
Neural Fields for Structured Lighting

Aarrushi Shandilya Benjamin Attal Christian Richardt ∞ James Tompkin † Matthew O’Toole
Carnegie Mellon University ∞ Meta Reality Labs Research † Brown University

Abstract

We present an image formation model and optimization
procedure that combines the advantages of neural radi-
ance fields and structured light imaging. Existing depth-
supervised neural models rely on depth sensors to accurately
capture the scene’s geometry. However, the depth maps re-
covered by these sensors can be prone to error, or even fail
outright. Instead of depending on the fidelity of processed
depth maps from a structured light system, a more princi-
pled approach is to explicitly model the raw structured light
images themselves. Our proposed approach enables the esti-
mation of high-fidelity depth maps, including for objects with
complex material properties (e.g., partially-transparent sur-
faces). Besides computing depth, the raw structured light im-
ages also confer other useful radiometric cues, which enable
predicting surface normals and decomposing scene appear-
ance in terms of a direct, indirect, and ambient component.
We evaluate our framework quantitatively and qualitatively
on a range of real and synthetic scenes, and decompose
scenes into their constituent components for novel views.

1. Introduction
3D scene reconstruction lies at the center of fields like pho-
togrammetry, robotics, and digital preservation. However,
reconstructing scenes from 2D image supervision alone is
under-constrained and classical approaches struggle in tex-
tureless regions [25], where finding correspondences be-
tween images is hard. Recent neural rendering techniques
like NeRF [18] and other variants [29] are good at novel-view
synthesis, but they, too, struggle to reconstruct geometry in
scenes with low-texture regions or from few input views.

Many depth cameras alleviate these issues by introducing
their own lighting into the scene [9, 24]. For example, active
stereo systems (e.g., Intel RealSense [14]) use a projector to
illuminate the scene with an (often unknown) light pattern,
which adds texture to help solve the stereo correspondence
problem. Coded structured light systems use known light
patterns to solve correspondences using as few as one camera
viewpoint. Such active depth-sensing devices are found in
many smartphones and tablets [1, 14, 39], and unlock new
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Figure 1. Scene decomposition of a real scene from a novel view-
point. Our proposed framework uses the raw measurements from
a single infrared camera on an Intel RealSense to generate a volu-
metric representation of the scene. The images (a–f) synthesized
from a novel camera viewpoint show the different representations
of shape and appearance recovered using our proposed framework.

VR and AR applications. However, these sensors can also
fail to reliably estimate depth, especially in cases where
light misbehaves [10, 22], e.g., due to light traveling many
different paths before reaching a particular camera pixel.

We propose a volumetric image formation model and cor-
responding optimization procedure designed to synthesize
structured light images under a known projection pattern.
Given a set of raw structured light and ambient-only images
captured from different viewpoints, our proposed framework
reconstructs scenes through a neural volume rendering pro-
cedure [18], recovering a representation of a scene’s shape
and appearance from only a few input views. Beyond re-
covering the geometry of challenging scenes (e.g., scenes
containing translucent objects), our image formation model
takes advantage of additional radiometric cues present in
the raw structured light images, to solve for normals and



separate images into direct, indirect, and ambient compo-
nents; see Figure 1. Through a wide range of experiments
on real and synthetic datasets, we explore the advantages of
our proposed framework, and provide comparisons to both
NeRF [18] and depth-supervised NeRF baselines [8].

In summary, we provide the following contributions:
• a physically-based neural volume rendering model for

multi-view structured light imaging, incorporating shad-
ing cues that inform normals and the separation of direct
and indirect components;

• an implementation on a widely-available commercial sys-
tem, an Intel RealSense camera [14], leading to reliable
depth reconstruction performance when compared to base-
line approaches and the original RealSense depth;

• a demonstration that our model allows us to tackle new
problems with structured light cameras, such as recover-
ing geometry through partially transparent surfaces and
through fine meshes.

