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AbstractÐCoherent diffraction imaging (CDI) is a computational technique for reconstructing a complex-valued optical field from an

intensity measurement. The approach is to illuminate an object with a coherent beam of light to form a diffraction pattern, and use a

phase retrieval algorithm to reconstruct the object’s complex transmittance from the measurement. However, as the name implies,

conventional CDI assumes highly coherent illumination. Recent works therefore extend CDI to account for partial coherence and

imperfect detection, by modeling light as an incoherent mixture of multiple fields (e.g., multiple wavelengths) and recovering each field

simultaneously. In this work, we make strides towards the practical implementation and usage of multi-wavelength diffraction imaging.

In particular, we provide novel analysis of the noise characteristics of multi-wavelength diffraction imaging, and show that it is

preferable to coherent diffraction imaging under high signal-independent noise. Additionally, we present a compact coded diffraction

imaging system and corresponding phase retrieval algorithms to robustly and simultaneously recover complex fields representing

multiple wavelengths. Using a novel mixed-norm color prior, our prototype system reconstructs a larger number of multi-wavelength

fields from fewer measurements than existing methods, and supports applications such as micron-scale optical path difference

measurement via synthetic wavelength holography.

Index TermsÐPhase Retrieval, Diffraction Imaging, Partial Coherence

✦

1 INTRODUCTION

Coherent diffraction imaging (CDI) is a computational
imaging technique for reconstructing the complex transmit-
tance field of an object. Originally invented as an extension
to X-ray crystallography in order to image non-crystalline
samples [1], CDI illuminates a sample with X-rays (i.e.,
high-energy photons) or another type of radiation (e.g.,
visible light) to produce a diffraction pattern, and solves
a phase retrieval problem to reconstruct the complex field
from intensity-only measurements [2]. Extensions of CDI
include coded diffraction pattern imaging (CDP) [3], [4], [5]
and ptychography [6], [7], [8], [9], both of which solve an
easier phase retrieval problem by capturing multiple diffrac-
tion patterns. Ptychography achieves this by mechanically
moving an aperture stop [10] or changing the illumination
angle [11], and CDP uses a spatial light modulator to code
light before it reaches the sensor.

As the name suggests, these coherent diffraction imag-
ing techniques often assume coherent light, and therefore
decoherence can introduce unwanted complications [12].
Decoherence in scattering experiments can be expressed as
the result of ªmixingº multiple mutually-incoherent modes
of light together. For example, when a light source consists
of multiple wavelengths, the corresponding measurement
is the sum of the intensities of the complex-valued fields
associated with each wavelength.

Taking inspiration from work in mixed-state X-ray pty-
chography [12], we explore algorithms for reconstructing
state mixtures from measurements captured with a near-
field CDP system using visible light. Although potentially
applicable to many forms of decoherence and optical setups,
we primarily investigate the multi-wavelength phase re-
trieval problem. Instead of using a Bayer filter array or field-
sequential imaging to capture color, we propose to capture
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multiple diffraction patterns that mix multiple wavelengths
together, and solve a non-convex optimization problem to
unmix the resulting images. We analyze the performance of
mixed-state CDP, which we hope will lead to its practical
usage and inspire future work that explores other forms of
decoherence.

The contributions of this work include the following:

• a mixed-state CDP prototype that simultaneously
recovers fields at multiple different wavelengths;

• a compressive mixed-norm color prior that aids
in multi-wavelength recovery with fewer measure-
ments than other techniques;

• an analysis of the behavior of mixed-state CDP under
additive noise; and

• an application of mixed-state CDP to spatially-
varying optical path difference (OPD) measurement
via synthetic wavelength holography [13], [14], [15].

2 RELATED WORK

2.1 Coherent Diffraction Imaging

CDI was first demonstrated by Miao et al. [1] in 1999. Based
on techniques used in X-ray crystallography, this lensless
microscopy technique requires illuminating an object with a
planar field to produce a diffraction pattern. Reconstructing
the complex field from the intensity measurements involves
solving a phase retrieval problem. Unlike in-line or off-axis
holography, CDI does not rely on interference between a
scattered wave and reference wave, and therefore avoids the
issues associated with conventional holography [16] (e.g.,
mismatch in intensities of scattered and reference waves,
lower spatial resolution due to axial and lateral vibrations).

There are a number of drawbacks associated with CDI
techniques, however. First, it can require high dynamic
range imaging to capture the diffraction pattern of an ob-
ject, increasing acquisition time. Second, the phase retrieval
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Fig. 1. Mixed-state CDP. Our proposed imaging technique can recover mutually incoherent modes from a partially coherent field. Here, we
demonstrate the ability to simultaneously reconstruct three modes, each at a different wavelength: 638nm (red), 520nm (green), and 445nm

(blue). Each individual mode is fully coherent, but because there is no observable interference between the light at these different wavelengths,
they are added together on an intensity basis. (Left) We show one of the raw captured images, which is a sum of the intensities of each color at the
sensor plane. (Center) We show the amplitude of the reconstructed color modes at the SLM plane. (Right) We digitally refocus the captured field to
the object plane. (Top) The first row represents a microscope slide of a rabbit spinal cord (48 measurements), and (Bottom) the second row is of a
USAF resolution chart (48 measurements). Note that we do not make use of any filtering optics to reconstruct these images.

process is sensitive to noise and ambiguities. These draw-
backs have been amended through a number of single- and
multi-shot techniques involving ptychography and CDP, by
increasing observation diversity.

