Kaleidoscopic Structured Light

BYEONGJOO AHN, IOANNIS GKIOULEKAS, and ASWIN C. SANKARANARAYANAN,
Carnegie Mellon University, USA

Fig. 1. Kaleidoscopic structured light. (a) We propose a system for full surround 3D imaging using an imaging setup that consists of a projector, a camera, and a kaleidoscope. (b) The camera and projector observe the object from a large number of virtual viewpoints, which unravel the complex geometry of the object. (c) To use the kaleidoscopic image for multi-view stereo, we label each pixel, i.e., identify the sequence of mirrors that the ray backprojected from the pixel encounters before intersecting the object. (d) This labeling allows us to reconstruct the shape of the object using multi-view triangulation. Our system enables us to reconstruct, with high accuracy and full coverage, highly complex objects that have intricate geometric features, including concavities and self-occlusions. Reconstructed point clouds and full surround videos are available on the project webpage [Ahn et al. 2021].

Full surround 3D imaging for shape acquisition is essential for generating digital replicas of real-world objects. Surrounding an object we seek to scan with a kaleidoscope, that is, a configuration of multiple planar mirrors, produces an image of the object that encodes information from a combinatorially large number of virtual viewpoints. This information is practically useful for the full surround 3D reconstruction of the object, but cannot be used directly, as we do not know what virtual viewpoint each image pixel corresponds—the pixel label. We introduce a structured light system that combines a projector and a camera with a kaleidoscope. We prove that we can accurately determine the labels of projector and camera pixels, for arbitrary kaleidoscope configurations, using the projector-camera epipolar geometry. We use this result to show that our system can serve as a multi-view structured light system with hundreds of virtual projectors and cameras. This makes our system capable of scanning complex shapes precisely and with full coverage. We demonstrate the advantages of the kaleidoscopic structured light system by scanning objects that exhibit a large range of shapes and reflectances.

1 INTRODUCTION

3D scanning of a single view of an object seldom suffices. Be it for 3D printing, augmented reality, or virtual reality, scanning of the shape of the entire object in all its complexity—what we refer to as full surround 3D—is critical to have a faithful digital twin.

A key factor in achieving a full surround 3D scan is the number of viewpoints from which an object is imaged. Covering the entire object that we seek to scan typically requires a large number of diverse viewpoints. Furthermore, this number increases with the complexity of the object. This requirement has led to the construction of light stages with multiple cameras, and potentially projectors, that capture digital content at high fidelity. Unfortunately, the cost and complexity of these systems place them beyond the reach of the average consumer of 3D technology.

A simple way to achieve a very large number of viewpoints is to surround the object we want to scan with mirrors, which conveniently provide additional viewpoints without the need to move a camera or construct a multiple-camera system. In particular, a kaleidoscope [Brewster 1858], which consists of multiple planar mirrors, allows light to bounce around repeatedly until it hits the camera, thereby providing a combinatorial increase in the number of viewpoints. Thus, with a kaleidoscope and a single camera, we can construct a virtual multi-view imaging system that is easy to build, calibrate and deploy, with components that are easily available.

The key challenge when using a kaleidoscope, however, lies in interpreting the captured image and decoding the numerous views of the object that it provides. Specifically, we need to identify the virtual viewpoint corresponding to each pixel on the captured image. We call this the labeling problem. The labeling information allows us to decompose the single captured image into multiple segments, one for each virtual viewpoint. In the absence of this information, we cannot estimate the 3D shape by triangulating from correspondences across different views. The fact that in a kaleidoscope it is common...
We propose a full surround 3D imaging system that we call kaleidoscopic structured light, comprising a projector and a camera, and a kaleidoscope. Our main technical result is to show that we can correctly label the virtual projectors and virtual cameras for arbitrary kaleidoscope configurations, by using their epipolar geometry and other physical constraints arising from image formation for this setup. With this result, our kaleidoscopic structured light system can serve as a multi-view structured light system with tens, if not hundreds, of virtual projectors and cameras, which are hard to construct with real devices. Our system allows us to reconstruct shape (in the form of triangular meshes) of highly complex objects with intricate features, by providing correspondences from multiple viewpoints with full surround coverage.

Contributions. Our work advances the state of the art of 3D scanning, by facilitating the reconstruction of challenging objects, such as textureless or glossy objects, with complex 3D geometry. This is made possible through the following contributions:

- **Labeling using epipolar geometry.** We develop a labeling technique that takes as input correspondences between a projector pixel illuminating a point on the object, and multiple camera pixels observing that point. Our labeling technique uses constraints specific to the kaleidoscopic setup, and in particular the epipolar geometry across these multiple correspondences, to jointly decode the mirror sequences at the projector and camera pixels.

- **Theoretical guarantees on the recoverability of labels using epipolar geometry.** We prove a theoretical result that establishes the uniqueness and correctness of the labels we decode with our labeling technique. Specifically, we show that the labels we recover from the projector-camera pixel correspondences are accurate, provided the epipolar planes corresponding to the projector-camera geometry are not parallel to the mirror normals. This condition is easy to achieve by placing the camera and projector in asymmetric poses relative to the kaleidoscope.

- **Fast scanning techniques.** We develop heuristics for speeding up our scan, exploiting the fact that the labeling problem is highly over-constrained due to multiple camera pixels mapping to the same projector pixel.

These advances in kaleidoscopic imaging allow us to push the boundaries of 3D scanning in terms of the complexity of the objects that can be reconstructed. Fig. 1 shows an example 3D scan of an object that fully encompasses another smaller object, and is characterized by concavities, a large genus number, and complex self-occlusion. We have released our code and data on the project website [Ahn et al. 2021], to facilitate reproducibility and follow-up research.

Limitations. The main limitation of the proposed kaleidoscopic structured light technique is the time it requires for scanning an object. The baseline version of our technique relies on point scanning, which can take a prohibitive amount of time. We provide parallelized scanning techniques to speed up acquisition, but our scan times remain considerably longer than those achieved by traditional structured light acceleration techniques. Unfortunately, the complex nature of kaleidoscopic light transport makes these traditional techniques inapplicable to our setting.

2 RELATED WORK

We review prior work on full surround 3D reconstruction. We summarize key features of our and prior techniques in Table 1.