2. Related Work
Differentiable volume rendering is a reliable approach to
reconstructing a digital copy of a scene, enabling the syn-
thesis of images from novel viewpoints and recovering its
3D shape [29]. The approach involves representing geome-
try and appearance of a scene at every point in space, from
which one can render views of the scene by performing
numerical integration to approximate a volume rendering
integral [18]. Given enough images of a scene, one can op-
timize a volume representation that takes advantage of the
compressive priors induced by a neural network [28, 33].
One current disadvantage is that many different viewpoints
are required to accurately reconstruct a scene. This limita-
tion can be addressed using depth consistency priors [21],
semantic priors [11], or depth supervision from traditional
multi-view stereo algorithms [8, 23, 32]—although in this
case, the depth inherits the limitations of traditional passive
stereo approaches.

Past works also combine depth supervision from active
illumination sensors with neural volume rendering to achieve
reconstruction with few images [3, 7, 8, 27, 41]. However,
these use limited or simplified image formation models for
depth sensing, which do not exploit the potential advantages
of neural volume rendering. In contrast, we model the physi-
cal image formation process of the raw images from a struc-
tured light sensor, and can therefore better take advantage
of the benefits of both structured light and volumetric recon-
struction. Our approach is similar in spirit to prior works
that use flood illumination [4] or time-of-flight sensors [2],
though ours focuses on using structured light systems.

In addition to improving reconstruction quality, model-
ing illumination within a volume rendering image formation
model can offer several additional benefits. For example, Bi

Table 1. Mathematical symbol legend.
Symbol Units Description

x,xc,xp A point ∈ R3, camera center, projector center.
ω, ωi, ωo A unit vector ∈ R3, incoming direction, outgoing direction.
n(x) A unit normal ∈ R3 perpendicular to a surface at point x.

L(x,ω) W ·sr−1 ·m−2 Radiance measured at point x in direction ω.
Li(x,ωi) W·sr−1 ·m−2 Incident radiance to a point x from a direction ωi.
Lo(x,ωo) W ·sr−1 ·m−2 Outgoing radiance from a point x in a direction ωo.

σ(x) m−1 Density function at a point.
T (x,x′) unitless Transmittance function, i.e., accumulated density.
f(x,ωi,ωo) sr−1 Bidirectional reflectance distribution function (BRDF).
fr(x,ωo) sr−1 (Retro-)reflectance function given by f(x,ωo,ωo).

et al. [4] and Zhang et al. [35] combine neural volume ren-
dering with a flash light source collocated with the camera
to recover depth, normals, and scene reflectance. Various
works make use of slightly more complicated illumination
conditions in the form of point light sources at several differ-
ent positions [13, 26, 37, 40]. Since these use illumination
with limited spatial variation, they rely on large number
of captures or light configurations. Other works leverage
environment map lighting that is optimized alongside the
neural volume [6, 12, 15, 17, 34, 38]. While some works
account for global illumination [26, 40], they either limit
themselves to two-bounce global illumination or else do not
demonstrate direct-global separation in real-world settings
[40]. In this work, we show that we can achieve accurate
scene reconstruction and intrinsic decomposition (including
direct-global separation) on real-world scenes.

3. Neural Volume Rendering for
Structured Light Imaging

Consider using a projector-camera system (e.g., the Intel
RealSense [14]) to capture measurements of a scene from
multiple viewpoints, where the projection pattern is known.
In this scenario, the projector produces stroboscopic illumi-
nation, i.e., it is turned “on” for even frames and “off” for
odd frames. When the projector is on, it actively illuminates
a scene with the known fixed pattern, and the camera mea-
sures the scene’s radiometric response to both the projector’s
illumination and all other light sources in the environment.
When the projector is off, the camera only measures the am-
bient light. Given these measurements, our proposed volume
rendering framework reconstructs the depths and normals
corresponding to scene geometry, as well as the direct, indi-
rect, and ambient light transport components that contribute
to scene appearance (see overview in Figure 2).