2.2 Ptychography

Ptychography overcomes the disadvantages of conventional
CDI by mechanically scanning the aperture or changing the
illumination angle to produce multiple diffraction patterns.
The object’s field can be reconstructed more reliably from
this set of images using basic phase retrieval reconstruc-
tion processes. As discussed by Pfeiffer [6], the theoretical
concept of ptychography was introduced by Hegerl and
Hoppe in 1969 [7], [8] and had been largely forgotten
until its rediscovery in 2007 [9]. Since then, various forms
of ptychography have been popularized, with applications
including high-resolution microscopy [11].

2.3 Coded Diffraction Pattern Imaging

CDP extends CDI by using a sequence of known, but
random, coded modulation patterns to encode additional
information into the measured diffraction patterns. Zhang et
al. [3] first demonstrated the ability to reconstruct complex-
valued fields by placing a modulator in between the object
and sensor. By shifting the modulator transversely, a set
of K diffraction patterns are collected and can be used
to robustly recover the object’s field. Zhang et al. [4] also
demonstrated the ability to capture complex-valued wave
fields from a single diffraction pattern (typically referred
to as coherent modulation imaging). The addition of a
modulator provides two key advantages: (1) it reduces
the dynamic range requirements of the sensor, and (2) it
greatly facilitates the phase retrieval problem. While initially
demonstrated for visible light, this technique is applicable to
a broad range of radiation at all wavelengths, and was later
demonstrated with X-ray sources by Zhang et al. [5]. This

technique would later be extended with high-speed ampli-
tude modulation [17], and used to develop new practical
high-resolution wavefront sensing solutions [13], [18].

2.4 The Effect of Decoherence

The advances made in CDI depend on the ability to control
the optical field, which typically assume a high degree of
coherence in the diffraction images. As a result, decoherence
is often unwanted, reducing the contrast of the diffraction
patterns and significantly impacting the quality of the re-
construction results for conventional CDI.

Thibault and Menzel [12] categorizes decoherence in
diffraction measurements into three groups: mixed states
within the source (e.g., due to the emission of partially
coherent light), mixed states in the object (e.g., due to the
sample vibrating or changing over time), and mixed states
from sensing (e.g., due to the finite pixel area that spatially
averages the incident light). In all of these scenarios, the
optical fields can be expressed as an incoherent combination
of multiple coherent fields.

It is therefore possible and relatively straightforward
to generalize CDI and related techniques to reconstruct
mixed states. For example, multi-wavelength phase retrieval
algorithms (an example of a mixed-state algorithm) have
been used with CDI to recover images at two distinct
wavelengths by leveraging different spatial support con-
straints for each wavelength [19]. In X-ray ptychography,
multi-wavelength reconstruction algorithms have also been
used to account for the use of broadband illumination
in diffraction imaging [20]. With respect to CDP, Dong et
al. [21] demonstrated two-wavelength phase retrieval from
only one coded diffraction pattern, and Gao and Cao [22]
proposed a super-resolution technique that accounts for the
finite size of pixels on a sensor.

In line with these prior works, this paper further ex-
plores the use of mixed-state algorithms for coded diffrac-
tion imaging. In particular, we provide a framework that can
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Fig. 2. Illustration and photo of prototype system. (Top) Similar to
WISH [18], our mixed-state CDP system consists of only a few elements:
a reflective phase-only spatial light modulator (SLM), a digital sensor, a
50R/50T beamsplitter. The input plane containing a microscope slide
is back illuminated by a collimated RGB light source (not shown here).
The field from the input plane propagates towards the SLM, the SLM
modulates the phase of the field, the modulated wave propagates back
towards the sensor, and the sensor measures the intensity of this wave.
We capture multiple measurements of the field under different SLM
patterns. (Bottom) Photo of our prototype system.

simultaneously recover mixed-states from few images by
leveraging a compressive mixed-norm prior. Additionally,
we provide a novel analysis of the noise characteristics of
mixed-state CDP, which suggests that it is preferable to field-
sequential CDP under high additive noise. While this work
focuses primarily on our ability to simultaneously capture
multi-wavelength fields from K diffraction patterns, we
note that the same formulation can potentially be extended
to model other sources of decoherence (e.g., broadband il-
lumination, birefringent or fluorescent samples, finite-sized
photodiodes, temporally-multiplexed modulation patterns).

