
Supplemental Material for
Neural Fields for Structured Lighting

Aarrushi Shandilya Benjamin Attal Christian Richardt ∞ James Tompkin † Matthew O’Toole
Carnegie Mellon University ∞ Meta Reality Labs Research † Brown University

A. Real Data
Our proposed framework uses real data captured with an
Intel RealSense D435 camera and a built-in infrared dot pro-
jector. In this section, we detail our calibration routine to
recover the intrinsic and extrinsic parameters of the infrared
camera and projector, and recover the projector’s structured
light dot pattern. Our image formation model uses these cali-
bration parameters to synthesize structured light images of
the scene. While the RealSense has two infrared cameras and
both cameras are used to calibrate the system and compute
poses through COLMAP, only a single camera stream is
used during training for all our structured light experiments
(for simplicity). Note that the RealSense uses both cameras
to generate dense depth maps, which serves as input images
for depth-supervised NeRF methods.

A.1. Camera Calibration

The first step of the calibration procedure is to compute the
intrinsic matrices (K1,K2), distortion (d1,d2) and recti-
fication (r1, r2) parameters, relative extrinsics (R,T) and
projection matrices (P1,P2) for the monochromatic stereo
cameras. Streaming both the cameras (with projector off )
at a resolution of 848× 480 pixels, we capture images of a
7×8 planar checkerboard in a variety of poses (Figure A).
Using standard OpenCV functions and calibration flow, we
compute these parameters as outlined Figure B and in pseu-
docode Algorithm 1.

A.2. Projector Calibration

The next step is to calibrate the projector itself. The stream
for both cameras is enabled (with projector on) at a resolu-
tion of 848 × 480 pixels. We capture the pattern projected
onto a white plane as it is moved at different depths, and
kept roughly parallel to the camera plane. We assume the
scene contains no ambient illumination (i.e., the images are
captured in a dark room).

Since the camera is imaging a planar surface, the struc-
tured light pattern formed on the sensor is related to all other
frames through a homography transform. The key idea is to
compute homography between any two images of the pat-

Figure A. Sample checkerboard captures with detected corners.
100+ checkerboard poses are used to span both cameras’ field of
view at different depths and orientations to accurately calibrate for
the camera parameters.

Left Cam (camଵ)
Images

Right Cam (camଶ)
Images

Detect 
Corner 
Points

Camera 
Calibration

3D corner points 
(Known measurements) 

Stereo 
Calibration

Stereo 
Rectification

𝒙𝟏 𝒙𝟐

𝑲𝟏, 𝒅𝟏 𝑲𝟐, 𝒅𝟐

𝑲𝟏, 𝒅𝟏 𝑲𝟐, 𝒅𝟐, 𝑹 , 𝑻

𝑷𝟏, 𝒓𝟏 𝑷𝟐, 𝒓𝟐

𝑿

Detect 
Corner 
Points

Camera 
Calibration

𝑿 𝑿

𝒙𝟏 𝒙𝟐

𝑿

Figure B. Camera calibration flow using OpenCV. Corner point
correspondences between the world frame and camera images are
used to recover camera parameters via optimization function calls
of Camera Calibration, Stereo Calibration and Stereo Rectification.

tern using an image alignment technique such as Enhanced
Correlation Coefficient (ECC) Maximization. This homog-
raphy can then be used to warp one image onto another or
transform the pixel coordinates of an image to corresponding
coordinates in the other image.

The calibration flow is depicted in Figure C and the pseu-
docode in Algorithm 2. Assigning the first frame to be the
base image, we estimate its homography with respect to
all other captured frames from both cameras. Using this



transform, each image is warped onto the base image to
formulate the complete pattern image (Figure D) with some
additional normalization. Similarly, the homographies are
used to transform the 2D image coordinates sampled in the
pattern image to corresponding coordinates in the left and
right camera images. These 2D coordinates from both cam-
era images are then triangulated to 3D world coordinates
using the calibrated camera projection matrices (obtained in
Section A.1). Repeating this for all images, we get a set of
correspondences between the 2D projector pattern coordi-
nates and 3D world coordinates, which allows us to solve
for the projector’s projection matrix using Singular Value
Decomposition (SVD) for Total Least Squares. Note that
this procedure does not account for effects like projector
defocus. Additionally, we postprocess the pattern to remove
any contribution from the fall-off in pattern intensities as
we account for this factor explicitly in our image formation
model.

New Images as the plane 
moved away from camera

Base Image
Compute 

Homography 
using ECC

Perspective Warp Add & Normalize

Pattern Image

(a) Calibrating Projector Pattern

Left Cam Stream Base Image Right Cam Stream

Compute 
Homography 

using ECC

Compute 
Homography 

using ECC

Sample 2D pixel 
Coordinates

Perspective 
Transform

Perspective 
Transform

Triangulate 
2D Points

Solve for P in 𝒙𝑷=PX
(Total Least Squares) 𝑯𝟏 𝑯𝟐

𝒙𝟏 𝒙𝟐

𝒙𝑷 𝒙𝑷

𝒙𝑷

𝑿

(b) Calibrating Projection Matrix

Figure C. Projector calibration flow. (a) Warping each frame
onto a base image using an estimated Homography formulates the
pattern image. (b) Correspondences between the projector’s base
image pixels and the triangulated world coordinates are used to
solve for the projector’s projection matrix.