To understand how, first consider modeling the light inci-
dent at a surface point x with a function Lα

i (x, ωi):

Lα
i (x, ωi) = Lambient

i︸ ︷︷ ︸
passive

+α (Ldirect
i + Lindirect

i )︸ ︷︷ ︸
active

, (1)

where α ∈ {0, 1} accounts for whether the projector is
off (L0

i ) or on (L1
i ). The light from the projector can either

take a direct path to an object’s surface (Ldirect
i ) or reach the



surface indirectly, by reflecting off of other scene points first
(Lindirect

i ). The ambient term (Lambient
i ) represents both direct

and indirect light from all sources other than the projector.
Given these incident light sources, the outgoing radiance

at the point can be calculated using the rendering equation:

Lα
o (x,ωo) =

∫
Ω(x)

f(x,ωi,ωo)L
α
i (x,ωi)(n(x)·ωi) dωi,

(2)
where the domain Ω(x) represents the hemisphere of in-
cident light directions at point x. Here, the bidirectional
reflectance distribution function (BRDF), f(x,ωi,ωo), de-
fines the proportion of incoming light scattered in the out-
going direction. When combined with Equation 1, we can
further decompose the rendering equation as follows:

Lα
o (x,ωo) = Lambient

o + α(Ldirect
o + Lindirect

o ), (3)

where each term represents the result of evaluating the inte-
gral with respect to the corresponding incident light compo-
nent. Note that both active components, Ldirect

o and Lindirect
o ,

depend on the pose of the projector.

Neural Volume Rendering Framework. To model the
environment, a neural network Fθ takes as input a 3D
position x and viewing direction ωo, and outputs terms
(σ(x),n(x), f(x,ωo), L

ambient
o (x,ωo), L

indirect
o (x,ωo)) that

capture the scene’s geometric and radiometric properties.
This neural representation can be used to render scenes from
different viewpoints by tracing rays through the volume and
computing the radiometric response at each point sampled
along the ray [18]. Given a camera’s pose and intrinsic pa-
rameters, rays are cast from the camera’s optical center xc

through each pixel in direction ωo. Volume density, normals,
reflectance, and outgoing radiance functions are queried at a
set of 3D points along the ray, and radiance is accumulated
at the camera pixel by computing the following integral:

Lα(xc,ωo) =

∫ tf

tn

T (xc,x)σ(x)L
α
o (x,ωo) dt, (4)

where

T (xc,x) = exp
(
−
∫ t

tn
σ(xc − ωos) ds

)
, (5)

and x=xc−ωot. The transmittance function T (xc,x) rep-
resents the proportion of light that travels from x to xc.

As discussed in Equation 3, in this work, we indepen-
dently model three different components of illumination:
(i) the neural network directly outputs the ambient term, as
done in previous works [18]; (ii) we provide a physics-based
model for the direct term, and (iii) we propose to optimize a
term that approximates the indirect component. We focus on
the latter two items in the remainder of this section.

(b) input images

(a) acquisition setup

(c) reconstructed volume

(d) output images
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Figure 2. Overview of structured light reconstruction proce-
dure. (a) The acquisition setup consists of a single camera and
projector illuminating the scene with a fixed projection pattern. (b)
The projector strobes the illumination as the setup moves around
the scene, producing an image sequence where the pattern alter-
nates between on and off. (c) The proposed volume reconstruction
problem recovers the appearance and shape of the scene. (d) The
constituent components that make up appearance and shape can
then be synthesized for novel views.