3 CODED DIFFRACTION PATTERN IMAGING

Consider a CDP setup that consists of a spatial light mod-
ulator (SLM) and a camera aligned with a beamsplitter, as
shown in Figure 2. The objective is to reconstruct a coherent
field u incident on the SLM, from a collection of intensity
measurements in response to different SLM patterns. The
SLM modulates the phase of the field, and the field prop-
agates to the sensor. Mathematically, the image formation
model can be described as follows:

Ik =
∣

∣

∣Pz

(

Φk
SLM ⊙ u

)∣

∣

∣

2

+ ϵ, (1)

where the complex vector u ∈ C
N represents the coherent

field, the vector Φk
SLM ∈ C

N is the kth pattern on the SLM,
and the operator ⊙ is the Hadamard product representing
element-wise multiplication between vectors. The linear
operator Pz : C

N → C
M propagates the field from the

SLM plane to the sensor plane, where z denotes the distance

between the two planes. In addition, the measurements are
affected by noise ϵ, including both shot and read noise; note
that we do not model phase jitter associated with the SLM.
The result is an intensity image Ik ∈ C

M on a M -pixel
sensor in response to the kth pattern on the SLM.

We formulate the phase retrieval problem to reconstruct
the complex field u from K measurements as follows:

argmin
u
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∥

∥

∥
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2

+ Γ(u), (2)

where the function Γ(u) is an optional prior on the field u,
and the norm ∥ · ∥ is the Euclidean norm. This is known to
be a non-linear and non-convex optimization problem, but
many numerical algorithms for solving it exist (Section 3.3).

3.1 Mixed-State Image Formation Model

A fundamental assumption made in Equation (1) is that the
field u is fully coherent. In this work however, we assume
that the field is a mixture of mutually incoherent states,
resulting in a superposition of the diffraction intensities at
the sensor (e.g., due to illuminating a sample with an RGB
laser). We therefore extend the image formation model in
Equation (1) to account for a combination of J distinct and
mutually-incoherent fields:

Ik =
J
∑

j=1

∣

∣

∣P j
z
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SLM ⊙ uj

)∣

∣

∣

2

+ ϵ. (3)

Note that both the propagation operator P j
z and SLM pat-

tern Φj,k
SLM can depend on j. For example, when work-

ing with light at several different wavelengths, both the
complex propagation operator and the phase modulation
imparted by the SLM vary with wavelength.

As with Equation (2), we can compute a set of fields
{uj} that satisfy our measurements by solving the following
mixed-state optimization problem:

argmin
{uj}
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+ Γ ({uj}) .

(4)
The prior Γ({uj}) can exploit correlations across the differ-
ent fields and produce higher quality reconstructions for a
given set of measurements.

3.2 Ambiguous Solutions in Mixed-State Sensing

Note that it is not always possible to uniquely recover the
individual modes in Equation 4. Let u1, . . . , un be modes
with the same forward operator, such that P 1

z = · · · = Pn
z

and Φ1,k
SLM = · · · = Φn,k

SLM for all images k.
Suppose that Ak = Pz ◦ Φk

SLM is the composite linear
forward operator for image k, and let aki be a row of this
matrix corresponding to pixel i in image k. If we take U =
[u1, . . . , un]

T to be the matrix containing the modes as rows,
then we can write the contribution of these modes to the
measurement at pixel i in image k as:

n
∑

j=1

|uT
j a

k
i |2 = ∥Uaki ∥2.



Any orthogonal transform V of the modes yields the same
measurements since ∥V (Uaki )∥2 = ∥Uaki ∥2. It is therefore
only possible to recover a set of modes with the same
forward operator up to an orthogonal transform ambiguity.
Henceforth, we assume that the forward operators for each
mode are distinct.

3.3 Reconstruction Algorithms

Our goal is to recover the states {uj} from the set of
measurements {Ik}, by solving Equation (4). We assume

that both the phase of the SLM patterns Φj,k
SLM and the

propagation operator P j
z are known and calibrated ahead

of time, and that these operators are distinct for different
modes j. Equation (4) is a non-linear and non-convex op-
timization problem. Luckily, the objective is generally well-
behaved for similar problems [23]. Below, we make use of
two algorithms to solve it.

3.3.1 Multi-Modal Gerchberg-Saxton

The classic Gerchberg-Saxton (GS) algorithm is a very pop-
ular phase retrieval technique. We leverage a generalized
mixed-state version of the GS algorithm (Algorithm 1) (vari-
ants of which are presented in the literature [12], [21]) that
follows four steps: (1) modulate the J wavefronts by each
of the K SLM patterns and propagate the wavefronts to the
sensor plane with operator P j

z ; (2) for each measurement,
modify the average intensity of the J wavefronts with the
measurement from the kth SLM pattern; (3) propagate the

wavefronts back to the SLM plane with operator P j
−z and

remove the phase modulation imparted by the SLM pattern;
and (4) for every mode, compute the average of the K
wavefronts. Note that step 2 ensures that the intensity of the
light incident on the sensor agrees with the measurements.
Despite being heuristic, GS is fast, highly memory efficient,
and produces high-quality results. When J = 1, this method
reduces to conventional CDP.