2.1 Full Surround 3D Reconstruction

Common approaches for reconstructing a complete scan of an object include rotating the object [Kang et al. 2019; NextEngine 2000; Park et al. 2016; Xia et al. 2016; Zhou et al. 2013], moving a camera around the object [Cui et al. 2010; Holroyd et al. 2010; Kolev et al. 2014; Lichy et al. 2021; Nam et al. 2018; Newcombe et al. 2011; Ondrůška et al. 2015; Wu et al. 2015; Wu and Zhou 2015], or constructing a multi-camera system [Ghosh et al. 2011; Joo et al. 2017; Schwartz et al. 2013]. However, rotating the object around a fixed axis (e.g., using a turntable) constrains viewpoints to lie on a plane perpendicular to the rotation axis; such viewpoints may be insufficient for the full surround reconstruction of intricate objects. Moving a single camera requires estimating the camera pose, whereas multi-camera systems are generally costly and difficult to build. These approaches are even more challenging when we try to scan textureless objects, for which correspondences are hard to establish using only passive illumination. Even though projector-camera systems can help solve the correspondence problem, such systems are even more difficult to scale to the full surround case, in part due to the complexity and cost, and in part due to interference between multiple projectors.

A fascinating approach for full surround 3D reconstruction is the so-called dip transform, where the object is dipped into a fluid at multiple orientations [Aberman et al. 2017]. Measuring the liquid displacement, which encodes the submerged volume, provides sufficient information to recover the shape of the object. Although this

<table>
<thead>
<tr>
<th>Method</th>
<th>Registration</th>
<th>Correspondence</th>
<th>Labeling</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single camera</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>low</td>
</tr>
<tr>
<td>Multi-camera system</td>
<td>o</td>
<td>x</td>
<td>-</td>
<td>high</td>
</tr>
<tr>
<td>Multi-projector camera system</td>
<td>o</td>
<td>o</td>
<td>-</td>
<td>very high</td>
</tr>
<tr>
<td>Camera + mirrors [Reshetouski et al. 2011]</td>
<td>o</td>
<td>x</td>
<td>visual hull</td>
<td>low</td>
</tr>
<tr>
<td>ToF + mirrors [Xu et al. 2018]</td>
<td>o</td>
<td>o</td>
<td>path length</td>
<td>high</td>
</tr>
<tr>
<td>Structured light + mirrors [Lanman et al. 2009]</td>
<td>o</td>
<td>o</td>
<td>manual</td>
<td>medium</td>
</tr>
<tr>
<td>Structured light + mirrors (ours)</td>
<td>o</td>
<td>o</td>
<td>epipolar constraint</td>
<td>medium</td>
</tr>
</tbody>
</table>
method provides superior results for intricate objects, it requires immersing the object in the fluid, which is not always feasible.

2.2 3D Reconstruction with Mirrors

Label-free approaches. There is extensive literature on the use of mirrors for 3D reconstruction, in combination with passive-illumination camera systems [Forbes et al. 2006; Fuchs et al. 2013; Gluckman and Nayar 2001, 2002; Goshtasby and Gruver 1993; Hu et al. 2005; Huang and Lai 2006; Mitsumoto et al. 1992; Murray 1995; Nene and Nayar 1998; Taguchi et al. 2010a,b; Ying et al. 2010], time-of-flight (ToF) cameras [Nobuhara et al. 2016], and projector-camera systems [Bangay and Radloff 2004; Garg et al. 2006; Han and Perlin 2003; Lanman et al. 2009; Tahara et al. 2015]. The use of mirrors is in large part due to the increase in viewpoints they provide. In most systems using mirrors this way, the number of reflections and virtual viewpoints are carefully controlled to be few in number, which makes manual labeling practical.

Lanman et al. [2009] propose a structured light system that combines an orthographic projector, a camera, and mirrors, and is designed to remove the interference between reflected projector patterns. They solve the interference problem by illuminating with patterns that are perfectly aligned after one or multiple mirror reflections. However, achieving this requires using a special configuration of mirrors, which in turn constrains the locations of virtual cameras to lie on a plane. Such a viewpoint set can be insufficient for full surround 3D coverage when scanning complex objects. Additionally, their configuration has only four virtual cameras, to make manual labeling of the virtual images observed in the camera practical. Tahara et al. [2015] extend this approach to perspective projectors, again with manual labeling. Kaleidoscopes have also been used for measuring bidirectional texture functions [Bangay and Radloff 2004; Han and Perlin 2003]; in these works, the underlying shapes are nearly planar, which simplifies solving the labeling problem.

Approaches that estimate labels. Using numerous virtual viewpoints for better full surround coverage requires being able to estimate labels automatically. Reshetouski et al. [2011] solve the labeling problem in a passive-illumination kaleidoscopic system by using space carving [Kutulakos and Seitz 2000]. As the background pixels on the captured image do not intersect with the object, even after repeated mirror reflections, the rays corresponding to those pixels can be backprojected and "carved". This provides a visual hull of the object inside the kaleidoscope, which can be combined with ray tracing to obtain the label map. Ihrke et al. [2012] combine this labeling method with a structured light system that illuminates only one label at a time, to obtain correspondences while avoiding interference. As these methods rely on space carving for labeling, they are inaccurate when the visual hull is not a good approximation to the object; typically, this is the case for concave objects. Xu et al. [2018] combine a kaleidoscope with a ToF camera. The ToF information provides the total path length from the camera to the object. This allows estimating the label and 3D point, by folding the ray using the known mirror configuration. Unfortunately, this approach requires using a pulsed ToF system, which can be costly.

3 OVERVIEW

We provide an overview of the proposed kaleidoscopic structured light system and its associated reconstruction pipeline.

3.1 Imaging Setup

Hardware. We construct the kaleidoscopic structured light system by combining a projector, a camera, and a kaleidoscope. We create the kaleidoscope by placing four planar mirrors in a pyramidal shape, which Xu et al. [2018] report empirically to provide good scanning coverage. We place the projector and camera at the bottom of the pyramid, oriented to look at its tip. We calibrate the intrinsic parameters of the projector and camera, and the extrinsic pose of the projector and mirrors relative to the camera. Then, we place the object inside the mirror system, either by hanging it with strings, or by placing it on the mirrors directly. The kaleidoscopic arrangement provides hundreds of virtual projectors and cameras. We show a schematic of our setup in Fig. 1, and provide details about our hardware prototype and calibration procedure in Section 6. Fig. 1 also outlines the steps of the imaging pipeline—scanning, labeling, and shape reconstruction—which we review next.

Scanning. We first scan the object by turning "on" a number of projector pixels, which illuminate a set of object locations, and thus camera pixels. To simplify exposition, we describe our approach assuming that we activate only a single projector pixel at a time. In Section 6, we discuss techniques for speeding up acquisition by simultaneously activating multiple projector pixels. The projector pixel that we activate illuminates a single point on the object surface, either directly or after one or multiple reflections on the kaleidoscope. The illuminated point is observed at multiple camera pixels, each via a different sequence of mirror reflections, and we save the locations of these pixels. This provides us with a correspondence between a single projector pixel and multiple camera pixels, all of which also correspond to a single object point. This interpretation assumes that interreflections on the object are weak enough to not overwhelm the direct observation of the illuminated point; in our experience, this is generally true except for when the scanned object is a mirror or highly-specular.