The Direct Component. Ldirect
o models the single-bounce

light transport component, where light travels from the pro-
jector to a scene point and back to a camera. For a projector
at position xp, the direct lighting incident at a particular
point x is given by the following function:

Ldirect
i (x,ωi) =

P (x)

∥xp − x∥2
T (xp,x)δ(ωp − ωi), (6)



where
ωp =

xp − x

∥xp − x∥
. (7)

Function P (x) queries the intensity of the projector pixel il-
luminating point x, identified through perspective projection,
as the projector has similar geometric properties to a camera;
note that the output depends on the pose of the projector.
The 1/∥xp−x∥2 term models the inverse square light fall-off;
because the projected area grows proportionally to squared
distance, intensity per unit area follows an inverse square
falloff. The transmission function T (xp,x) determines the
proportion of light transmitted between the projector at xp

and point along the ray x. Finally, the Dirac distribution
δ(·) ensures that the lighting comes from a single direction
based on the projector’s position.

When combined with Equation 2, we obtain:

Ldirect
o (x,ωo) =

f(x,ωp,ωo)

∥xp − x∥2
P (x)T (xp,x)(n(x) · ωp).

(8)
This expression is non-trivial to evaluate for two reasons.
First, this requires knowledge of the full BRDF at every
point in space. Second, this requires evaluating the projec-
tor transmission function, which would be a computational
bottleneck in neural volume rendering.

To help, we make two assumptions: (i) the projector
light casts no shadows, i.e., T (xp,x) = 1;1 and (ii) the
BRDF can be approximated with the reflectance function
fr(x,ωo) = f(x,ωo,ωo), representing the ratio of light re-
flected in the direction of the illumination source. This holds
approximately for small-baseline projector-camera systems,
provided that the distance to the scene is sufficiently large.

When combined with Equation 4, the expression for the
contribution of direct light is given as follows:∫ tf

tn

T (xc,x)

∥xp − x∥2
σ(x)fr(x,ωo)P (x)(n(x) · ωp) dt. (9)

The Indirect Component. As a byproduct of our frame-
work, it is possible to recover an approximation of the indi-
rect component for a scene. Lindirect

o models the component
of light that misbehaves (e.g., bounces around a scene multi-
ple times). However, the global nature of the indirect channel
makes it non-trivial to model accurately. This is because, in
a volume rendering framework, the indirect component at
any given 3D point x would also depend on 6D pose of the
projector-camera system—making it far too challenging to
model and reconstruct explicitly.

Our ability to separately recover the direct and indirect
components of a scene is based on the work by Nayar et al.

1An alternative option is to square the transmission function in Equa-
tion 9, to model attenuation of both incident and outgoing light. In practice,
we found that this change does not impact reconstruction results however.

[20]. The key idea is to illuminate a scene with a high-
frequency pattern and observe the response at a point x to
different illumination conditions, e.g., the result of moving
the structured light pattern across the scene. Provided that
the indirect component is smooth relative to this illumination
pattern, the indirect component at a point in the scene stays
more or less constant with respect to small perturbations to
the global position of the structured light pattern. Therefore,
to approximate the indirect component, we propose using
a function Lindirect

o (x,ωo) that only takes as input the scene
point x and viewing direction ωo.

In simpler terms, the indirect channel absorbs light contri-
butions that cannot be modelled via direct reflections (Equa-
tion 9). Consider a scenario where the projected pattern P (x)
is a Dirac delta function, i.e., it is non-zero at only one point.
Without indirect light, most of the scene would be black.
With indirect light, however, a non-zero contribution of light
can potentially reach any camera pixel by bouncing around
the scene multiple times. Since the direct reflection model
has no way of producing non-zero values in these regions
using Equation 9, this forces the model to produce these
non-zero responses through the indirect channel.

4. Neural Volume Optimization
We optimize the neural volume framework using both
ambient-only measurements L̂0(xc, ωo) and structured light
measurements L̂1(xc, ωo) using the camera-projector poses
estimated with COLMAP [25].