3.3.2 Multi-Modal Gradient Descent

A more principled approach to solve Equation (4) is to use
first-order optimization techniques. Because optical wave-
fronts are complex-valued, we can use Wirtinger calculus to
compute gradients and solve the phase retrieval problem.
We rely on TensorFlow’s AutoDiff to compute derivatives
for our optimization problem. At high resolutions and for a
large number of measurements, this procedure consumes a
large amount of memory. However, it is a more principled
and flexible framework that can support additional recon-
struction priors.

3.3.3 Mixed-Norm Color Prior

We propose a mixed-norm prior for our color experiments:

Γ({uj}) =

∥

∥

∥

∥

∥

∥

√

√

√

√

J
∑

j=1

|(P j
duj)x|2 + |(P j

duj)y|2
∥

∥

∥

∥

∥

∥

1

(5)

The propagation operator P j
d propagates the wave to the

target image plane where the sample is in-focus, at a known
distance d from the SLM. The operators (·)x and (·)y denote
the partial derivatives (computed via forward finite differ-
ences) in the x and y directions, respectively. In the case

ALGORITHM 1: Multi-Modal Gerchberg-Saxton Algo-
rithm

Input: Measurements {Ik}, patterns {Φj,k
SLM},

propagation operators {P j
z }, max iterations

num iters
Output: Multi-modal fields {uj}

// Initialize fields

{uj} = PlanarField()
for n ∈ {1, · · · , num iters} do

// Step 1: Propagate field from SLM to

sensor plane

for j ∈ {1, · · · , J}, k ∈ {1, · · · ,K} do

zj,k = P j
z

(

Φ
j,k
SLM ⊙ uj

)

end
// Step 2: Modify amplitudes to

satisfy measurements

for j ∈ {1, · · · , J}, k ∈ {1, · · · ,K} do

ẑj,k =
√
Ik ⊙

(

zj,k/
√

∑J

j=1
|zj,k|2

)

end
// Step 3: Propagate field from sensor

to SLM plane

for j ∈ {1, · · · , J}, k ∈ {1, · · · ,K} do

ûj,k =

(

Φ
j,k
SLM

)

−1

⊙
(

P j
−z ẑj,k

)

end
// Step 4: Average estimates of fields

for j ∈ {1, · · · , J} do

uj =
1

K

∑K

k=1
ûj,k

end
end

of single-modal phase retrieval (i.e., J = 1), Equation (5)
reduces to a 2D total-variation (TV) regularizer. In practice,
Equation (5) encourages group gradient sparsity, where the
gradients are in the same position across all modes. This
reduces the number of images required to capture the multi-
wavelength fields (see Figure 5). We note that optimiza-
tion with this prior is similar in spirit to the multiple-
measurement-vector (MMV) problem described by Van den
Berg and Friedlander [24].

4 PERFORMANCE UNDER NOISE

The framework described in the previous section makes
it possible to recover state mixtures from a superposition
of intensity measurements. However, alternate solutions
may be available, including field-sequential imaging (i.e.,
illuminating the sample with one wavelength at a time) or
sensing with a Bayer color filter array, reducing the problem
back to conventional CDP. In the following section, we
provide insight on the advantages of mixed-state CDP in
the presence of read noise.

4.1 Theory

Here, we make use of our notation from the previous
section. We assume for simplicity that the number of image
pixels is equal to the number of entries in the complex field
(i.e., M = N ) and that the number of unknowns 2JN (2
unknowns for each complex entry) is less than the number
of knowns KN . Lastly, we assume that the forward model is
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Fig. 3. Performance under read noise. We include representative re-
constructions on a synthetic wavefront using (a) a mixed-state algorithm,
(b) field-sequential imaging, and (c) Bayer imaging under three different
read noise levels. 12 measurements were captured for each result.

Fig. 4. Quantitative performance under noise. We show the perfor-
mance of all methods (Mixed-State, Sequential, Bayer ) under various
amounts of signal independent read-noise. Our method (Mixed-State)
consistently outperforms others for a moderate to large amount of noise.
The results remain consistent with more (10×) signal-dependent shot
noise.

injective. Let (û1, . . . , ûJ) be the ground truth modes, with

ideal measurements (Î1, . . . , ÎK). Specifically:

Îk =
J
∑

j=1

∣

∣

∣P j
z

(

Φj,k
SLM ⊙ ûj

)∣

∣

∣

2

. (6)

We can simplify this relation, writing

Î = f(û) (7)

where Î = (Î1, . . . , ÎK) is the vector containing all ideal
measurements, and û = (û1, . . . , ûJ) contains the modes;
the forward operator f(·) encapsulates SLM modulation,
propagation, and intensity summation for all modes. For
any input u, we can write a linear approximation for f as

f(u+∆u) ≈ f(u) +
∂f

∂u
(u)∆u. (8)

Given a set of measurements with noise, Î+ ϵ, a simplifica-
tion of our optimization problem in Equation (4) with initial
guess u is then

argmin
∆u
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∥

∥

∥

(̂I+ ϵ)−
(

f(u) +
∂f

∂u
(u)∆u

)∥

∥

∥

∥

2

. (9)

With a solution given by

∆u =
∂f

∂u

†

(u)(ϵ+ Î− f(u)), (10)

we can use the above equation to derive how the recovered
u+∆u are affected by noise vectors ϵ about Î.

