation applies, mutatis mutandis, to projectors,

and their virtual counterparts. We skip the derivation as, for the

most part, projectors can be treated as cameras.

Epipolar geometry of virtual projectors and cameras. Now we can

represent the virtual projectors and cameras using the parameters

that define the real projector, camera, and mirrors. Let the extrinsic

matrix of the real projector and camera be T𝑝 and T𝑐 , respectively.
Then, the extrinsic matrix of the virtual projector with mirror trans-

formation D𝑝 is T′𝑝 = T𝑝D𝑝 , and that of the virtual camera with

mirror transformation D𝑐 is T′𝑐 = T𝑐D𝑐 . Thus, a 3D scene point X
observed from the virtual projector and the virtual camera equals{

X𝑝 = T′𝑝X = T𝑝D𝑝X,

X𝑐 = T′𝑐X = T𝑐D𝑐X,
(6)

where X𝑝 and X𝑐 are the representations of the point in the local

coordinates of the virtual projector and virtual camera, respectively.

To mathematically describe the epipolar geometry between the

virtual projector and virtual camera, we can express the relative

transformation between them as

X𝑝 = T𝑝D𝑝X = T𝑝D𝑝D−1
𝑐 T−1𝑐 X𝑐 =

[
R t
0 1

]
X𝑐 , (7)

where R and t are the relative rotation and translation between the

virtual projector and virtual camera, respectively. Finally, to express

the fundamental matrix, we denote by K𝑝 and K𝑐 the intrinsic ma-

trices of the virtual projector and virtual camera, respectively (i.e.,

x𝑝 ∼ K𝑝X𝑝 , and x𝑐 ∼ K𝑐X𝑐 ). Then, we can express epipolar con-

straints between the virtual projector and virtual camera using the

fundamental matrix F = K−⊤
𝑝 [t]×RK−1

𝑐 , which satisfies x⊤𝑝 Fx𝑐 = 0.

4 LABELING
We now present our main technical results, detailing the conditions

under which the label sequence can be uniquely determined using

the epipolar constraints between virtual projectors and cameras.

4.1 Problem Setup
Suppose that we illuminate a pixel x𝑝 on the projector and observe

a set of pixels {x𝑐𝑖 } on the camera. Then, we formulate the labeling

problem as follows: given the correspondence of x𝑝 ↔ {x𝑐𝑖 }, find
the label, or mirror sequence, ℓ𝑝 associated with the projector pixel

x𝑝 , and the label set {ℓ𝑐𝑖 } for each of the camera pixels in {x𝑐𝑖 }.
We approach this problem as one of finding label for the projector

pixel and each of the camera pixels, such that the projector-camera

pixel correspondences satisfy the epipolar constraints implied by

the labels. Let the mirror transformation of the projector pixel x𝑝
be D𝑝 = D(ℓ𝑝 ), and that of the camera pixel x𝑐𝑖 be D𝑐𝑖 = D(ℓ𝑐𝑖 ), as
defined in (3). Then, the relative transformation between the virtual

projector and camera is T𝑝D𝑝D−1
𝑐𝑖
T−1𝑐 =

[
R𝑖 t𝑖
0 1

]
. The fundamen-

tal matrix can now be written as a function of the labels ℓ𝑝 and

ℓ𝑐𝑖 as F(ℓ𝑝 , ℓ𝑐𝑖 ) = K−⊤
𝑝 [t𝑖 ]×R𝑖K−1

𝑐 . The epipolar distance due to the

labels ℓ𝑝 , ℓ𝑐𝑖 and the correspondence x𝑝 ↔ x𝑐𝑖 can be defined as

𝑑 (ℓ𝑝 , ℓ𝑐𝑖 ; x𝑝 , x𝑐𝑖 ) ≡ |x⊤𝑝 F(ℓ𝑝 , ℓ𝑐𝑖 )x𝑐𝑖 |. (8)

We refer to (8) as the virtual epipolar distance, and our goal is to find
projector and camera labels such that the virtual epipolar distance is

zero for each of the projector-camera correspondences. Note that all

the correspondences share the same projector label. In the presence

of noisy correspondences, we seek to minimize the total virtual

epipolar distance given as

min

ℓ𝑝 ,{ℓ𝑐𝑖 }

∑
𝑖

𝑑 (ℓ𝑝 , ℓ𝑐𝑖 ; x𝑝 , x𝑐𝑖 ) . (9)
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Fig. 6. Epipolar labeling. We label how each pixel is reflected using epipolar labeling. (a) We obtain correspondences between a projector pixel and multiple
camera pixels during scanning. (b) Labeling such a correspondence is equivalent to determining the number of reflections for each projector and camera pixel
given the mirror geometry. We visualize the possible labels for the pixel x𝑐3 . (c) We show on the camera image the epipolar lines corresponding to the possible
labels, using matching colors. The green line passes through the pixel x𝑐3 , which satisfies the epipolar constraint, whereas other lines do not. We prove that
our epipolar labeling method can correctly determine the label for generic mirror configurations.