Labeling. We now have a correspondence between a single projector pixel and multiple camera pixels. However, we cannot directly use this correspondence for triangulation, because we do not know the mirror sequence encountered by the rays corresponding to the projector and camera pixels. For each projector or camera pixel, we refer to the sequence of mirrors that the ray from the pixel encounters before intersecting the object as the pixel’s label [Reshetouski et al. 2011]. We refer to the task of determining the labels for all projector and camera pixels as the *labeling problem*. Solving the labeling problem is the core challenge of kaleidoscopic imaging. Labeling and shape reconstruction are interwoven, as labeling requires reasoning about the object shape, and shape reconstruction requires using the labels to perform triangulation. We will define the labeling problem more formally in Section 3.3, and show how to solve it using epipolar geometry constraints in Section 4.

Shape reconstruction. The projector-camera correspondences and labeling information allow us to reconstruct 3D geometry using
We use the pyramid mirror configuration from Xu et al. [2018], with angles of pyramid tips are (a) 72° and (b) 36°, and the number of the virtual cameras (or projectors) are 27 and 145, respectively.

Before we introduce how to solve the labeling problem, we review the transformation of rays and points by planar mirrors, and the epipolar geometry between the virtual projectors and cameras.

3.2 Kaleidoscope Design and Coverage

We use the pyramid mirror configuration from Xu et al. [2018], with one modification: We adjust the angle of the pyramid to increase the number of virtual viewpoints. Having more viewpoints is important for improving the accuracy of the multi-view triangulation procedure our technique uses. This is different from the methodology of Xu et al. [2018], where the ToF depth-sensing mechanism does not require having multiple views of the same point. Having more views also helps improve coverage, and thus can enable reconstructing occluded parts of objects with highly complex visibility.

Fig. 2 shows that the sharp pyramid provides significantly more virtual projectors and cameras than one with a larger angle. Our new configuration also provides good scanning coverage, as we show empirically in Fig. 3, where we visualize the number of projector and camera pixels that observe each vertex of an object mesh. We leave the systematic optimization of the kaleidoscope configuration as an important future research direction.

3.3 Basics of Kaleidoscopic Imaging

Before we introduce how to solve the labeling problem, we review the transformation of rays and points by planar mirrors, and the epipolar geometry between the virtual projectors and cameras.

Transformation by planar mirrors. To represent the transformation by a single planar mirror \(m \), we define the mirror as a plane with normal \(n \) and distance from origin \(d \) (represented in world coordinates). Then, the \(4 \times 4 \) reflection matrix in homogeneous coordinates can be written as

\[
D_m = \begin{bmatrix}
1 - 2n^T n & 2dn \\
0 & 1
\end{bmatrix}.
\]

Note that \(D_m \) is an involutory matrix (i.e., \(D_m^2 = I \)), as the reflection of a reflected point is the same as the original point.

The transformation by multiple planar mirrors can be represented by multiplying the reflection matrices \(\{D_m\} \) corresponding to each mirror. Consider the example of Fig. 4: a ray from a 3D point \(X \) bounces off mirrors 2 and 1 before being observed at a camera pixel, as shown in Fig. 4. Then, the intermediate virtual point after the first reflection at mirror 2 equals \(X' = D_2 X \), and the final virtual point seeing \(X'' \) through mirror 1 equals \(X'' = D_1 X' = D_1 D_2 X \).

Labels. As mentioned earlier, successful shape recovery requires us to decode the light path between a scene point and the projector or camera pixel observing it. Following Reshetouski et al. [2011], we represent this path using a sequence of mirror labels; for a kaleidoscope with \(M \) mirrors, and a light path with \(K \) reflections, the label sequence is:

\[
\ell \equiv (l_k)_{k=1}^K = (l_1, l_2, \ldots, l_K),
\]
where $\ell_k \in \{1, 2, ..., M\}$ denotes a mirror label. We use the convention that the labeling starts at the pixel and ends at the object. For instance, in Fig. 5, the number of mirrors are $M = 3$, the labels for the light path shown are $\ell_p = (1, 2), \ell_o = (2)$, and $\ell_c = (3, 2)$. With this label definition, the mirror transformation matrix $D(\ell)$ can be written as a function of the label ℓ

$$D(\ell) = \prod_{k=1}^{K} D_{\ell_k} = D_{\ell_1}D_{\ell_2}D_{\ell_3} \cdots D_{\ell_K}. \quad (3)$$

Virtual cameras and projectors. As Fig. 4 shows, the transformed 3D point $X' = DX$ can be interpreted in two ways: (i) **virtual object**—the location of the virtual point in the real camera coordinate system; or (ii) **virtual camera**—the location of the real point in the virtual camera coordinate system. The first interpretation corresponds to unfolding the ray from the object side, and the second to unfolding the ray from the pixel side. Each of these equivalent interpretations has its own advantages. For example, the virtual-object interpretation is useful when we derive the transformation by multiple mirrors, as it lets us avoid the change of camera coordinates. By contrast, the virtual-camera interpretation is useful when we derive expressions for triangulated 3D points.

We can use the mathematical equivalence of these two interpretations to represent the extrinsic matrix of the virtual camera T_{virtual}: Let T_{real} be the 4×4 extrinsic matrix of the real camera (i.e., camera pose in the world coordinate system). Then, the virtual 3D point $X_{\text{virtual}} = DX_{\text{real}}$ in the real camera coordinate system equals

$$T_{\text{real}}X_{\text{virtual}} = T_{\text{real}}DX_{\text{real}} = T_{\text{virtual}}X_{\text{real}}. \quad (4)$$

This can be interpreted as a real 3D point in the local coordinate system of a virtual camera whose extrinsic matrix equals

$$T_{\text{virtual}} = T_{\text{real}}D. \quad (5)$$

The above derivation applies, mutatis mutandis, to projectors, and their virtual counterparts. We skip the derivation as, for the most part, projectors can be treated as cameras.