We build our framework on top of NeRF-PyTorch [16],
which we extend to output normal n(x), reflectance
f(x,ωo), and indirect radiance Lindirect

o (x,ωo). We train
coarse and fine networks using an ambient photometric loss:

Lambient =
∥∥∥L0(xc,ωo)− L̂0(xc,ωo)

∥∥∥2 , (10)

and a structured light photometric loss:

LSL =
∥∥∥L1(xc,ωo)− L̂1(xc,ωo)

∥∥∥2 , (11)

where L0 and L1 are the predicted ambient (α = 0) and
structured light (α = 1) terms from Equation 4. Because
the contribution of indirect radiance is often weaker than
the other components, we scale the network output corre-
sponding to indirect radiance by 0.1 to implicitly bias the
resultant indirect radiance towards a small value. This is
an empirically determined hyperparameter value that works
well for our experiments. For scenes with minimal indirect
component, we simply omit this channel.

We follow the approach proposed by Verbin et al. [30] to
tie predicted normals to the gradient density normals:

Lnormal
p =

1

K

∑K

k=1
wk ∥nk − n̂k∥2, (12)
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Figure 3. Novel view reconstruction of ambient image and disparity map for the woodshop scene, trained with 2 and 4 views.

where nk are the predicted normals, n̂k = −∇σ(x)/||σ(x)||
are the analytical normals, wk are weights associated with
each sample along a ray, and K represents the number of
samples per ray. We also use their proposed penalty term for
back-facing normals:

Lnormal
o =

1

K

∑K

k=1
wk ·min(0,nk · ωo)

2. (13)

The total loss for each ray (xc,ωo) is as follows:

Ltotal = (1−α)Lambient +λ1αLSL +λ2Lnormal
p +λ3Lnormal

o ,
(14)

where the value of α ∈ {0, 1} reflects the state of the projec-
tor (off or on) when capturing the ray. During training, we
gradually decay the weight λ1 to a small value. This ensures
that the optimization procedure can initially make use of the
structured light images to recover geometry (especially of
low-texture regions), while the ambient loss dominates, al-
lowing for better detail reconstruction during later iterations.
In practice, we alternate between optimizing the Lambient and
LSL objectives, as the poses (and thus rays) for the structured
light and ambient images are different. For all our experi-
ments, we train our model for 100K iterations and use the
same learning rate decay and optimizer as in NeRF [18].
Training with our method takes 4–6 hours on an NVIDIA
3090 RTX GPU (24 GB RAM).

5. Experiments and Results
5.1. Data Generation

We use an Intel RealSense D435 system [14] with a built-in
infrared dot projector to capture real data. Although the de-
vice has three cameras, we choose to use only one monochro-

matic camera for our experiments, but our framework can
easily be extended to account for all three cameras. During
our calibration procedure, we compute the intrinsics and
extrinsics of the projector and camera, and an image rep-
resenting the dot pattern emitted by the projector. See the
supplemental document for details on the calibration process.

While streaming data, the device strobes the illumination
to capture a set of frames when the projector is on, and
another set when off. We use COLMAP [25] to obtain poses
for the ambient images. To account for the drift between the
projector on and off images, we additionally optimize the
structured light image poses as a pre-processing step for each
scene and use these calibrated poses for all our experiments—
see our supplemental document for more details.

All synthetic scenes are rendered using Blender [5].

5.2. Reconstruction from Sparse Views

For real scenes, we test the novel-view reconstruction and
disparity map of our method trained with 2, 4 and 8 views.
Since the goal is to perform accurate novel-view synthesis
for the ambient images, we decay the structured lighting ob-
jective’s weight λ1 from 1 to 0.1 over the first 40K iterations
for the 2-view case, and to 0.001 for the 4- and 8-view cases.
The large value for λ1 at the beginning of training helps
recover more accurate geometry and prevents over-fitting,
and a smaller value for λ1 at the end helps prioritize image
quality (e.g., the ambient term). We compare our model’s
performance with the following baseline approaches:

NeRF (no depth supervision). We train NeRF [18] with
the photometric loss on ambient images only (Equation 10).
NeRF + sparse depth. We train DS-NeRF [8], which in-
cludes a depth supervision loss for its fine network with a
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Figure 4. Novel view reconstruction of ambient image and disparity map for the doll scene, trained with 2 and 4 views.

weight of 0.1 using COLMAP’s sparse point cloud.