4.2 Epipolar Labeling
Optimizing (9) is not trivial, because there are exponentially many

possible labels for both projector and camera; hence, exhaustive

search is computationally intractable. The size of the search space for

each projector or camera pixel is𝑂 (𝑀𝐾max ), where𝑀 is the number

of mirrors and 𝐾max is the maximum number of possible reflections

in the kaleidoscope. In our prototype, 𝐾max = 10 (calculated by

ray tracing using the calibration results). However, we can reduce

the search space using the fact that the true label at a projector

or camera pixel is a pre-subsequence of the label when there is no

object in the kaleidoscope. In particular, we can precompute a pixel’s

empty label for an object-free kaleidoscope simply by ray tracing

using the calibration results. The ray will be repeatedly reflected

by the mirrors until it escapes the kaleidoscope. When we put an

object in the kaleidoscope, the ray is truncated when it intersects

the object. Thus, if we denote the empty label of a pixel x as

ℓempty (x) = (𝑙𝑘 )𝐾max

𝑘=1
= (𝑙1, 𝑙2, 𝑙3, . . . , 𝑙𝐾max

), (10)

the label with an object will be a pre-subsequence of ℓempty (x),

ℓ = (𝑙𝑘 )𝐾𝑘=1 = (𝑙1, 𝑙2, 𝑙3, . . . , 𝑙𝐾 ) ⊂ ℓempty (x). (11)

Then, given the empty label, the labeling problem reduces to find-

ing for each pixel the number of mirror reflections till intersecting

the object. Let the number of reflections for x𝑝 and x𝑐𝑖 be 𝐾𝑝 and

𝐾𝑐𝑖 , respectively. We can rewrite (9) as

min

𝐾𝑝 ,{𝐾𝑐𝑖 }

∑
𝑖

𝑑 (ℓ𝑝 , ℓ𝑐𝑖 ; x𝑝 , x𝑐𝑖 ) . (12)

Now the search space size for each pixel reduces from 𝑂 (𝑀𝐾max ) to
𝑂 (𝐾max), and we can solve the optimization problem (12) by linearly

searching the number of reflections for x𝑝 and {x𝑐𝑖 }. Importantly,

the fact that this search couples a single projector pixel label with

multiple camera pixel labels greatly enhances the robustness of the

labeling procedure. Fig. 6 shows an example of epipolar labeling for

one camera pixel, where our procedure finds the label that minimizes

the virtual epipolar distance from the empty label.

4.3 Correctness of Epipolar Labeling
In Section 4.2, we described an efficient procedure for estimating

labels for projector-camera pixel correspondences. We now analyze

the correctness of this labeling procedure. Our analysis establishes

two key facts: First, minimizing (12) determines labels up to a certain

ambiguity. Second, resolving this ambiguity is possible by simply

using the fact that the scanned object must lie in the physical space

enclosed by the mirrors in front of the projector-camera system.

Along the way, we derive conditions on the projector-camera-mirror

geometry necessary for the correctness of our labeling procedure.

We define a mirrored label 𝑀 (ℓ,𝑚) of a label ℓ = (𝑙1, 𝑙2, . . .) as

𝑀 (ℓ,𝑚) ≡ (𝑙1, 𝑙2, . . . ,𝑚), (13)

which is the label followed by an additional reflection by mirror𝑚.

We can generalize this to a multiply mirrored label, that is

𝑀 (ℓ, ℓ ′) ≡ (𝑙1, 𝑙2, . . . , 𝑙 ′1, 𝑙
′
2
, . . .), (14)

This mirrored label is useful because all possible labels can be

represented as mirrored labels of the true label. In particular, let

the true label for x𝑝 and x𝑐𝑖 be ℓ
∗
𝑝 and ℓ∗𝑐𝑖 , respectively, that is,

𝑑 (ℓ∗𝑝 , ℓ∗𝑐𝑖 ; x𝑝 , x𝑐𝑖 ) = 0. Given that all possible labels are also pre-

subsequence of the empty label, we can represent them as

ℓ𝑝 = 𝑀 (ℓ∗𝑝 , ℓ ′𝑝 ), ℓ𝑐 = 𝑀 (ℓ∗𝑐𝑖 , ℓ
′
𝑐 ), (15)

where ℓ ′𝑝 and ℓ ′𝑐 are arbitrary labels contained in the empty label.

We can now prove the following proposition.

Proposition 1 (Virtual epipolar distance of identically

mirrored label.). The virtual epipolar distance between ℓ𝑝 and ℓ𝑐 is
the same as that between𝑀 (ℓ𝑝 , ℓ ′) and𝑀 (ℓ𝑐 , ℓ ′) for any label ℓ ′.