A.3. Pose Optimization

For each scene, we also use the stereo camera system to com-
pute poses through COLMAP for frames where the projector
is off. As the baseline between cameras is known, there is

Figure D. Calibrated projector pattern for Intel RealSense
D435.

no scale ambiguity associated with the poses. Note that the
stereo camera pair is used only for calibration, however all
the demonstrated experiments use the captures from a single
camera only.

During the stroboscopic streaming of the camera, there
can be significant motion between the projector on and
off images. Hence, the poses for off images obtained via
COLMAP cannot be used directly for the on images. To
calibrate for the different poses, we enable a one-shot pose-
optimization flow as a pre-processing step. This allows us to
leverage large number of views for accurate pose recovery
irrespective of sparse-view training during our experiments.
Representing the poses as twists, we initialize the on image
poses same as the off image poses from COLMAP. Then, the
on image poses across all captures of a scene are optimized
using the total photometric loss of Equation 14 for a total of
160K iterations. For optimizing these poses, we use Adam
optimizer with an initial learning rate of 0.001, which is
decayed by a rate of 0.1 over the first 100K iterations. For
the volumetric scene model, we use the same optimizer and
learning rate as in NeRF, while the weight λ2 is decayed
from 1 to 0.001 over the first 100K iterations. Prediction and
loss on normals is disabled during this optimization process,
i.e., λ2 = λ3 = 0 in Equation (14) to speed-up the cali-
bration. Going forward, we use these per-scene calibrated
poses for all our experiments without any further need of
pose optimization during training or testing.

B. Synthetic Data
In Blender, we form a structured light system using a
projector plugin (add on from https://github.com/Ocupe/
Projectors). The scenes include objects from NeRF’s
Blender dataset and open source 3D models (from https:
//blendswap.com/) (license information in Table A) placed
on a textureless plane. Keeping the relative camera-projector
pose fixed, the structured light rig is perturbed to generate
random views. For each view, we render 400× 400 images
with the projector illumination turned on and off. When the
projector is on, it illuminates the scene with a high frequency

https://github.com/Ocupe/Projectors
https://github.com/Ocupe/Projectors
https://blendswap.com/
https://blendswap.com/


dot pattern. Ground truth extrinsics and intrinsics are directly
retrieved from Blender without any additional calibration.

Table A. License information for open-source scenes used from
https://blendswap.com/.
Scene License Author Link

Sofa CC-0 Darilon https://blendswap.com/blend/30053
Frog CC-0 craggle https://blendswap.com/blend/30092
Skateboard CC-0 MattMump https://blendswap.com/blend/4859
Domino CC-0 alepx https://blendswap.com/blend/6584

C. Quantitative Results

We provide experiment per-scene metrics for the sparse view
reconstruction on real scenes (Tables B to E) and normal
prediction on synthetic scenes (Table F).

Table B. Quantitative analysis on box scene.
PSNR ▲ SSIM ▲ LPIPS ▼

Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 30.78 35.57 38.39 0.943 0.964 0.971 0.392 0.298 0.252
+ sparse depth 38.50 43.41 45.51 0.979 0.991 0.993 0.233 0.166 0.162
+ dense depth 36.31 42.47 44.89 0.972 0.989 0.992 0.252 0.194 0.177

Ours 34.90 43.40 44.82 0.967 0.991 0.993 0.244 0.179 0.171
+ dense depth 36.25 43.07 45.24 0.973 0.991 0.993 0.230 0.180 0.168

Table C. Quantitative analysis on sculpture scene.
PSNR ▲ SSIM ▲ LPIPS ▼

Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 25.68 38.39 43.83 0.899 0.984 0.991 0.344 0.161 0.141
+ sparse depth 32.54 43.15 44.42 0.950 0.992 0.993 0.226 0.125 0.117
+ dense depth 33.17 41.30 43.30 0.958 0.987 0.991 0.202 0.146 0.142

Ours 27.17 40.96 43.15 0.911 0.988 0.991 0.277 0.145 0.141
+ dense depth 33.22 40.54 43.59 0.959 0.986 0.991 0.198 0.148 0.139

Table D. Quantitative analysis on woodshop scene.
PSNR ▲ SSIM ▲ LPIPS ▼

Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 24.14 27.50 31.67 0.778 0.860 0.917 0.480 0.400 0.269
+ sparse depth 36.92 38.45 38.39 0.969 0.984 0.986 0.144 0.115 0.101
+ dense depth 37.19 37.64 38.17 0.970 0.979 0.983 0.163 0.149 0.140