Following the analysis of Schechner et al. [25], we assume
Gaussian noise vectors ϵ with each entry ϵi ∼ N (0, δ2). We
can then express the covariance matrix Σ of ∆u as

Σ = E





(

∂f

∂u

†

(u)ϵ

)(

∂f

∂u

†

(u)ϵ

)T




= δ2
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†
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The mean squared error across all entries in the recovered
modes u + ∆u is equal to the trace of this matrix over the
number of unknowns. Specifically

MSE =
δ2

2JN
Trace
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∂f

∂u

T

(u)
∂f

∂u
(u)

)−1




=
δ2

2JN

2JN
∑

i=1

1

σ2
i

, (12)

where σi is the ith singular value of the Jacobian ∂f
∂u

(u). If
singular values are large, then this sum will be small, and
u+∆u will be more robust to noise.

4.2 Field-Sequential CDP

In the field-sequential case, ∂f
∂u

(u) is a block-diagonal ma-

trix, consisting of the Jacobians
∂fj
∂uj

(uj), where fj is the

composition of SLM modulation, propagation, and conver-
sion of the complex field to intensity for jth mode. Each
mode is modulated by K/J patterns, which is encapsulated
by the forward operator fj . In particular, the matrix takes
the form













∂f1
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...

0 0 . . . ∂fJ
∂uJ
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(13)



4.3 Mixed-State CDP

On the other hand, for mixed-state CDP, ∂f
∂u

(u) is no longer
block-diagonal. Each mode j contributes to each measure-

ment k via fk
j , where fk

j (uj) = |P j
z (Φ

j,k
SLM ⊙ uj)|2 is the

composition of SLM modulation, propagation, and conver-
sion of the complex field to intensity for the jth mode and
the kth SLM pattern. The matrix takes the form
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(14)

This mixed-state matrix has Frobenius norm approxi-
mately

√
J times the magnitude of the norm for the field-

sequential CDP matrix, since for every measurement the
Jacobians for all J modes are present. This suggests that the
mixed-state CDP matrix has a larger response, on average,
to any input than the field-sequential CDP matrix.

We note that a larger Frobenius norm does not neces-
sarily imply smaller MSE. In particular, there is a danger of
Equation (14) collapsing to a singular matrix with rank less
than 2JN . For example, this issue occurs when both (1) the
forward operators for n ≥ 2 modes are the same, and (2) the
corresponding modes u1, . . . , un are linearly dependent.
Thus, as the forward operators grow closer together, and the
difference between the modes shrinks, at least one singular
value of the mixed-state matrix will go to 0 and the MSE
will increase.

The above suggests that our reconstruction procedure
might fail, for instance, in settings involving broadband
sources where mode varies continuously as a function
of wavelength. In problems involving fewer wavelengths,
however, where the wavelengths are sufficiently separated,
we hypothesize that the larger response of the mixed-state
CDP Jacobian is correlated with larger singular values,
leading to a smaller mean-squared error via Equation (12).

4.4 Simulation

We verify this hypothesis empirically, with a simulated
imaging system, various amounts of camera read noise, and
two settings of shot noise. Specifically, we compare multi-
wavelength diffraction imaging for three wavelengths (with
mixed-norm prior) to two variants of CDP:

1) CDP using field-sequential color imaging + our
mixed-norm prior

2) CDP using a Bayer color filter array + our mixed-
norm prior

The simulation models a phase SLM and camera sep-
arated by 10 cm, and multi-wavelength illumination with
wavelengths 638 nm, 520 nm, 445 nm, similar to our real
setup in Figure 2. We create a multi-wavelength phase object
from the Cat image shown in Fig. 3, where the phase for each
wavelength ranges from 0 to 2π and is proportional to the
intensity of the R, G, and B color channels in the image. We
capture 12 diffraction patterns total for all methods.

As shown in Figure 3, our method strictly outperforms
both coherent CDP variants for moderate to high noise read-
noise regimes, producing sharper details with less chromatic

aberration. It may be the case that adding more modes
would further improve image quality, although we suspect
that this is a trade-off, as more mixed-states will reduce
diffraction pattern contrast. All methods perform compa-
rably under low read-noise.

Additionally, we note that Bayer CDP is not as flexible as
mixed-state CDP. While mixed-state CDP typically requires
little to no modification of the imaging system to support
recovery of multiple modes, the color filter array might need
to be tailored to the specific application and wavelengths
used. Further, as mentioned previously, Bayer filters may
limit the lateral resolution of each recovered wavefront
(though this did not appear to be a significant problem in
our simulations).

5 IMPLEMENTATION

Given the algorithms and noise analysis described in the
previous sections, we build a practical imaging prototype
for mixed-state sensing. Below, we discuss implementation
details of this system.