Proof. From (3), we can write the mirror transformation matrix

of the mirrored label D(𝑀 (ℓ, ℓ ′)) as

D(𝑀 (ℓ, ℓ ′)) = D(ℓ)D(ℓ ′) . (16)
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Then, the relative transformation between identically mirrored vir-

tual projector and virtual camera becomes

T𝑝D(𝑀 (ℓ𝑝 , ℓ ′))D(𝑀 (ℓ𝑐𝑖 , ℓ ′))−1T−1𝑐 (17)

=T𝑝D(ℓ𝑝 )D(ℓ ′)D(ℓ ′)−1D(ℓ𝑐𝑖 )−1T−1𝑐 (18)

=T𝑝D(ℓ𝑝 )D(ℓ𝑐𝑖 )−1T−1𝑐 . (19)

Therefore, the effect of the additional reflection cancels out, and the

relative transformation does not change by the identically mirrored

label. Thus, the epipolar distance does not change either. □

Remark. Proposition 1 implies that, given the true projector-

camera label pair ℓ∗𝑝 and ℓ∗𝑐𝑖 , any mirrored label pair of the form

𝑀 (ℓ∗𝑝 , ℓ ′) and𝑀 (ℓ∗𝑐𝑖 , ℓ
′) satisfies

𝑑 (𝑀 (ℓ∗𝑝 , ℓ ′), 𝑀 (ℓ∗𝑐𝑖 , ℓ
′); x𝑝 , x𝑐𝑖 ) = 𝑑 (ℓ∗𝑝 , ℓ∗𝑐𝑖 ; x𝑝 , x𝑐𝑖 ) = 0. (20)

Therefore, given the true label, mirroring both the projector and

the camera pixel with the same sequence produces a valid solution.

This raises the question: can there be other ambiguous solutions

to the labeling problem? That is, could a differently mirrored label

be used for the projector and camera and still satisfy the epipolar

constraints? We eliminate this possibility next.

Proposition 2 (Virtual epipolar distance of differently

mirrored label.). Given the true labels, ℓ∗𝑝 and ℓ∗𝑐𝑖 , for the projec-
tor and camera pixels, the rays corresponding to the mirrored labels
𝑀 (ℓ∗𝑝 , ℓ ′𝑝 ) and𝑀 (ℓ∗𝑐𝑖 , ℓ

′
𝑐 ) never meet for ℓ ′𝑝 ≠ ℓ ′𝑐 , i.e,

𝑑 (𝑀 (ℓ∗𝑝 , ℓ ′𝑝 ), 𝑀 (ℓ∗𝑐𝑖 , ℓ
′
𝑐 ); x𝑝 , x𝑐𝑖 ) > 0, (21)

provided that the kaleidoscope and the projector-camera pair are in a
generic configuration where the epipolar planes, both real and virtual,
and mirror normals are not co-planar.

Proof. Our proof relies on the intuition that the probability of

two arbitrary lines in 3D being co-planar is zero. We explain the

proof when the mirrored label introduces a single additional bounce.

Without loss of generality, we assume that the true 3D point is at

the origin, and that the last two mirror bounces before hitting the

object are at points p1 and p2, on mirrors 1 and 2, respectively. If we

have the true labels, the rays for triangulation are p1 + 𝑡1 (−p1) and
p2 + 𝑡2 (−p2) and intersect at the origin. If we have the wrong labels,
which include additional bounces on mirrors 1 and 2, the rays are

p1 + 𝑡1 (I − 2n1n1⊤)p1 and p2 + 𝑡2 (I − 2n2n2⊤)p2. The two rays are

co-planar if and only if

det

( [
p1 − p2 (I − 2n1n1⊤)p1 (I − 2n2n2⊤)p2

] )
= 0, (22)

which is possible only when p1, p2, n1, and n2 are co-planar. □

There exist degenerate cases when the conditions of Proposition 2

do not hold. One example is when mirrors are perfectly symmetric,

as in Fig. 7, and consequently a reflected ray is on the same plane as

the epipolar plane of the true label. However, placing the projector-

camera pair in an asymmetric configuration relative to the mirrors

avoids such degeneracies. Note that Lanman et al. [2009] used a sys-

tem that is in a perfectly symmetric configuration by design. Their

focus was on mitigating interference, with labeling done manually.

From Propositions 1 and 2, we know that minimizing (12) pro-

vides the true labels for projector and camera up to mirroring by a

Projector Camera

𝐱! 𝐱"epipolar
plane

Mirrors

Fig. 7. Degenerate configuration.When the mirrors and the rays from
the projector and camera are perfectly symmetric, the reflected rays can lie
on the epipolar plane of corresponding projector-camera pixels.

shared third label. We will resolve the remaining ambiguity with

Proposition 3 below. We first introduce the following observation.

Mirror 𝑚Real camera

Real ray 
Virtual ray

front behind

Observation. For a physi-

cally feasible traced ray involv-

ing mirror reflections, the vir-

tual ray that is unfolded from

the real ray before hitting mir-

ror𝑚 is always behind the mir-

ror𝑚. The inset shows an ex-

ample: the virtual rays (dotted

line segments) unfolded from the real rays (solid line segments)

are always behind the mirror 𝑚. This is true because the mirror

reflection transforms a real or virtual point in front of the mirror to

a virtual point behind the mirror.

With this observation in mind, we can now resolve the ambiguity

due to identically mirrored labels.

Proposition 3 (Triangulation from identically mirrored

labels.). The triangulated point from identically mirrored labels is
always outside the mirror system.