Ours 37.60 37.65 38.37 0.973 0.977 0.982 0.147 0.146 0.138
+ dense depth 37.78 38.03 38.58 0.975 0.980 0.984 0.143 0.141 0.136

Table E. Quantitative analysis on doll scene.
PSNR ▲ SSIM ▲ LPIPS ▼

Method 2-v 4-v 8-v 2-v 4-v 8-v 2-v 4-v 8-v

NeRF 29.51 32.14 39.37 0.925 0.938 0.980 0.381 0.369 0.261
+ sparse depth 39.01 39.88 41.21 0.977 0.983 0.986 0.254 0.225 0.211
+ dense depth 39.77 41.54 41.87 0.983 0.987 0.988 0.212 0.202 0.199

Ours 39.90 41.85 41.74 0.984 0.988 0.988 0.204 0.197 0.200
+ dense depth 39.55 41.91 41.99 0.983 0.988 0.989 0.214 0.195 0.195

Table F. Scene-wise quantitative analysis on synthetic data.

Method PSNR ▲ SSIM ▲ LPIPS ▼
Depth
MSE ▼

Normals
MAE °▼

NeRF 43.62 0.984 0.407 0.915 23.90

le
go Flood Light 41.47 0.979 0.418 0.574 7.95

Structured Light 42.62 0.982 0.411 0.008 2.61

NeRF 45.49 0.985 0.323 0.409 24.62

sk
at

e

Flood Light 44.32 0.983 0.327 0.632 7.30

Structured Light 44.68 0.984 0.325 0.004 2.71

NeRF 46.22 0.986 0.389 0.846 23.33

so
fa Flood Light 45.17 0.985 0.395 1.096 7.28

Structured Light 45.59 0.986 0.389 0.033 2.40

NeRF 44.58 0.984 0.353 0.291 25.51

do
m Flood Light 43.09 0.981 0.358 0.841 12.50

Structured Light 43.65 0.983 0.355 0.008 3.61

D. Qualitative Results
D.1. Point Cloud Visualization

In this section, we demonstrate point cloud visualizations for
some of the real scenes decomposed in Section 5.5. Given
a camera view, the point cloud location for each pixel is
computed using o+ zd, where o is the camera origin, d is
the unit ray direction pointing away from the camera, and
z is the depth computed by weighted accumulation of the
learnt volume density. Figures E and F show the point cloud
reconstructions for our method using 50 views.

Figure E. Point cloud visualization for the candle scene.

Figure F. Point cloud visualization for the milk scene.

https://blendswap.com/
https://blendswap.com/blend/30053
https://blendswap.com/blend/30092
https://blendswap.com/blend/4859
https://blendswap.com/blend/6584


Algorithm 1 Camera Calibration using standard OpenCV functions
x1 ← findChessboardCorners (cam1 images)
x2 ← findChessboardCorners (cam2 images)
X← 3D world coordinates for checkerboard corners
K1,d1 ← calibrateCamera(X,x1)
K2,d2 ← calibrateCamera(X,x2)
K1,d1,K2,d2,R,T← stereoCalibrate(X,x1,x2,K1,d1,K2,d2)
P1,P2, r1, r2 ← stereoRectify(K1,d1,K2,d2,R,T)

Algorithm 2 Projector Calibration using standard OpenCV functions
stream1, stream2 ← load stream from both cameras as grayscale images
stream1,mask1, stream2,mask2 ← undistort, rectify images using d1,d2, r1, r2
base← first frame from stream1

pattern,mask← 0
xp ← 0 (2D pattern coordinates)
X← 0 (3D world coordinates)
H1 ← I2×3

H2 ←
[
1 −0.005 0
0 1 −48.9

]
for all {img1, img2} ∈ {stream1, stream2} do
H1 ← findTransformECC(base, img1,H1,mask1)
rimg1 ← warpPerspective(img1,H

−1
1 )

rmask1 ← warpPerspective(mask1,H−1
1 )

pattern← pattern + rimg1 ∗ rmask1
mask← mask + rmask1

H2 ← findTransformECC(base, img2,H2,mask2)
rimg2 ← warpPerspective(img2,H

−1
2 )

rmask2 ← warpPerspective(mask2,H−1
2 )

pattern← pattern + rimg2 ∗ rmask2
mask← mask + rmask2

{u, v} ← sample image coordinates on the pattern image
{u1, v1} ← perspectiveTransform({u, v},H1)
{u2, v2} ← perspectiveTransform({u, v},H2)
{X,Y, Z} ← triangulatePoints({u1, v1},P1, {u2, v2},P2)
xp ← append {u, v} points
X← append {X,Y, Z} points

end for
pattern = 0.5× (pattern/mask)
Projector’s P← Total Least Squares using the point correspondences xp and X