NeRF + dense depth. Similar to DS-NeRF [8], we add a
depth loss to the fine network of NeRF, which uses dense
RealSense depth maps for supervision. We mask out the
unresolved regions in the RealSense depth maps to avoid
supervising with an unreliable signal. Since the RealSense’s
active depth sensing comes into play when the projector is
on, we add depth supervision for only these poses. The initial
depth loss weight is set to 0.1, and we decay it at the same
rate as λ1 in our method to 0.01 for 2 views, and 0.0001 for
4 and 8 views.

Ours + dense depth. We combine our approach with the
RealSense depth supervision, using the same loss parameters
for the structured light and depth losses as described above.

We perform this comparative study on 50 to 100 held-out
views each for four real scenes: woodshop, doll, sculpture,
and translucent box. For all the cases, we train using a batch
size of 2048, 32 uniform samples, and 64 importance sam-
ples for 100K iterations. For the translucent box scene, we
use 64 uniform samples for all methods. For these compar-
isons, we omit both the prediction of normals and the indirect
component from our image formation model.

We report the quantitative analysis for novel-view syn-
thesis in Table 2 using PSNR, SSIM [31], and LPIPS [36]
metrics. We provide a per-scene breakdown of metrics in the
supplement. Figure 3 and Figure 4 present qualitative results
for the 2-view and 4-view cases.

NeRF recovers cloudy geometry in textureless regions
and is unable to interpolate well with sparse views. It com-
pensates for inaccurate geometry with spurious appearance

estimates to overfit the integrated radiance value for training
images, which does not scale to test views. Quantitatively,
all the depth-based methods (sparse depth, dense depth, and
ours) produce higher-quality representations of the scene
than NeRF, as expected. Qualitatively, however, it is clear
that both NeRF and sparse depth supervision struggle to cap-
ture the scene geometry, as shown in Figure 3 and Figure 4.
Provided the scenes contain relatively simple geometry such
that the RealSense depth is reliable, both dense depth super-
vision and our proposed method produce comparable results.

Table 2. Novel-view synthesis quality is improved by depth
supervision, especially in few-view cases. Quantitative analysis
on real dataset. ‘2-v’ denotes two views.

PSNR ▲ SSIM ▲ LPIPS ▼
Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 27.53 33.40 38.31 0.886 0.936 0.965 0.399 0.307 0.231
+ sparse depth 36.74 41.22 42.38 0.969 0.988 0.990 0.214 0.158 0.148
+ dense depth 36.61 40.74 42.06 0.971 0.986 0.988 0.207 0.173 0.165

Ours 34.89 40.97 42.02 0.959 0.986 0.989 0.218 0.167 0.163
+ dense depth 36.70 40.89 42.35 0.973 0.987 0.989 0.196 0.166 0.159

5.3. Reconstructing Translucent Objects

There are scenarios where structured light sensors com-
pletely fail to capture depth, however. For example, when
imaging translucent objects, multiple depth planes contribute
light to a sensor (Figure 5b). As a result, recovering a single
depth map for such scenes is fundamentally ill-defined.

We perform a qualitative comparison of our approach to
the depth from Intel RealSense on scenes containing partially
transparent objects. In particular, we capture an additional
mesh scene containing a plastic mesh placed in front of a



(a) Structured light w/o mesh (b) Structured light w/ mesh

(c) RealSense Depth w/o mesh (d) RealSense Depth w/ mesh

(e) Our depth (behind the mesh) (f) Our reconstructed view

Figure 5. Reconstructing multiple surfaces for the mesh scene.
(a–b) Structured light images captured by the Intel RealSense with-
out and with a large plastic mesh placed in between the camera and
the scene. The partially-transparent mesh obscures the scene and
effectively creates a second “copy” of the structured light pattern,
leading to ambiguous correspondences (see insets). (c–d) We show
the RealSense depth for the scene without and with the mesh. Note
that the RealSense completely fails to predict reasonable depth
in the latter case. (e–f) Novel view recovered from 128 images,
as well as a depth map produced by filtering out the geometry of
the mesh. Our method accurately reconstructs the geometry of the
background, while the RealSense fails to do so.