Epipolar geometry of virtual projectors and cameras. Now we can represent the virtual projectors and cameras using the parameters that define the real projector, camera, and mirrors. Let the extrinsic matrix of the real projector and camera be T_P and T_C, respectively. Then, the extrinsic matrix of the virtual projector with mirror transformation D_p is $T'_p = T_PD_p$, and that of the virtual camera with mirror transformation D_c is $T'_c = T_CD_c$. Thus, a 3D scene point X observed from the virtual projector and the virtual camera equals

$$X_p = T'_p X = T_PD_pX, \quad X_c = T'_c X = T_CD_cX. \quad (6)$$

where X_p and X_c are the representations of the point in the local coordinates of the virtual projector and virtual camera, respectively.

To mathematically describe the epipolar geometry of the virtual projector and virtual camera, we can express the relative transformation between them as

$$X_p = T_PD_pX = T_PD_pD_c^{-1}T_c^{-1}X_c = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} X_c. \quad (7)$$

where R and t are the relative rotation and translation between the virtual projector and virtual camera, respectively. Finally, to express the fundamental matrix, we denote by K_P and K_C the intrinsic matrices of the virtual projector and virtual camera, respectively (i.e., $x_p \sim K_{P}x_P$ and $x_c \sim K_{C}x_C$). Then, we can express epipolar constraints between the virtual projector and virtual camera using the fundamental matrix $F = K_P^{-\top} [t]_3 RK_C^{-1}$, which satisfies $x_p^TFx_c = 0$.

4 LABELING

We now present our main technical results, detailing the conditions under which the label sequence can be uniquely determined using the epipolar constraints between virtual projectors and cameras.

4.1 Problem Setup

Suppose that we illuminate a pixel x_p on the projector and observe a set of pixels $\{x_{ci}\}$ on the camera. Then, we formulate the labeling problem as follows: given the correspondence of $x_p \leftrightarrow \{x_{ci}\}$, find the label, or mirror sequence, ℓ_p associated with the projector pixel x_p, and the label set $\{\ell_{ci}\}$ for each of the camera pixels in $\{x_{ci}\}$.

We approach this problem as one of finding label for the projector pixel and each of the camera pixels, such that the projector-camera pixel correspondences satisfy the epipolar constraints implied by the labels. Let the mirror transformation of the projector pixel x_p be $D_p = D(\ell_p)$, and that of the camera pixel x_{ci} be $D_{ci} = D(\ell_{ci})$, as defined in (5). Then, the relative transformation between the virtual projector and camera is $T_PD_pD_{ci}^{-1}T_{ci}^{-1}$. The fundamental matrix can now be written as a function of the labels ℓ_p and ℓ_{ci}, as $F(\ell_p, \ell_{ci}) = K_{P}^{-\top}[t]_3 R_{ci}K_{C}^{-1}$. The epipolar distance due to the labels ℓ_p, ℓ_{ci}, and the correspondence $x_p \leftrightarrow x_{ci}$ can be defined as

$$d(\ell_p, \ell_{ci}; x_p, x_{ci}) = \|x_p^TF(\ell_p, \ell_{ci})x_{ci}\|. \quad (8)$$

We refer to (8) as the **virtual epipolar distance**, and our goal is to find projector and camera labels such that the virtual epipolar distance is zero for each of the projector-camera correspondences. Note that all the correspondences share the same projector label. In the presence of noisy correspondences, we seek to minimize the total virtual epipolar distance given as

$$\min_{\ell_p, \ell_{ci}} \sum_{i} d(\ell_p, \ell_{ci}; x_p, x_{ci}). \quad (9)$$
4.2 Epipolar Labeling

Optimizing (9) is not trivial, because there are exponentially many possible labels for both projector and camera; hence, exhaustive search is computationally intractable. The size of the search space for each projector or camera pixel is \(O(M^{K_{\text{max}}}) \), where \(M \) is the number of mirrors and \(K_{\text{max}} \) is the maximum number of possible reflections in the kaleidoscope. In our prototype, \(K_{\text{max}} = 10 \) (calculated by ray tracing using the calibration results). However, we can reduce the search space using the fact that the true label at a projector or camera pixel is a pre-subsequence of the label when there is no object in the kaleidoscope. In particular, we can precompute a pixel’s empty label for an object-free kaleidoscope simply by ray tracing using the calibration results. The ray will be repeatedly reflected by the mirrors until it escapes the kaleidoscope. When we put an object in the kaleidoscope, the ray is truncated when it intersects the object. Thus, if we denote the empty label of a pixel \(x \) as

\[
\ell_{\text{empty}}(x) = (l_k)_{k=1}^{K_{\text{max}}} = (l_1, l_2, l_3, \ldots, l_{K_{\text{max}}}),
\]

the label with an object will be a pre-subsequence of \(\ell_{\text{empty}}(x) \),

\[
\ell = (l_k)_{k=1}^{K} = (l_1, l_2, l_3, \ldots, l_{K}) \subset \ell_{\text{empty}}(x).
\]

Then, given the empty label, the labeling problem reduces to finding for each pixel the number of mirror reflections till intersecting the object. Let the number of reflections for \(x_p \) and \(x_c \) be \(K_p \) and \(K_c \), respectively. We can rewrite (9) as

\[
\min_{K_p, (K_c)} \sum_{i} d(\ell_{p}, \ell_{c}; x_p, x_c).
\]

Now the search space size for each pixel reduces from \(O(M^{K_{\text{max}}}) \) to \(O(K_{\text{max}}) \), and we can solve the optimization problem (12) by linearly searching the number of reflections for \(x_p \) and \(\{x_c\} \). Importantly, the fact that this search couples a single projector pixel label with multiple camera pixel labels greatly enhances the robustness of the labeling procedure. Fig. 6 shows an example of epipolar labeling for one camera pixel, where our procedure finds the label that minimizes the virtual epipolar distance from the empty label.

4.3 Correctness of Epipolar Labeling

In Section 4.2, we described an efficient procedure for estimating labels for projector-camera pixel correspondences. We now analyze the correctness of this labeling procedure. Our analysis establishes two key facts: First, minimizing (12) determines labels up to a certain ambiguity. Second, resolving this ambiguity is possible by simply using the fact that the scanned object must lie in the physical space enclosed by the mirrors in front of the projector-camera system. Along the way, we derive conditions on the projector-camera-mirror geometry necessary for the correctness of our labeling procedure.