5.1 Hardware

Our prototype system consists of an SLM, a 25mm
polarizing beamsplitter cube (Thorlabs PBS251), and a
monochrome computer vision camera (Allied Vision Tech-
nologies Prosilica GT1910) with the bare sensor exposed;
see Figure 2. The SLM is a Holoeye GAEA-2, with a spatial
resolution of 4160 × 2464 and a 3.74µm pixel pitch. We
only use an active area of 3000 × 1600 on the SLM, since
parts of the SLM outside of this region contribute little
light to the camera. Similar to WISH [18], we generate
320× 171 phase patterns with a uniform random sampling
of phases between 0 and π (with respect to 532 nm light),
and bilinearly upsample these patterns to the resolution of
the SLM. Our camera’s images have a maximum resolution
of 1920×1080 with 5.5µm pixel pitch. Note that our camera
is relatively low resolution compared to recent CDP setups
[21], [18].

A RGB laser provides illumination at wavelengths
638 nm, 520 nm, and 445 nm, and the laser power at each
wavelength is controlled with an Arduino Uno. Addition-
ally, a pinhole spatial filter system (Thorlabs KT310) focuses
the laser light with a microscope objective through a pin-
hole, and a 150mm lens (Thorlabs AC254-150-A-ML) colli-
mates the light emerging from the pinhole. The collimated
light then provides the back illumination for the sample
being imaged.

5.2 Calibration

The multi-wavelength diffraction imaging procedures de-
scribed in Section 3 are sensitive to erroneous calibration.
For example, an incorrectly specified propagation distance
will lead to an incorrect propagation operator Pz , and can
degrade reconstruction. Furthermore, lateral shifts (in x, y)
between the SLM and the sensor will manifest as a linear
phase gradient applied to the reconstructed field. We follow
procedure similar to Peng et al. [26] to calibrate our system,
whose camera-in-the-loop calibration strategy tends to be
robust to error in the initial parameters. In particular, we
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Fig. 5. Evaluation of mixed-norm color prior. To test our proposed
mixed-norm color prior, we perform multi-modal gradient descent on
three test cases using very few measurements (3 images each). In
each case, we refocus the recovered wave to the target plane. Note
that the phase images are shown for the green color channel only. Row
1: Single-modal phase retrieval. We solve the phase retrieval one color
channel at a time without our prior. However, because there is only one
image per channel, the phase retrieval problem is ill-defined. Row 2:
Single-modal phase retrieval with mixed-norm prior. Our proposed prior
significantly improves reconstruction quality, as information across differ-
ent wavelengths can be leveraged. Row 3: Multi-modal phase retrieval
with mixed-norm prior. Measuring the response of multiple wavelengths
at the same time encodes more information about the multi-wavelength
field, and allows us to recover a higher quality reconstruction of the
scene.

calibrate for propagation distance, lateral shift, and beam
shape separately for each color. We use gradient descent on
all parameters with a set of captured measurements for 64
random SLM patterns.

Because it is difficult to achieve perfect collimation for all
wavelengths simultaneously, the shape of the input beam
for all colors has a significant effect on image captures.
Rather than approximate the beam as a mixture of Gaus-
sians [26], we also solve for the full source incident on the
SLM. It may be possible to perform calibration in tandem
with sensing [27]; however, we find that it is more practical
to calibrate for all parameters of the system once, and then
re-use these parameters for all subsequent reconstructions.

5.3 Reconstruction Algorithm

We implement all algorithms using TensorFlow on a desk-
top computer with an 8-core Intel i7 CPU, 16 GB of RAM,
and a single 2080 TI GPU. To avoid memory bottlenecks
in our multi-modal gradient descent implementation, we
split gradient computations over batches of measurements.
Specifically, we compute gradients for each batch and sum
the results, which gives the full gradient of the objective
in Equation (4). For multi-modal GS, we similarly perform
steps 1-4 (1) in batches, in order to avoid storing all high-
resolution measurements on the GPU at once.

The propagation operators P j
z are implemented using

the angular spectrum method, which relies on 2D FFT op-
erations to numerically propagate an optical field between

two planes. For a more in-depth discussion of the angular
spectrum method and numerical methods for wave propa-
gation, we refer readers to Goodman [28] and Schmidt [29].

For all experiments, we run multi-modal GS and multi-
modal gradient descent until convergence (usually around
400 iterations). A forward-backward step of multi-modal GS
lasts approx. 46ms for a single 3200 × 3200 pixel coherent
field. A gradient descent step takes 250ms on a coherent
field of the same size. Reconstruction time scales approxi-
mately linearly with the number of modes and number of
measurements. As an example, single-modal GS requires 20
minutes (or 400 iterations) to reconstruct an optical field at
one wavelength from 64 measurements, and multi-modal
GS requires 1 hour to reconstruct a multi-wavelength field.

6 RESULTS

6.1 Multi-Wavelength Diffraction Imaging

Multi-wavelength diffraction imaging is a natural applica-
tion of our framework, where the individual modes uj in
Equation (3) correspond to different wavelengths of light
λj .