Proof. We denote by X∗
the true 3D point triangulated from x𝑝

and x𝑐𝑖 given the true labels ℓ∗𝑝 and ℓ∗𝑐𝑖 . When we have incorrect la-

bels𝑀 (ℓ∗𝑝 , ℓ ′) and𝑀 (ℓ∗𝑐𝑖 , ℓ
′) that are identicallymirroredwith a label

ℓ ′ = (𝑙 ′
1
, 𝑙 ′
2
, ..., 𝑙 ′

𝐾 ′), the corresponding virtual projectors and cameras

are transformed by the label ℓ ′ relative to the virtual projectors and

cameras of the true labels. Therefore, triangulation reconstructs the

transformed point X𝑡 = D(ℓ ′)−1X∗
. We will show that X𝑡 is always

outside the mirror system, and specifically, behind the mirror 𝑙 ′
𝐾 ′

corresponding to the last element of ℓ ′.
We can prove this directly using the above observation because: 1)

the empty label is from the object-free traced ray, which is physically

feasible; 2) X∗
is the true 3D point, which is on the real ray before

hitting mirror 𝑙 ′
𝐾 ′ ; and 3) X𝑡 = D(𝑙 ′

𝐾 ′)−1 · · ·D(𝑙 ′
1
)−1X∗

corresponds

to a point on the unfolded virtual ray from mirror 𝑙 ′
𝐾 ′ . Thus, X𝑡 is

behind the mirror 𝑙 ′
𝐾 ′ , and therefore outside the mirror system. □

In summary, Propositions 1-3 establish that we can determine

the labels associated with a projector pixel and its corresponding

camera pixels by searching over the empty labels associated with

each pixel for the labels that have zero (or smallest) total virtual
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epipolar distance, and produce a triangulated point inside the mirror

system. In the absence of noise, this procedure provably produces

correct labels.

Remark. We note that, even though we only discuss adding labels
to the true label, our derivation automatically covers removing labels
as well. This is a consequence of the fact that the matrix D𝑚 , which

describes the mirror transformation, is involutory. Hence, adding

the trailing end of a mirror sequence in reverse is equivalent to

deleting the trailing end from the sequence.

4.4 Comparison to Other Labeling Methods
Visual hull. Reshetouski et al. [2011] propose solving the labeling

problem using the visual hull, approximated through space carv-

ing from background pixels. For objects with simple shapes that

are predominantly convex, the labeling from a crude visual hull

is often a good approximation to the true labeling. However, for

objects that have complex geometry and self-occlusions, the vi-

sual hull invariably fails to capture concavities, especially when

there are not enough background pixels. Fig. 8 shows an example

of such a failure case. (For the visualization of labels, we sorted the

mirror sequence in ascending order and used the “cool” MATLAB

colormap—magenta-to-cyan linearly.) For such objects, the result-

ing labeling can significantly deviate from the correct labeling. The

labeling accuracy for projector and camera is 76.13 % and 83.47 % for

the visual hull method, and 99.96 % and 99.99 % for ours. The visual

hull results also depend on the quality of background segmentation

and the initial shape for carving. In the simulation for Fig. 8, we

used the ground-truth background segmentation and set the initial

shape to be a cube that is 20% larger than the ground-truth shape

in each axis. Ihrke et al. [2012] used a structured light system with

a kaleidoscope as we do, but relied on the inaccurate labeling from

the visual hull, resulting in artifacts as we discuss in Section 7.

Pulsed ToF. Xu et al. [2018] combined a kaleidoscope with a pulsed

ToF camera, with the source and detector collocated. The ToF mea-

surement provides a simple solution to the labeling problem: As

the source and detector are collocated, simply ray tracing from the

detector pixel for a distance equal to half the measured ToF provides

the location of the 3D point. However, this technique requires a

high-cost pulsed ToF camera for precise ToF measurements.

5 SURFACE RECONSTRUCTION
In the previous section, we have shown how to establish labeled
correspondences x𝑝 ↔ {x𝑐𝑖 } between a projector pixel x𝑝 and

multiple camera pixels {x𝑐𝑖 }. We now explain how to recover a 3D

pointQ from a labeled correspondence, as well as how to reconstruct

the surface of the scanned object from multiple such 3D points.

Multi-view triangulation. A naive approach for reconstructing

3D points Q from a labeled correspondence x𝑝 ↔ {x𝑐𝑖 } would be

to apply the classical two-view triangulation procedure [Hartley

and Zisserman 2004] to each projector-camera pixel pair x𝑝 ↔ x𝑐𝑖
separately. However, this approach does not take into account the

information that each of these projector-camera pixel pairs is an

observation of the same underlying 3D point Q. These multiple

observations of the same point correspond to different viewpoints
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Fig. 8. Comparison to visual hull. Reshetouski et al. [2011] solved the
labeling problem using the visual hull. Their approach fails when there are
insufficient background pixels, or for non-convex objects. Green and red
colors in “label error” indicate correct and incorrect labels, respectively.

and baselines, and thus taking them into account jointly can greatly

improve the robustness of the reconstruction of the unique 3D point

Q. The naive approach produces multiple perturbed versions of this

point, resulting in a noisy and redundant point cloud that impedes

subsequent surface reconstruction procedures.