We define a mirrored label \(M(\ell, m) \) of a label \(\ell = (l_1, l_2, \ldots) \) as

\[
M(\ell, m) \equiv (l_1, l_2, \ldots, m),
\]

which is the label followed by an additional reflection by mirror \(m \). We can generalize this to a multiply mirrored label, that is

\[
M(\ell, \ell') \equiv (l_1, l_2, \ldots, l', l'') \ldots,
\]

This mirrored label is useful because all possible labels can be represented as mirrored labels of the true label. In particular, let the true label for \(x_p \) and \(x_c \) be \(\ell_p^\star \) and \(\ell_c^\star \), respectively, that is,

\[
d(\ell_p^\star, \ell_c^\star; x_p, x_c) = 0.
\]

Given that all possible labels are also pre-subsequence of the empty label, we can represent them as

\[
\ell_p = M(\ell_p^\star, \ell_p^*), \quad \ell_c = M(\ell_c^\star, \ell_c^*),
\]

where \(\ell_p^* \) and \(\ell_c^* \) are arbitrary labels contained in the empty label. We can now prove the following proposition.

Proposition 1 (Virtual epipolar distance of identically mirrored label). The virtual epipolar distance between \(\ell_p \) and \(\ell_c \) is the same as that between \(M(\ell_p, \ell') \) and \(M(\ell_c, \ell') \) for any label \(\ell' \).

Proof. From (3), we can write the mirror transformation matrix of the mirrored label \(D(\ell, \ell') \) as

\[
D(M(\ell, \ell'))) = D(\ell)D(\ell').
\]
Then, the relative transformation between identically mirrored virtual projector and virtual camera becomes

\[
T_p D(M(p, \ell'))D(M(\ell', \ell'))^{-1}T_c^{-1} = T_p D(\ell')D(\ell')^{-1}D(\ell_c)T_c^{-1} = T_p D(\ell_p)D(\ell'_c)T_c^{-1}.
\]

Therefore, the effect of the additional reflection cancels out, and the relative transformation does not change by the identically mirrored label. Thus, the epipolar distance does not change either. □

Remark. Proposition 1 implies that, given the true projector-camera label pair \(c_p^\prime\) and \(c_c^\prime\), any mirrored label pair of the form \(M(c_p^\prime, \ell')\) and \(M(c_c^\prime, \ell')\) never meet for \(\ell_p^\prime \neq \ell_c^\prime\), i.e.,

\[
d(M(c_p^\prime, \ell'), M(c_c^\prime, \ell') ; x_p, x_c) = d(c_p^\prime, c_c^\prime) = 0.
\]

Therefore, given the true label, mirroring both the projector and camera pixel with the same sequence produces a valid solution. Thus, the question: can there be other ambiguous solutions to the labeling problem? That is, could a differently mirrored label be used for the projector and camera and still satisfy the epipolar constraints? We eliminate this possibility next.

Proposition 2 (Virtual epipolar distance of differently mirrored label). Given the true labels, \(c_p^\prime\) and \(c_c^\prime\), for the projector and camera pixels, the rays corresponding to the mirrored labels \(M(c_p^\prime, \ell')\) and \(M(c_c^\prime, \ell')\) never meet for \(\ell_p^\prime \neq \ell_c^\prime\), i.e.,

\[
d(M(c_p^\prime, \ell'), M(c_c^\prime, \ell') ; x_p, x_c) > 0,
\]

provided that the kaleidoscope and the projector-camera pair are in a generic configuration where the epipolar planes, both real and virtual, and mirror normals are not co-planar.

Proof. Our proof relies on the intuition that the probability of two arbitrary lines in 3D being co-planar is zero. We explain the proof when the mirrored label introduces a single additional bounce. Without loss of generality, we assume that the true 3D point is at the origin, and that the last two mirror bounces before hitting the object are at points \(p_1\) and \(p_2\), on mirrors 1 and 2, respectively. If we have the true labels, the rays for triangulation are \(p_1 + t_1(-p_1)\) and \(p_2 + t_2(-p_2)\) and intersect at the origin. If we have the wrong labels, which include additional bounces on mirrors 1 and 2, the rays are \(p_1 + t_1(1 - 2n_1n_1^\top)p_1\) and \(p_2 + t_2(1 - 2n_2n_2^\top)p_2\). The two rays are co-planar if and only if

\[
det \begin{bmatrix} p_1 - p_2 & (1 - 2n_1n_1^\top)p_1 & (1 - 2n_2n_2^\top)p_2 \end{bmatrix} = 0,
\]

which is possible only when \(p_1, p_2, n_1,\) and \(n_2\) are co-planar. □

There exist degenerate cases when the conditions of Proposition 2 do not hold. One example is when mirrors are perfectly symmetric, as in Fig. 7, and consequently a reflected ray is on the same plane as the epipolar plane of the true label. However, placing the projector-camera pair in an asymmetric configuration relative to the mirrors avoids such degeneracies. Note that Lanman et al. [2009] used a system that is in a perfectly symmetric configuration by design. Their focus was on mitigating interference, with labeling done manually.

From Propositions 1 and 2, we know that minimizing (12) provides the true labels for projector and camera up to mirroring by a shared third label. We will resolve the remaining ambiguity with Proposition 3 below. We first introduce the following observation.

Observation. For a physically feasible traced ray involving mirror reflections, the virtual ray that is unfolded from the real ray before hitting mirror \(m\) is always behind the mirror \(m\). The inset shows an example: the virtual rays (dotted line segments) unfolded from the real rays (solid line segments) are always behind the mirror \(m\). This is true because the mirror reflection transforms a real or virtual point in front of the mirror to a virtual point behind the mirror.

With this observation in mind, we can now resolve the ambiguity due to identically mirrored labels.

Proposition 3 (Triangulation from identically mirrored labels). The triangulated point from identically mirrored labels is always outside the mirror system.

Proof. We denote by \(X^\prime\) the true 3D point triangulated from \(x_p\) and \(x_c\), given the true labels \(c_p^\prime\) and \(c_c^\prime\). When we have incorrect labels \(M(c_p^\prime, \ell')\) and \(M(c_c^\prime, \ell')\) that are identically mirrored with a label \(\ell'' = (l'_1, l'_2, ..., l'_K)\), the corresponding virtual projectors and cameras are transformed by the label \(\ell''\) relative to the virtual projectors and cameras of the true labels. Therefore, triangulation reconstructs the transformed point \(X'' = D(\ell'')^{-1}X^\prime\). We will show that \(X''\) is always outside the mirror system, and specifically, behind the mirror \(l''_K\) corresponding to the last element of \(\ell''\).

We can prove this directly using the above observation because: 1) the empty label is from the object-free traced ray, which is physically feasible; 2) \(X^\prime\) is the true 3D point, which is on the real ray before hitting mirror \(l''_K\); and 3) \(X'' = D(l''_K)^{-1}X^\prime\) corresponds to a point on the unfolded virtual ray from mirror \(l''_K\). Thus, \(X''\) is behind the mirror \(l''_K\), and therefore outside the mirror system. □

In summary, Propositions 1-3 establish that we can determine the labels associated with a projector pixel and its corresponding camera pixels by searching over the empty labels associated with each pixel for the labels that have zero (or smallest) total virtual
epipolar distance, and produce a triangulated point inside the mirror system. In the absence of noise, this procedure provably produces correct labels.