In this experiment, we use a USAF target and micro-
scope slides as imaging samples. The microscope slides do
not have uniform thickness, and thus exhibit steep phase
gradients (Figure 6). Phase retrieval algorithms, such as
GS [30] and gradient-descent [31] can struggle with high
frequency phase. In order to simulate recovery of targets
with smoother phase, we determine the linear phase gra-
dient for each slide, and include the phase gradient in the
SLM patterns used during the reconstruction process. This
removes the undesirable phase gradients from the recovered
fields. We also include results for the original, uncorrected
fields in Figure 6.

To generate PSNR values, we acquire a set of ground
truth fields by solving the standard phase retrieval problem
for each color independently, with 192 total measurements
(Figure 6). We then compare our reconstruction of color to
the standard model with each wavelength captured and
reconstructed individually. Note that we compute PSNR for
the re-focused fields at the target plane. Figure 5 demon-
strates the effectiveness of the mixed-norm color prior, and
enables our method to recover multi-wavelength fields with
very few measurements (e.g., 3 images). Even without this
prior, Figure 7 demonstrates that the multi-modal mea-
surements themselves encode more information and enable
faster recovery of multi-wavelength fields compared to the
baseline field-sequential CDP method. We show a more
complete set of results and comparisons for our multi-
modal gradient descent procedure in Figure 10, as well as
results for our multi-modal Gerchberg Saxon procedure in
Figure 11. We finally show results for single-image multi-
wavelength reconstruction in Figure 8.

Our method generally converges to a reasonable field
with very few measurements. We suspect that for fields with
correlated modes, a good solution for a single color pushes
the other colors towards good solutions. When the colors
have vastly different intensities or contours (for example,
when one color is completely blocked by a sample, while an-
other passes through the sample), our method takes longer
to converge. Additionally, the baseline field-sequential CDP
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(a) USAF resolution target (b) Rabbit spinal cord (c) Hydrilla Verticillata leaf (d) Pine stem

Fig. 6. Representative ground truth multi-wavelength fields. We generate high-quality multi-wavelength fields by solving a phase retrieval
problem one color at a time. A total of 288 images (96 per color channel) are used to reconstruct a high-quality multi-wavelength field of the USAF
target (a), and 192 images (64 per color channel) are used to reconstruct the microscope slides (b)-(d). Row 1: Refocused intensity images of the
recovered fields. Row 2: Phase images of the recovered fields. All phase images are shown for the green color channel only. The microscope slides
do not have uniform depth, and contain a steep, approximately linear, phase gradient. We correct for these phase gradients in several of our results,
in order to showcase recovery for smoother phase objects. Row 3: Phase image of the fields of microscope slides, after accounting for the linear
phase gradients. Note the subtle features captured in the phase image of the Hydrilla Verticillata leaf, which are hidden in the intensity image.

2mm
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(a) Sequential CDP (K = 24) (b) Sequential CDP (K = 36) (c) Sequential CDP (K = 48) (d) Mixed-State CDP (K = 24)

Fig. 7. Comparison between sequential and mixed-state CDP. (a)-(c) Results of running field-sequential CDP on the original microscope slides
without phase correction, using 24, 36, and 48 measurements respectively. Each color channel is reconstructed separately using a third of the
overall measurements. It is known that GS algorithms can struggle with fields steep phase gradients, as a result, more measurements are required
to recover this wavefront accurately. (d) Results of running multi-modal GS on only 24 measurements. Even without the use of the mixed-norm color
prior, our reconstruction procedure generates better reconstructions with fewer measurements than field-sequential CDP, suggesting that every
measurement encodes more information about the unknown field.

performs better than our method in some cases (especially
when the samples have smooth phase), but struggles when
the sample has high frequency phase.

6.2 Spatially Varying OPD Measurement

Multi-wavelength wavefront sensing has recently been used
for micron-scale depth ranging [13], [14], [15]. In previous
work, however, the modes for different wavelengths are re-
covered one at a time. Here, we experiment with objects that
produce spatially-varying optical path differences (OPDs) in
the path of the color laser, and perform our mixed-state CDP
approach for 3 wavelength recovery as before.

If the illuminating beam is approximately planar, then
in a region close to the sample, the complex field due to a

single wavelength λ can be modeled as

Oλ(x, y) ∝ exp

(

j2π
d(x, y)

λ

)

, (15)

where d(x, y) is the OPD for lateral coordinates x, y. The
phase of the complex exponential in the equation above is
proportional to optical path length. However, the challenge
in trying to recover distance is that it wraps on the order of
a single wavelength.

Wu et al. [13] solve this problem by combining the com-
plex fields at 2 wavelengths to create a larger ªsyntheticº
wavelength, which can be used to unwrap optical path
lengths. Here, we provide a simple extension that combines
≥ 2 wavelengths, similar to [14], [15] . In particular, consider



2mm

PSNR: 24.8 PSNR: 24.7

Fig. 8. Single-shot mixed-state CDP with mixed-norm prior. Only one
image is used to reconstruct the entire color wavefront. Some detail
is lost in single-image recovery, but dominant edges in amplitude and
phase are preserved. We suspect that it is possible to improve recon-
struction quality with stronger priors, by exploiting temporal information
or employing optical components which further distinguish the forward
operators for each mode (such as diffraction gratings).