We adopt a multi-view triangulation approach, which uses all the

geometric information from the one-to-multiple labeled correspon-

dence x𝑝 ↔ {x𝑐𝑖 }, to reconstruct a single 3D point Q. We obtain

this point by solving a linear least-squares problem:

Q = argmin

Q

∑
𝑖

ℎ2𝑖 (23)

= argmin

Q

∑
𝑖

∥
(
I − v𝑖v𝑖⊤) (Q − o𝑖

)
∥2 (24)

= argmin

Q
Q⊤AQ − 2b⊤Q + 𝑐 (25)

= A−1b, (26)

whereℎ𝑖 is the distance from the 3D pointQ to each ray, o𝑖 is the ray
origin, v𝑖 is the ray direction, and we use A ≡ ∑

𝑖

(
I − v𝑖v𝑖⊤

)
, and

b ≡ ∑
𝑖 o⊤𝑖

(
I − v𝑖v𝑖⊤

)
o𝑖 . Fig. 9 compares point clouds produced

using the naive two-view and our multi-view triangulation proce-

dures. For this comparison, we use simulated data where we perturb

measurements of camera pixel locations with Gaussian noise of

variance 5 pixels. We observe that the point cloud from multi-view

triangulation is less noisy than that from two-view triangulation.

We empirically found this to be the case across all our experiments.

Therefore, we use multi-view triangulation throughout the paper.

Outlier rejection. The multi-view triangulation estimate of (26)

is susceptible to outlier rays due to incorrect pixel detections (e.g.,

pixels illuminated due to direct illumination of the camera from

a virtual projector, or indirect illumination effects). Such outliers

can cause severe errors in the estimation of the unknown 3D point

Q. We address this issue using RANSAC [Fischler and Bolles 1981]:

We repeatedly perform two-view triangulation between projector-

camera pixel pairs x𝑝 ↔ x𝑐𝑖 randomly selected from the labeled

correspondence x𝑝 ↔ {x𝑐𝑖 }. For each reconstructed 3D point, we
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(a) Two-view triangulation (b) Multi-view triangulation

Fig. 9. Triangulation. Given the correspondence between a projector pixel
andmultiple camera pixels, we can perform either (a) two-view triangulation
for all pairs in the correspondence; or (b) multi-view triangulation. Multi-
view triangulation reconstructs a single 3D point that is closest to all the rays,
making it more robust than two-view triangulation.Multi-view triangulation
produces less noisy results than two-view triangulation when there is noise
in the measurements.

Table 2. Components used in our hardware prototype.

Description Company Model name

laser projector Sony MP-CL1A

camera FLIR GS3-U3-91S6M

camera lens Nikon AF Nikkor 24mm f/2.8D

mirror Edmund Optics 46-656 (custom)

choose as inliers the pixels in {x𝑐𝑖 } whose corresponding rays are
close enough (0.5mm) to the reconstructed point. Finally, we per-

form multi-view triangulation between x𝑝 and the largest inlier set

to get a robust estimate of the 3D point.

Surface reconstruction. Our triangulation procedure produces a

3D point for each labeled correspondence x𝑝 ↔ {x𝑐𝑖 }. The last step
in our reconstruction pipeline is to use the resulting 3D point cloud

to reconstruct the object surface. For this, we first compute PCA

normals [Hoppe et al. 1992] for each point in the point cloud. We

then reconstruct a mesh representation of the scanned object by

using screened Poisson surface reconstruction [Kazhdan and Hoppe

2013], which estimates an implicit surface from the oriented point

cloud, and extracts an isosurface.

(a) Manual label (from initial sphere fitting) (b) Bundle adjustment results

Fig. 10. Calibration.We calibrate the projector, camera, and mirrors using
a reference spherical object of known diameter. We manually label pixels
using an initial sphere fitting result, and perform bundle adjustment to
minimize triangulation error, sphere fitting error, and reprojection error.

6 IMPLEMENTATION
ProjectorCamera

Kaleidoscope

Object

We have developed a hardware prototype

for a kaleidoscopic structured light sys-

tem, comprising a laser projector, a mono-

chrome CCD camera, and a kaleidoscope.

The inset shows a photograph of our pro-

totype. For the kaleidoscope, we use four

planar metal-coated mirrors (surface flat-

ness 4−6𝜆, dimensions 200mm×307mm)

that we cut to be shaped as isosceles trian-

gles. Table 2 lists the exact parts used in

our prototype. In the rest of this section,

we describe how we calibrate our system,

and how we accelerate scanning.

Calibration. We calibrate our projector-camera pair using the

algorithms of Zhang et al. [2000] and Moreno et al. [2012]. We cali-

brate the kaleidoscope using the algorithm of Takahashi et al. [2017;

2021], which estimates the location and pose of the mirrors relative

to the camera from correspondences of a single 3D point.