Remark. We note that, even though we only discuss adding labels to the true label, our derivation automatically covers removing labels as well. This is a consequence of the fact that the matrix D_m, which describes the mirror transformation, is involutory. Hence, adding the trailing end of a mirror sequence in reverse is equivalent to deleting the trailing end from the sequence.

4.4 Comparison to Other Labeling Methods

Visual hull. Reshetouski et al. [2011] propose solving the labeling problem using the visual hull, approximated through space carving from background pixels. For objects with simple shapes that are predominantly convex, the labeling from a crude visual hull is often a good approximation to the true labeling. However, for objects that have complex geometry and self-occlusions, the visual hull invariably fails to capture concavities, especially when there are not enough background pixels. Fig. 8 shows an example of such a failure case. (For the visualization of labels, we sorted the mirror sequence in ascending order and used the “cool” MATLAB colormap—magenta-to-cyan linearly.) For such objects, the resulting labeling can significantly deviate from the correct labeling. The labeling accuracy for projector and camera is 76.13 % and 83.47 % for the visual hull method, and 99.96 % and 99.99 % for ours. The visual hull results also depend on the quality of background segmentation and the initial shape for carving. In the simulation for Fig. 8, we used the ground-truth background segmentation and set the initial shape to be a cube that is 20% larger than the ground-truth shape in each axis. Ihrke et al. [2012] used a structured light system with a kaleidoscope as we do, but relied on the inaccurate labeling from the visual hull, resulting in artifacts as we discuss in Section 7.

Pulsed ToF. Xu et al. [2018] combined a kaleidoscope with a pulsed ToF camera, with the source and detector collocated. The ToF measurement provides a simple solution to the labeling problem: As the source and detector are collocated, simply ray tracing from the detector pixel for a distance equal to half the measured ToF provides the location of the 3D point. However, this technique requires a high-cost pulsed ToF camera for precise ToF measurements.

5 SURFACE RECONSTRUCTION

In the previous section, we have shown how to establish labeled correspondences $x_p \leftrightarrow \{x_{c_i}\}$ between a projector pixel x_p and multiple camera pixels $\{x_{c_i}\}$. We now explain how to recover a 3D point Q from a labeled correspondence, as well as how to reconstruct the surface of the scanned object from multiple such 3D points.

Multi-view triangulation. A naive approach for reconstructing 3D points Q from a labeled correspondence $x_p \leftrightarrow \{x_{c_i}\}$ would be to apply the classical two-view triangulation procedure [Hartley and Zisserman 2004] to each projector-camera pixel pair $x_p \leftrightarrow x_{c_i}$ separately. However, this approach does not take into account the information that each of these projector-camera pixel pairs is an observation of the same underlying 3D point Q. These multiple observations of the same point correspond to different viewpoints and baselines, and thus taking them into account jointly can greatly improve the robustness of the reconstruction of the unique 3D point Q. The naive approach produces multiple perturbed versions of this point, resulting in a noisy and redundant point cloud that impedes subsequent surface reconstruction procedures.

We adopt a multi-view triangulation approach, which uses all the geometric information from the one-to-multiple labeled correspondence $x_p \leftrightarrow \{x_{c_i}\}$, to reconstruct a single 3D point Q. We obtain this point by solving a linear least-squares problem:

$$Q = \underset{Q}{\operatorname{argmin}} \sum_i h_i^2$$

where h_i is the distance from the 3D point Q to each ray, o_i is the ray origin, v_i is the ray direction, and we use $A = \sum_i (I - v_i v_i^\top)$, and $b = \sum_i o_i^\top (I - v_i v_i^\top) o_i$. Fig. 9 compares point clouds produced using the naive two-view and our multi-view triangulation procedures. For this comparison, we use simulated data where we perturb measurements of camera pixel locations with Gaussian noise of variance 5 pixels. We observe that the point cloud from multi-view triangulation is less noisy than that from two-view triangulation. We empirically found this to be the case across all our experiments. Therefore, we use multi-view triangulation throughout the paper.

Outlier rejection. The multi-view triangulation estimate of (26) is susceptible to outlier rays due to incorrect pixel detections (e.g., pixels illuminated due to direct illumination of the camera from a virtual projector, or indirect illumination effects). Such outliers can cause severe errors in the estimation of the unknown 3D point Q. We address this issue using RANSAC [Fischler and Bolles 1981]: We repeatedly perform two-view triangulation between projector-camera pixel pairs $x_p \leftrightarrow x_{c_i}$ randomly selected from the labeled correspondence $x_p \leftrightarrow \{x_{c_i}\}$. For each reconstructed 3D point, we...
choose as inliers the pixels in \(\{x_{ci}\} \) whose corresponding rays are close enough (0.5 mm) to the reconstructed point. Finally, we perform multi-view triangulation between \(x_P \) and the largest inlier set to get a robust estimate of the 3D point.

Surface reconstruction. Our triangulation procedure produces a 3D point for each labeled correspondence \(x_P \leftrightarrow \{x_{ci}\} \). The last step in our reconstruction pipeline is to use the resulting 3D point cloud to reconstruct the object surface. For this, we first compute PCA normals [Hoppe et al. 1992] for each point in the point cloud. We then reconstruct a mesh representation of the scanned object by using screened Poisson surface reconstruction [Kazhdan and Hoppe 2013], which estimates an implicit surface from the oriented point cloud, and extracts an isosurface.

6 IMPLEMENTATION

We have developed a hardware prototype for a kaleidoscopic structured light system, comprising a laser projector, a monochrome CCD camera, and a kaleidoscope. The inset shows a photograph of our prototype. For the kaleidoscope, we use four planar metal-coated mirrors (surface flatness 4–6λ, dimensions 200 mm × 307 mm) that we cut to be shaped as isosceles triangles. Table 2 lists the exact parts used in our prototype. In the rest of this section, we describe how we calibrate our system, and how we accelerate scanning.

Calibration. We calibrate our projector-camera pair using the algorithms of Zhang et al. [2000] and Moreno et al. [2012]. We calibrate the kaleidoscope using the algorithm of Takahashi et al. [2017; 2021], which estimates the location and pose of the mirrors relative to the camera from correspondences of a single 3D point.