0.53mm

(a) Red phase image (b) Green phase image

(c) Blue phase image (d) Phase image for
synthetic wavelength

Fig. 9. OPD measurement results. A 150mm lens, reconstructed from
32 measurements. (a)-(c) Phase from multi-modal GS for red, green,
and blue light. (d) The phase for a synthetic wavelength of 31.7 µm.

J wavelengths (λ1, . . . , λJ), and the product:

J
∏

j=1

Oλj
(x, y)cj ∝ exp



j2πd(x, y)
J
∑

j=1

cj
λj



 (16)

where cj are arbitrary integer values. The effective synthetic

wavelength in this case is Λ = (
∑J

j=1

cj
λj
)−1, where larger

synthetic wavelengths correspond to less phase wrapping.
Therefore, in order to maximize range, we can maximize the
wavelength Λ. A challenge with this general formulation
is that every time we take a product with one mode, we
add a small amount of phase noise. Therefore, choosing a
good set of cj amounts of trading off between range and the
magnitude of the coefficients cj .

In our case, we have λ1 = 638nm, λ2 = 520nm, and
λ3 = 445nm. To find c1, c2, c3, we perform a brute force

search for the largest synthetic wavelength with −5 ≤
cj ≤ 5. This yields c1 = −1, c2 = 2, c3 = −1 and a
synthetic wavelength of 31.7µm, 50× the largest optical
wavelength. Using this synthetic wavelength, we show the
partially unwrapped surface of a lens in Figure 9. We note
that because the synthetic wavelength is still quite small, the
recovered OPDs remain wrapped.

7 LIMITATIONS AND CONCLUSION

In this work, we proposed a framework for mixed-state
coded diffraction imaging. We presented a set of ro-
bust mixed-state phase retrieval algorithms, analyzed their
performance under various amounts of signal indepen-
dent read noise, and implemented a practical mixed-state
diffraction imaging sensing prototype. Using this prototype,
we demonstrated the two example applications of multi-
wavelength diffraction imaging and spatially varying OPD
measurement.

One limitation of all mixed-state methods is that, with-
out additional assumptions, they can only recover mixed-
states uniquely if the forward operators acting on each state
are distinct (Section 3.2). Further, we provide novel noise
analysis which suggests that mixed-state methods fail when
the forward operators for each mode, and the modes them-
selves, grow closer together (Section 4.3). While we show
empirically that this is not a problem for multi-wavelength
diffraction imaging when the wavelengths are sufficiently
separated (Section 4.4), it could be a challenge for other
potential applications. However, for these applications it
may be possible to introduce additional optical components
(diffraction gratings, birefrigent optics, spinning diffusers),
which further ªseparateº the forward operators for each
state. In addition, for problems involving broadband illu-
mination where the source varies continuously with wave-
length, one may be able to introduce additional compressive
priors to make reconstruction tractable.

While spatially varying OPD measurement is an interest-
ing application of our framework, larger unwrapped ranges
are required for most practical applications. However, al-
though the experimental results for OPD measurement pre-
sented in this paper are limited, with more robust calibra-
tion, and some tuning of the each wavelength, it should be
possible to achieve far larger synthetic wavelengths that are
less affected by noise [13]. For example, this can be achieved
using two (or more) wavelengths, where one wavelength is
close to an integer multiple of another.

Despite these limitations, we believe that the algorithms,
imaging prototype, and analysis presented here are im-
portant tools that can help make mixed-state CDP more
practically useful. In particular, a novel insight of our work
is that, not only is mixed-state CDP possible given enough
measurements, but it is preferable in high-noise regimes.
Combining more than three modes may further improve
performance, though at the cost of increased demands on
computational resources. As one increases the number of
modes, it may also be possible to investigate optimal multi-
plexing for mixed-state CDP similar to Schechner et al. [25],
an interesting direction for future work.

Code and data relevant to this paper are available on our
project website: https://imaging.cs.cmu.edu/mixedstate/
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(a) 3 images (1 per channel) (b) 6 images (2 per channel) (c) 12 images (4 per channel) (d) Ground truth

Fig. 10. Comparison between sequential CDP (rows 1, 3, & 5) and mixed-state CDP (rows 2, 4, & 6) for gradient descent with priors. In
all cases, the color fields converge to a reasonable solution when using the smallest number of measurements used (i.e., 3 measurements). Both
approaches work reasonably well with our prior, though multi-modal gradient descent performs better.
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Supplemental Results
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(a) Intensity measurement (b) Recovered wavefront (c) Refocused wavefront

Fig. 12. High-quality reconstruction results. (a) Example of a grayscale measurement, consisting of a superposition of diffraction intensities for
different modes. (b) Recovered color field at the SLM plane. We employ multi-modal GS to recover these fields using 48 images (16 per channel).
(c) Color field refocused by numerically propagating wave to target plane.
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Fig. 13. Comparison between sequential CDP (rows 1, 3, & 5) and mixed-state CDP (rows 2, 4, & 6) using GS. No priors and no phase
correction are used. Multi-modal reconstructions are typically of higher quality than the single-modal reconstructions in most of the above examples.