To improve upon this initial calibration, we use a bundle adjust-

ment procedure inspired by Xu et al. [2018]. As we show in Fig. 10,

we optimize the parameters of the projector, camera, and mirrors,

based on scanning results for a reference object (sphere of diameter

40mm). We first sparsely scan the reference sphere for a few pixels

that can be easily labeled manually (e.g., direct and one-bounce),

and fit a sphere to the reconstructed point cloud. With this initial

sphere fitting result, we can label every pixel using ray tracing, and

completely reconstruct the object. Then, we update the extrinsic

parameters of the projector and mirrors relative to the camera by

minimizing an objective combining triangulation error (distance of

a reconstructed point from its corresponding backprojected rays), re-

projection error (distance of the projection of a reconstructed point

from its corresponding pixel locations), and sphere fitting error of

the reconstructed point cloud. After bundle adjustment, we achieve

a root-mean-square triangulation error of 33 μm, reprojection error

of 1.3 pixels, and sphere fitting error of 361 μm.

Parallel scanning. Up to this point, we have assumed that scan-

ning works by sequentially illuminating all projector pixels, one
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Fig. 11. Interference in parallel scanning of a spherical object. The
graph quantifies the trade-off between interference and acquisition speed,
by plotting the number of points interfered by mirror reflection against the
number of simultaneously illuminated projector pixels.

at a time. However, sequential scanning makes acquisition times

impractically long. We now describe a parallel scanning technique

for faster acquisition.

Similar to traditional structured light techniques, our parallel scan-

ning technique operates by simultaneously illuminating multiple

projector pixels with a temporal code, and decoding the measure-

ments made at a pixel to obtain projector-camera correspondences.

However, a key difference in the kaleidoscopic setting is the com-

plexity of the epipolar geometry (and thus, interference patterns)

produced by the multiple mirrors, which makes traditional column-

scanning schemes inapplicable. Instead, we randomly sample groups

of 2
8−1 projector pixels, encode each pixel with an 8-bit binary code,

and project the sequence of binary images (and their inverses for

improved robustness) that correspond to each bit of the binary code.

Then, we obtain the camera pixels corresponding to each projector

pixel by decoding the binary code from the captured image.

This parallel scanning technique accelerates acquisition, but also

exacerbates interference: multiple projector pixels may illuminate

the same 3D point, which could result in erroneous decoding. The

likelihood of this happening increases as we increase the number

of projector pixels we simultaneously illuminate, which creates a

trade-off between acquisition acceleration and interference.

To empirically quantify this trade-off, we simulated parallel scan-

ning of a spherical object. Fig. 11 plots the number of points having

interference in each scan, as a function of the number of simultane-

ously illuminated projector pixels. Based on this plot, we chose to

illuminate 2
8−1 projector pixels, corresponding to an average of one

pixel with interference in each scan. This results in few decoding

errors, which are easily handled during triangulation via RANSAC.

7 RESULTS
We evaluate our method using simulated and real experiments. Our

code and data are available on the project page [Ahn et al. 2021].

7.1 Simulated Experiments
We use a ray tracing implementation (customized to handle multi-

ple specular-specular reflections) to simulate measurements from

our kaleidoscopic structured light system. We use these simulated
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Fig. 12. Labeling accuracy for synthetic data. We visualize the labeling
results under Gaussian noise for several simulated objects.

Table 3. Labeling accuracy statistics.We report labeling accuracymetrics,
with and without adding Gaussian noise (𝜎 = 5 pixels) to camera pixel
measurements. The labeling is robust to measurement noise.

Labeling accuracy sphere armadillo bunny-grid

Projector (w/o noise) 100.00% 100.00% 100.00%

Projector (Gaussian noise) 99.69% 99.69% 99.43%

Camera (w/o noise) 100.00% 99.99% 100.00%

Camera (Gaussian noise) 99.99% 99.99% 99.98%
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Fig. 13. Reconstruction accuracy for synthetic data.We simulate scan-
ning of an object with diameter 60mm using the same imaging system as
our prototype, with and without noise. Our system makes it possible to
accurately reconstruct the severely occluded inner bunny.

measurements to evaluate the results of our labeling and shape re-

construction procedures against known ground truth. The diameter

of our simulated objects is 60mm.

Labeling accuracy. Fig. 12 and Table 3 show simulated labeling re-

sults for three synthetic objects, with and without Gaussian noise in
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Fig. 14. Simulated comparison of kaleidoscopic imagingmethods.We use simulation to quantitatively evaluate the performance of various kaleidoscopic
imaging methods. Our method provides the best reconstruction accuracy.

the camera pixel measurements (𝜎 = 5 pixels). Our labeling provides

almost 100% accuracy in all cases.

Reconstruction accuracy. Fig. 13 shows simulated shape recon-

struction results, and average distance between reconstruction and

ground truth. We note that the multiple virtual views of our system

make it possible to reconstruct the severely-occluded inner bunny.