table containing a stack of boxes. In Figure 5, we show that
the Intel RealSense fails to accurately capture the scene’s
geometry due to the ambiguous correspondences caused by
multiple direct reflections. In contrast, our approach has the
ability to model the contribution of direct illumination from
multiple points along the path of a ray, allowing us to capture
both the geometry of the mesh and the objects behind it.

We further provide a qualitative comparison of our ap-
proach in Figure 6 on the translucent box scene, consisting
of a plastic box filled with various balls. Here, we visualize
the rendering weights wk from Section 4 along a ray passing
through the plastic box, demonstrating that our method re-
covers the geometry of all surfaces (translucent and opaque)
along the path of a ray.

5.4. Predicting Normals

A unique advantage of working with the raw structured light
images (instead of processed depth maps) is that it provides
shading cues that can be used to predict surface normals. In
this section, we provide quantitative and qualitative assess-
ments of our proposed method in simulation.

Translucent box novel-view
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Figure 6. Reconstructing multiple surfaces for the translucent
box scene. In this example, we show that our method recovers
the geometry of a partially-transparent plastic container from 110
images, while other methods fail to do so. The red marker indicates
in the pixel (and hence, the ray) chosen for rendering weights
visualization. Our method recovers the depth of both front surface
of the container (first peak), as well as a ball placed within the
container (second peak), whereas other methods fail to detect or
distinguish the front surface of the container.

We test the reconstruction of novel views, disparity, and
normal maps for our method and compare them with the fol-
lowing: (i) the base NeRF model which does not incorporate
any illumination information, and (ii) our model where we
replace the structured light (dot) pattern with flood illumina-
tion (mimicking the setup by Bi et al. [4]). For both the dot
pattern and flood illumination, we decay the structured light
loss weight λ1 from 1 to 0.05 over the first 40K iterations,
and set the normal prediction and normal orientation loss
weights to λ2 = 3 × 10−4 and λ3 = 0.1, respectively. All
methods are trained for 100K iterations with a 1024 batch
size, 64 uniform samples and 128 importance samples. We
train using 25 views and test on 50 held-out views for 4
scenes. We omit the indirect component of our image forma-



tion model here to focus on normal recovery.
For quantitative analysis in Table 3, we compute PSNR,

SSIM [31] and LPIPS [36] on the reconstructed images,
MSE (mean squared error) on the depth map, and MAE
(mean angular error in degrees) for the analytical normal
maps. Figure 7 shows the qualitative analysis for two of
the scenes. Both quantitatively and qualitatively, the use of
a structured light dot pattern significantly outperforms the
case of single intensity or no active illumination in terms of
normal and depth fidelity.

Explicitly predicting normals produces smoother results
compared to the noisy analytical gradients computed from
the density function. As shown in Figure 8, explicitly pre-
dicting normals, modeling them as the cosine shading term,
and penalizing them as in Equation 12 helps improve the
quality of analytical normals, making them less noisy and
capturing more detail.

Table 3. Adding structured light significantly reduces depth and
normal error while maintaining novel-view synthesis quality.
‘Flood light’ and ‘structured light’ refer to projecting a dot and
single intensity pattern onto the scene, respectively.