To improve upon this initial calibration, we use a bundle adjustment procedure inspired by Xu et al. [2018]. As we show in Fig. 10, we optimize the parameters of the projector, camera, and mirrors, based on scanning results for a reference object (sphere of diameter 40 mm). We first sparsely scan the reference sphere for a few pixels that can be easily labeled manually (e.g., direct and one-bounce), and fit a sphere to the reconstructed point cloud. With this initial sphere fitting result, we can label every pixel using ray tracing, and completely reconstruct the object. Then, we update the extrinsic parameters of the projector and mirrors relative to the camera by minimizing an objective combining triangulation error (distance of a reconstructed point from its corresponding backprojected rays), reprojection error (distance of the projection of a reconstructed point from its corresponding pixel locations), and sphere fitting error of the reconstructed point cloud. After bundle adjustment, we achieve a root-mean-square triangulation error of 33 μm, reprojection error of 1.3 pixels, and sphere fitting error of 361 μm.

Parallel scanning. Up to this point, we have assumed that scanning works by sequentially illuminating all projector pixels, one
Fig. 11. **Interference in parallel scanning of a spherical object.** The graph quantifies the trade-off between interference and acquisition speed, by plotting the number of points interfered by mirror reflection against the number of simultaneously illuminated projector pixels.

at a time. However, sequential scanning makes acquisition times impractically long. We now describe a parallel scanning technique for faster acquisition.

Similar to traditional structured light techniques, our parallel scanning technique operates by simultaneously illuminating multiple projector pixels with a temporal code, and decoding the measurements made at a pixel to obtain projector-camera correspondences. However, a key difference in the kaleidoscopic setting is the complexity of the epipolar geometry (and thus, interference patterns) produced by the multiple mirrors, which makes traditional column-scanning schemes inapplicable. Instead, we randomly sample groups of 2^8-1 projector pixels, encode each pixel with an 8-bit binary code, and project the sequence of binary images (and their inverses for improved robustness) that correspond to each bit of the binary code. Then, we obtain the camera pixels corresponding to each projector pixel by decoding the binary code from the captured image.

This parallel scanning technique accelerates acquisition, but also exacerbates interference: multiple projector pixels may illuminate the same 3D point, which could result in erroneous decoding. The likelihood of this happening increases as we increase the number of projector pixels we simultaneously illuminate, which creates a trade-off between acquisition acceleration and interference.

To empirically quantify this trade-off, we simulated parallel scanning of a spherical object. Fig. 11 plots the number of points having interference in each scan, as a function of the number of simultaneously illuminated projector pixels. Based on this plot, we chose to illuminate 2^8-1 projector pixels, corresponding to an average of one pixel with interference in each scan. This results in few decoding errors, which are easily handled during triangulation via RANSAC.

7 RESULTS

We evaluate our method using simulated and real experiments. Our code and data are available on the project page [Ahn et al. 2021].

7.1 Simulated Experiments

We use a ray tracing implementation (customized to handle multiple specular-specular reflections) to simulate measurements from our kaleidoscopic structured light system. We use these simulated measurements to evaluate the results of our labeling and shape reconstruction procedures against known ground truth. The diameter of our simulated objects is 60 mm.

Labeling accuracy. Fig. 12 and Table 3 show simulated labeling results for three synthetic objects, with and without Gaussian noise in


```
Fig. 12. **Labeling accuracy for synthetic data.** We visualize the labeling results under Gaussian noise for several simulated objects.

Table 3. **Labeling accuracy statistics.** We report labeling accuracy metrics, with and without adding Gaussian noise ($\sigma = 5$ pixels) to camera pixel measurements. The labeling is robust to measurement noise.

<table>
<thead>
<tr>
<th>Labeling accuracy</th>
<th>sphere</th>
<th>armadillo</th>
<th>bunny-grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projector (w/o noise)</td>
<td>100.00%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Projector (Gaussian noise)</td>
<td>99.69%</td>
<td>99.69%</td>
<td>99.43%</td>
</tr>
<tr>
<td>Camera (w/o noise)</td>
<td>100.00%</td>
<td>99.99%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Camera (Gaussian noise)</td>
<td>99.99%</td>
<td>99.99%</td>
<td>99.98%</td>
</tr>
</tbody>
</table>
```



```
Fig. 13. **Reconstruction accuracy for synthetic data.** We simulate scanning of an object with diameter 60 mm using the same imaging system as our prototype, with and without noise. Our system makes it possible to accurately reconstruct the severely occluded inner bunny.

<table>
<thead>
<tr>
<th>No noise</th>
<th>Gaussian noise $\sigma = 5$ pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0204 mm</td>
<td>0.2465 mm</td>
</tr>
<tr>
<td>0.0129 mm</td>
<td>0.1175 mm</td>
</tr>
</tbody>
</table>
```

ACM Trans. Graph., Vol. 40, No. 6, Article 214. Publication date: December 2021.
Kaleidoscopic Structured Light

Fig. 14. **Simulated comparison of kaleidoscopic imaging methods.** We use simulation to quantitatively evaluate the performance of various kaleidoscopic imaging methods. Our method provides the best reconstruction accuracy.

Reconstruction accuracy. Fig. 13 shows simulated shape reconstruction results, and average distance between reconstruction and ground truth. We note that the multiple virtual views of our system make it possible to reconstruct the severely-occluded inner bunny.

Comparisons with other kaleidoscopic imaging methods. Fig. 14 shows simulated comparisons to other kaleidoscopic imaging methods. We used pixel binning and depth binning to simulate the finite resolution of the sensor used in each method. We compare the performance of different approaches using two metrics: The first metric is accuracy, which we define as the average distance of the vertices of the reconstructed mesh from the ground-truth mesh; this metric quantifies how the reconstruction is to the ground truth. The second metric is coverage, which we define as the average distance of the vertices of the ground-truth mesh from the nearest point of the reconstructed point cloud; this metric quantifies how well the reconstruction covers each part of the ground-truth shape.