Comparisons with other kaleidoscopic imaging methods. Fig. 14
shows simulated comparisons to other kaleidoscopic imaging meth-

ods. We used pixel binning and depth binning to simulate the finite

resolution of the sensor used in each method. We compare the per-

formance of different approaches using two metrics: The first metric

is accuracy, which we define as the average distance of the vertices

of the reconstructed mesh from the ground-truth mesh; this met-

ric quantifies how the reconstruction is to the ground truth. The

second metric is coverage, which we define as the average distance

of the vertices of the ground-truth mesh from the nearest point of

the reconstructed point cloud; this metric quantifies how well the

reconstruction covers each part of the ground-truth shape.

• Fig. 14(a) shows results from the visual hull technique proposed

by Reshetouski et al. [2011]. We observe that this technique does

not recover the inner bunny, because of the limited background

area available for space carving.

• Fig. 14(b) shows results from a variation of our technique inspired

by Ihrke et al. [2012], where we perform multi-view triangula-

tion with RANSAC, but using labels from the visual hull (Fig. 8).

We observe that, even though RANSAC mitigates the effect of

incorrect labels, there are still some artifacts remaining.

• Fig. 14(c) and (d) show results from the ToF-based technique of

Xu et al. [2018]. We set the spatial resolution of the ToF camera to

be the same as that of our camera, and simulate two different ToF

depth resolutions: Fig. 14(c) uses a depth resolution of 0.2mm,

corresponding to the calibration error reported by Xu et al. [2018]

using a costly high-end lidar (Leica ScanStation P40 3D Laser

Scanner). Fig 14(d) uses a depth resolution of 5mm, corresponding

to a low-end lidar of cost comparable to our setup (Intel Realsense

LiDAR Camera L515). We observe that lowering the resolution

results in a severe increase in noise in the reconstructed shape.

• Fig. 14(e) shows results from our method. We observe that, com-

pared to the visual hull technique (a), our use of triangulation

enables reconstructing the concave and occluded parts of the

shape. Additionally, using accurate labels from our labeling tech-

nique reduces artifacts and improves accuracy by two orders of

magnitude compared to using visual hull labels (b). Our tech-

nique has a similar accuracy improvement when compared to

ToF using a lidar of cost comparable to our setup (d). Lastly, our

technique achieves comparable accuracy with the ToF setup of Xu

et al. [2018], while using a much more affordable imaging setup.

7.2 Real Experiments
Scanned objects. Fig. 15 shows reconstructions of a variety of real

objects obtained using the kaleidoscopic structured light prototype

of Sec. 6. For each object, we show a kaleidoscopic image under

uniform projector illumination, camera labels, and reconstructed

mesh surface. Our setup allows scanning objects of size up to about

10 cm (e.g., the skull has dimensions 5 × 10 × 7.5 cm3
). To visualize
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Fig. 15. Real object scans from our prototype. Reconstructed point clouds and full surround videos are available on the project webpage [Ahn et al. 2021].

the appearance of the reconstructed surface, we use a simple texture

mapping procedure by projecting each vertex to all visible (virtual)

cameras, and computing the average intensity of the corresponding

pixel values. As our setup uses a monochrome camera, we obtain

per-pixel color by projecting color channels sequentially from our

RGB projector. We additionally visualize PCA vertex normals, to

help better assess the quality of the reconstructed mesh. Fig. 1 shows

an additional scanned object. We observe that our kaleidoscopic

structured light system produces high-quality reconstructions for a

variety of objects with complex visibility and reflectance properties.

Visibility. Fig. 16 and Table 4 report the effective average number

of projector views, camera views, and unique projector-camera pairs

per mesh vertex, for the scanned objects of Fig. 1 and Fig. 15. These

Table 4. Effective number of per-vertex projector and camera views.
The number is generally smaller for larger objects because of occlusion.

#views elephant skeleton cat brush treble clef skull

projector 5.2 6.3 4.8 9.1 4.7

camera 5.4 6.9 4.5 10.2 4.3

pair 31.8 51.5 24.3 96.5 22.2

numbers are strongly affected by the size and location of the object

inside the kaleidoscope. For example, the skull has an average of

22.2 projector-camera pairs per vertex, whereas the smaller treble

clef has an average of 96.5 pairs per vertex.
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elephant: (88, 93) treble clef: (85, 99)cat: (91, 89)skeleton: (91, 86) skull: (88, 83)

Fig. 16. Effective projector and camera views for different objects. We visualize and report the number of the effective projectors and cameras around
the object. Overall, there are almost 100 virtual projectors and cameras surrounding each object.

0 mm

1 mm

(c) Accuracy: 0.235 mm (d) Coverage: 0.305 mm

(a) Photograph (b) Shape reconstruction

Fig. 17. Real scan of a 3D-printed mesh. We 3D-printed and scanned
the mesh used in the simulation results of Fig. 14. We report performance
metrics comparing the reconstructed and ground-truth meshes.

Quantitative evaluation. To quantify the reconstruction accuracy

and coverage of our technique, we used our setup to scan a 3D-

printed object for which a ground-truth mesh is available. The

object had a width of 8 cm, and was 3D-printed at a layer resolution

of 0.17mm. Fig. 17 shows the results. We aligned the reconstructed

mesh with the ground-truth one using the iterative closest point

algorithm [Besl andMcKay 1992]. By comparing the twomeshes, we

estimated an accuracy of 0.235mm and coverage of 0.305mm for our

method. By comparing these numbers with those in Fig. 14(e), where

we used the same ground-truth mesh for a simulated experiment,

we can also quantitatively assess the impact of calibration errors

and other hardware imperfections on reconstruction quality.