Method PSNR ▲ SSIM ▲ LPIPS ▼
Depth
MSE ▼

Normals
MAE °▼

Ambient-only (NeRF) 44.98 0.985 0.368 0.615 24.34
+ Flood light 43.51 0.982 0.375 0.786 8.76
+ Structured light (Ours) 44.13 0.984 0.370 0.013 2.84

5.5. Decomposing Scene Appearance

Finally, we showcase the effectiveness of modeling the direct
and indirect radiance, and produce a complete decomposi-
tion of all components using our framework, including the
ambient, direct, and indirect components for scene appear-
ance, and the disparity and normals associated with scene
geometry. We first construct a synthetic scene with a frog
object, whose skin exhibits subsurface scattering. The frog is
positioned close to the intersection of two planes, which also
introduces diffuse inter-reflections. Using the same hyperpa-
rameters as described in Section 5.4, we show the ability to
synthesize scenes from a novel viewpoint, and decompose
the scene into its constituent components in Figure 9.

To demonstrate this in practice, we capture a real scene
in Figure 1, consisting of a translucent candle placed within
a large concave object. This scene exhibits strong subsurface
scattering and inter-reflections. We train our model using 8
views, a 2048 batch size, 32 uniform samples, and 64 im-
portance samples for 100K iterations. The structured light
weight λ1 is decayed to 0.1 over 40K iterations, and the
normal prediction and orientation loss weights are set to
λ2=0.001 and λ3=0.1, respectively. The result is a decom-
position of all components of the scene, accurately capturing
the presence of indirect light within this scene. Another
example of a real scene decomposition into its shape and

Ground Structured Flood Ambient-only
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Figure 7. Qualitative comparison of ambient novel-view synthe-
sis, disparity and analytical normal maps for synthetic data.
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Figure 8. Impact of explicitly predicting and modeling normals
in the proposed method. Novel-view normal map visualization
for the lego and skateboard scenes.

appearance components is shown in Figure 10. Trained using
only 5 views, our method recovers the indirect component
corresponding to the light scattering in a milk medium and
other inter-reflections in the scene for a novel view.
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Figure 9. Novel-view scene decomposition on a synthetic scene. Our method enables the synthesis of the ambient, direct, and indirect
appearance along with accurate estimation of the normals and disparity map for novel views, by physically-based modeling of scenes
exhibiting complex light interactions like subsurface scattering and inter-reflections.

(a) Structured light image (b) Ambient image

(c) Direct component (d) Indirect component

(e) Disparity map (f) Normal map

Figure 10. Novel-view scene decomposition on a real scene, con-
taining a carton of eggs and a jug of milk. Our method recovers
the appearance and shape components for novel views of a scene
containing a scattering medium (i.e., the milk).

6. Discussion

Limitations. As with existing structured light systems,
our method can be confused by objects that produce com-
plex light transport effects. For example, recovering scene
geometry in the presence of mirrors and refractive objects
is a notoriously difficult problem [10, 22]. When imaging
outdoors under bright ambient lighting or imaging objects
placed far away, the illumination from the projector may be
too weak to detect. In such cases, however, our proposed
method is expected to fail gracefully and have similar perfor-

mance to NeRF [18], because the ambient photometric loss
dominates the structured light photometric loss.

While the overall quality of novel-view synthesis of our
method is similar to other methods, our framework is un-
able to accurately disambiguate geometry for edges near
projector shadows. In principle though, it may be possible
to (i) identify shadow pixels in each measurement and (ii)
disregard these pixels during the training process. Optical
techniques can also be employed to further mitigate the effect
of shadows from images [19].

Concluding Remarks. In this paper, we proposed a neu-
ral volume rendering framework for multi-view structured
lighting. This framework recovers accurate geometry and
synthesizes novel views by modeling the image formation
process for a commodity Intel RealSense structured light
system. We demonstrated that our depth-based framework
provides a more principled approach to recovering scene
geometry, enabling it to account for challenging scenes that
contain partially transparent objects. Moreover, our ability
to model the raw structured light images further enables our
method to recover accurate surface normals, and to separate
direct and indirect components. Looking forward, we believe
that this framework can be extended to make use of all three
cameras on RealSense devices, and potentially even support
scanning scenes with multiple such devices in tandem.
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TöRF: Time-of-flight radiance fields for dynamic scene view
synthesis. In NeurIPS, 2021. 2
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