- Fig. 14(a) shows results from the visual hull technique proposed by Reshetouski et al. [2011]. We observe that this technique does not recover the inner bunny, because of the limited background area available for space carving.
- Fig. 14(b) shows results from a variation of our technique inspired by Ihrke et al. [2012], where we perform multi-view triangulation with RANSAC, but using labels from the visual hull (Fig. 8). We observe that, even though RANSAC mitigates the effect of incorrect labels, there are still some artifacts remaining.
- Fig. 14(c) and (d) show results from the ToF-based technique of Xu et al. [2018]. We set the spatial resolution of the ToF camera to be the same as that of our camera, and simulate two different ToF depth resolutions: Fig. 14(c) uses a depth resolution of 0.2 mm, corresponding to the calibration error reported by Xu et al. [2018] using a costly high-end lidar (Leica ScanStation P40 3D Laser Scanner). Fig 14(d) uses a depth resolution of 5 mm, corresponding to a low-end lidar of cost comparable to our setup (Intel Realsense LiDAR Camera L515). We observe that lowering the resolution results in a severe increase in noise in the reconstructed shape.
- Fig. 14(e) shows results from our method. We observe that, compared to the visual hull technique (a), our use of triangulation enables reconstructing the concave and occluded parts of the shape. Additionally, using accurate labels from our labeling technique reduces artifacts and improves accuracy by two orders of magnitude compared to using visual hull labels (b). Our technique has a similar accuracy improvement when compared to ToF using a lidar of cost comparable to our setup (d). Lastly, our technique achieves comparable accuracy with the ToF setup of Xu et al. [2018], while using a much more affordable imaging setup.

7.2 Real Experiments

Scanned objects. Fig. 15 shows reconstructions of a variety of real objects obtained using the kaleidoscopic structured light prototype of Sec. 6. For each object, we show a kaleidoscopic image under uniform projector illumination, camera labels, and reconstructed mesh surface. Our setup allows scanning objects of size up to about 10 cm (e.g., the skull has dimensions $5 \times 10 \times 7.5 \text{cm}^3$). To visualize...
the appearance of the reconstructed surface, we use a simple texture mapping procedure by projecting each vertex to all visible (virtual) cameras, and computing the average intensity of the corresponding pixel values. As our setup uses a monochrome camera, we obtain per-pixel color by projecting color channels sequentially from our RGB projector. We additionally visualize PCA vertex normals, to help better assess the quality of the reconstructed mesh. Fig. 1 shows an additional scanned object. We observe that our kaleidoscopic structured light system produces high-quality reconstructions for a variety of objects with complex visibility and reflectance properties.

Visibility. Fig. 16 and Table 4 report the effective average number of projector views, camera views, and unique projector-camera pairs per mesh vertex, for the scanned objects of Fig. 1 and Fig. 15. These numbers are strongly affected by the size and location of the object inside the kaleidoscope. For example, the skull has an average of 22.2 projector-camera pairs per vertex, whereas the smaller treble clef has an average of 96.5 pairs per vertex.

<table>
<thead>
<tr>
<th>#views</th>
<th>elephant</th>
<th>skeleton</th>
<th>cat brush</th>
<th>treble clef</th>
<th>skull</th>
</tr>
</thead>
<tbody>
<tr>
<td>projector</td>
<td>5.2</td>
<td>6.3</td>
<td>4.8</td>
<td>9.1</td>
<td>4.7</td>
</tr>
<tr>
<td>camera</td>
<td>5.4</td>
<td>6.9</td>
<td>4.5</td>
<td>10.2</td>
<td>4.3</td>
</tr>
<tr>
<td>pair</td>
<td>31.8</td>
<td>51.5</td>
<td>24.3</td>
<td>96.5</td>
<td>22.2</td>
</tr>
</tbody>
</table>
Fig. 16. **Effective projector and camera views for different objects.** We visualize and report the number of the effective projectors and cameras around the object. Overall, there are almost 100 virtual projectors and cameras surrounding each object.

Fig. 17. **Real scan of a 3D-printed mesh.** We 3D-printed and scanned the mesh used in the simulation results of Fig. 14. We report performance metrics comparing the reconstructed and ground-truth meshes.

Quantitative evaluation. To quantify the reconstruction accuracy and coverage of our technique, we used our setup to scan a 3D-printed object for which a ground-truth mesh is available. The object had a width of 8 cm, and was 3D-printed at a layer resolution of 0.17 mm. Fig. 17 shows the results. We aligned the reconstructed mesh with the ground-truth one using the iterative closest point algorithm [Besl and McKay 1992]. By comparing the two meshes, we estimated an accuracy of 0.235 mm and coverage of 0.305 mm for our method. By comparing these numbers with those in Fig. 14(e), where we used the same ground-truth mesh for a simulated experiment, we can also quantitatively assess the impact of calibration errors and other hardware imperfections on reconstruction quality.

Comparison with kaleidoscopic ToF system. We performed an experiment where we replaced the projector-camera pair in our prototype with a commercial lidar of cost comparable to our setup (Intel Realsense LiDAR Camera L515, same depth resolution as that used for the simulated experiments of Fig 14(d)). We used this modified system to scan the same spherical calibration object as in Fig. 10. We show the results in Fig. 18. We note that, because of the low depth resolution and noisy ToF measurements of our lidar, we were unable to obtain accurate calibration information for the modified imaging setup using the calibration procedure of Xu et al. [2018]. In turn, the lack of accurate calibration meant we could not produce a meaningful shape reconstruction using their proposed ray folding procedure. We show, instead, our reconstructed unfolded point cloud, which we observe to be a lot noisier than the one obtained by our technique (Fig. 10). As Xu et al. [2018] and our simulations in Fig. 14 both have shown, using a high-end lidar can alleviate these issues and achieve the same reconstruction accuracy as our structured light technique, albeit at a much higher hardware cost.

8 DISCUSSION

PCA normals. The combined use of our labeled correspondences and multi-view triangulation with RANSAC robustly reconstructs
We produce those by assigning PCA normals [Hoppe et al. 1992]. We hung it using strings. In the former case, the parts on the mirrors (e.g., head, tail) are visible from few viewpoints, and thus are not visible very complex shapes where, due to visibility, flash photography methods can produce poor results, unless the number of views becomes impractically large. In the future, it is possible that using neural rendering algorithms to process measurements from kaleidoscopic structured light setups can lead to scanning technologies that combine the complementary advantages of the two approaches.

9 CONCLUSION

We introduced a full surround 3D imaging technique that combines a projector-camera pair with a kaleidoscope, to produce a virtual multi-view structured light system. We derived an algorithm that uses the epipolar geometry between virtual projectors and virtual cameras to produce provably correct labels for pixels in the kaleidoscopic image, in terms of which virtual projector and virtual camera these pixels correspond to. By combining these labels with multi-view triangulation, we showed that our system can achieve high reconstruction accuracy and full coverage, even when scanning objects with complex geometry and reflectance.

ACKNOWLEDGMENTS

We thank Jinno Rhee and Vishwanath Saragadam for help with the prototype. This work was supported by the National Science Foundation (NSF) under awards 1652569, 1900849, and 2088464, as well as a Sloan Research Fellowship for Ioannis Gkioulekas.

REFERENCES

David Brewster. 1858. The kaleidoscope, its history, theory and construction: with its application to the fine and useful arts. J. Murray.