Comparison with kaleidoscopic ToF system. We performed an ex-

periment where we replaced the projector-camera pair in our proto-

type with a commercial lidar of cost comparable to our setup (Intel

Realsense LiDAR Camera L515, same depth resolution as that used

for the simulated experiments of Fig 14(d)). We used this modified

system to scan the same spherical calibration object as in Fig. 10.

We show the results in Fig. 18. We note that, because of the low

(c) Point cloud (unfolded) (d) Zoom in (noisy surface)

(a) RGB image (b) Depth map

Fig. 18. Kaleidoscopic time-of-flight experiment. Unfolded point cloud
obtained from the depthmap of a commercial low-resolution lidar. The depth
measurements are a lot noisier than those obtained using our kaleidoscopic
structured light system for the same object (Fig. 10).

depth resolution and noisy ToF measurements of our lidar, we were

unable to obtain accurate calibration information for the modified

imaging setup using the calibration procedure of Xu et al. [2018]. In

turn, the lack of accurate calibration meant we could not produce

a meaningful shape reconstruction using their proposed ray fold-

ing procedure. We show, instead, our reconstructed unfolded point

cloud, which we observe to be a lot noisier than the one obtained

by our technique (Fig. 10). As Xu et al. [2018] and our simulations

in Fig. 14 both have shown, using a high-end lidar can alleviate

these issues and achieve the same reconstruction accuracy as our

structured light technique, albeit at a much higher hardware cost.

8 DISCUSSION
PCA normals. The combined use of our labeled correspondences

and multi-view triangulation with RANSAC robustly reconstructs
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(a) Photograph (b) Camera label from 
epipolar labeling

(c) Camera label from 
surface reconstruction

(d) Initial point cloud (e) Surface reconstruction

Fig. 19. Effect of PCA normals. We show an example of how of failures
in normal estimation impact reconstruction quality: Our system estimates
an accurate point cloud of a very thin object, for which the PCA normal
estimates are inaccurate. As a result, the reconstructed mesh has strong
artifacts, especially at the center where different rings intersect.

accurate point clouds. However, the screened Poisson surface recon-

struction [Kazhdan and Hoppe 2013] algorithm we use to create the

final mesh reconstructions requires as input oriented point clouds.

We produce those by assigning PCA normals [Hoppe et al. 1992]

to our reconstructed unoriented point clouds. Unfortunately, PCA

normals can be inaccurate for shapes with complex topology, result-

ing in inaccurate meshes. As an example, in Fig. 19 we show scan

results for a slinky: The reconstructed point cloud accurately repre-

sents the object’s interwoven thin parts; however, the reconstructed

mesh has strong artifacts near the center, because of the inaccurate

PCA normals. Combining our technique with more accurate normal

estimation procedures, including ones using shading information,

can help improve the accuracy of the final mesh reconstructions.

Pose of the object in the kaleidoscope. Fig. 20 shows results from
scans of the same object from two different poses: in pose 1, we

placed the object directly on the kaleidoscope, whereas in pose 2,

we hung it using strings. In the former case, the parts on the mirrors

(e.g., head, tail) are visible from few viewpoints, and thus are not

reconstructed. By contrast, in the latter case, these parts are well

reconstructed. This example highlights the strong impact object

pose can have on the final reconstruction, and suggests object pose

optimization as an important future research direction.

Comparison to neural rendering. 3D reconstruction by moving

a flash-camera pair around an object, in the style of IDR [Yariv

et al. 2020] and NeRF [Mildenhall et al. 2020], has recently seen

immense success. This is advantageous over our technique in terms

of cost, object size, acquisition time, and overall user convenience.

By contrast, our structured light technique can handle textureless

objects where passive techniques fail. Our technique can also han-

dle very complex shapes where, due to visibility, flash photography

po
se

 1
po

se
 2

(a) Camera view (b) Reconstructed point cloud

Fig. 20. Effect of object pose inside the kaleidoscope. Changing the
object pose impacts reconstruction quality. Having enough space between
the object and mirrors can reduce occlusion and improve the reconstruction.

methods can produce poor results, unless the number of views be-

comes impractically large. In the future, it is possible that using

neural rendering algorithms to process measurements from kaleido-

scopic structured light setups can lead to scanning technologies that

combine the complementary advantages of the two approaches.

9 CONCLUSION
We introduced a full surround 3D imaging technique that combines

a projector-camera pair with a kaleidoscope, to produce a virtual

multi-view structured light system. We derived an algorithm that

uses the epipolar geometry between virtual projectors and virtual

cameras to produce provably correct labels for pixels in the kaleido-

scopic image, in terms of which virtual projector and virtual camera

these pixels correspond to. By combining these labels with multi-

view triangulation, we showed that our system can achieve high

reconstruction accuracy and full coverage, even when scanning

objects with complex geometry and reflectance.
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