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1. Introduction

In this supplement, we cover the following topics:

¢ In Section 2, we prove and discuss Proposition 1. In
particular, we detail the GGX reflectance model, and
derive the associated derivative expressions. We then
derive the expression for the derivative with respect to
mesh vertices. Finally, we discuss computing deriva-
tives while correctly accounting for visibility terms.

* In Section 3, we discuss in detail the rendering algo-
rithm used for estimating the transient and its deriva-
tives. Also, we discuss extensively our optimization
procedure and related engineering issues.

e In Section 4, we show additional experimental re-
sults. In particular, we provide quantitative metrics
for the shape reconstruction experiments in the main
paper. We additionally evaluate performance for dif-
ferent numbers of measurements and levels of noise.

2. Differentiating transients
2.1. Reflectance model

We assume that the NLOS surface has a spatially-
uniform BRDF, which we model using the GGX micro-
facet BRDF [29]. We first define the surface normal 71, in-
coming and outgoing directions w; and w,, and half-vector
h = (w; + w,)/||wi + w,||. Then, the BRDF model is:
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and Frook-Torrance (Wo, 1) is the Fresnel reflection of an ideal
reflector, independent of .. This leads to a one-dimensional
reflectance parameterization, 7w = {«}, where the parame-
ter o € [0, 1] controls surface roughness.
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2.2. Proposition 1

Proposition 1 of the main paper is a direct consequence
of the Equations (18) and (21) we derive below.

Reflectance derivatives. Differentiating the surface inte-
gral of Equation (1) of the main paper with respect to re-
flectance is straighforward. By observing that the integra-
tion measure is independent of the reflectance parameters
7, and under weak continuity conditions that are known to
be satisfied for radiometric integrals [2], we can simply ex-
change the order of differentiation and integration to obtain
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and the derivatives 0fs/0m can be computed analytically
from Equations (14)-(17),
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We used symbolic differentiation to compute this deriva-
tive, and then implemented the resulting expression in our
rendering code.

Surface derivatives. In contrast to the reflectance case, dif-
ferentiating the surface integral of Equation (1) of the main
paper with respect to mesh vertices is complicated by the
fact that the integration measure A (x) is now a function
of these same mesh vertices. An additional complicating
factor is the presence of the binary and discontinuous visi-
bility terms v in the integrand. We can ameliorate the sec-
ond problem by making the approximation that the visibility
terms are independent of the mesh geometry. This approx-
imation is justified by the fact that the visibility terms have
non-zero derivatives only on a zero-measure part of the sur-
face (that is, on occluding contours [13]), and is common in
computer vision and graphics problems [1, 22, 14].

Under this assumption, we can directly apply the deriva-
tion in Section 3.2 of Delaunoy and Prados [4]. Then, the
derivative of Equation (1) of the main paper with respect to
each vertex v; becomes:
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J; corresponds to the set of triangles that contain vertex i.
Vz is the gradient of g with respect to x, ¢; () is the linear
interpolating basis function. ey, ; is the opposite edge of
vertex ¢ in the face & pointing counterclockwise. Operator
A denotes the cross product. Finally,

9a = Vag(@, ) — (Vag(e, fog), fup) . (24)
In the following, we detail some quantities that are used

in the above expressions. For simplicity, we show the ex-
pression for the case of confocal imaging (I = s). The
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derivation for non-confocal case is straightforward, only in-
volves longer expressions. As defined in Equations (1) and
(2) of the main paper,
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The temporal importance W function is an unit rectan-
gular function. This means that the derivatation will only
be non-zero on the boundary. To make g defferentiable, we
substitute W with a Gaussian that has full width at half max
equal to the temporal resolution of the sensor. Then,
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In addition, the terms Vzg(x, 71 ;) and Vig(x, 72;) can
be computed through chain rule, as follows
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Finally, the reflectace function is also a function of =
and 7i. Notice that w; and w, are function of x. We use
the symbolic differentiation to compute the derivative with
respect to x and 71, respectively.

2.3. Accounting for visibility changes

Delaunoy and Prados [4] derived the gradient of a func-
tion that contains visibiliy terms for the case of surfaces rep-
resented as triangular meshes. In particular, they show how
to differentiate energy functionals of the form,

E(S) = /S (&(@, Ax)), Al)) v(a,s0) dA (x),  (28)



where sq is the camera center for the line-of-sight imag-
ing case. The visibility function checks whether a point is
visible to the camera. Their derivative expression can be di-
rectly adapted to our setting in the case of confocal imaging
l = s. In that case, we observe that the image formation
model of Equation (1) of the main paper simplifies to

Il = /S gz, (x)v(x,l)dA(xz), (29

where

then we can rewrite Equation (29) as
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which now matches the form of Equation (28).

We briefly describe the derivative expression derived by
Delaunoy and Prados [4] for functionals of the form of
Equation (28). The derivative contains three terms, terms
due to the variation of the normal, term due to the tetrahe-
dra of the visible adjacent triangles, and the term due to the
movement of the crepuscular cone. Please refer to [4] for
the details.
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Py, (+) is the projection on the othogonal plane to 7.
Ay, is the area of face k. H, ;, is the vector such that [v;,

Figure 8. Normal smoothness. For surface smoothness regular-
ization, we optimize vertices around a face so that the normal is
aligned with the weighted normal around the face.

v; + H, ;] is the edge of triangle k generating the horizon.
y corresponds to points sampled on the edge H; ;.. T'(x)
corresponds to the point located behind « in the direction
of the viewpoint. g(x) = ]z)(a:)a%Z

2.4. Surface Regularization

When optimizing geometry, we follow Delaunoy and
Prados [4] and augment the loss function E (v, 7) of Equa-
tion (7) of the main paper, with a normal smoothing regu-
larization term

T
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where Ay, and 71y, are the area and face normal, respectively,

of the k-th mesh triangle, and hy, is the weighted average of
the face normals of all triangles in its neighborhood Ny,
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A visualization of this regularization term is shown in Fig-

ure 8. Its derivative with respect to mesh vertices is pro-
vided by Delaunoy and Prados [4].

hy (38)

3. Stochastic estimation and optimization

In this section, we provide details relating to the render-
ing and optimization algorithms discussed in Section 4.2 in
the main paper.

3.1. Monte Carlo rendering with stratified area
sampling

We first discuss the rendering algorithm we use to esti-
mate transients 7 (¢;1, s), and their derivatives with respect
to surface, %, and with respect to reflectance, a—fr (Equa-
tions (1), (9), and (10) in the main paper, respectively). We
present the algorithm in the context of estimating I (¢;1, s),
but the discussion applies exactly for the g—{) and g—fr cases.

Algorithm | shows an overview of our rendering procedure.



We use Monte Carlo integration to approximate the sur-
face integral of Equation (1): We first use any proba-
bility distribution p on Snpos to sample a set of points
{z; € Snwos,j =1,...,J}. Then, we form an estimate
as in Equation (11) of the main paper, reproduced here for
convenience:

) :Zlg(«’Bj’ﬂ(wj)lii()agj?)jvl)v(wj75)7 (39)

In the context of light transport simulation, this is referred
to as Monte Carlo rendering [23, 19, 5]. We note that
Monte Carlo integration by sampling points  on SnrLos
is equivalent to the area sampling strategy described by
Veach and Guibas [25]. The fact that we use area sam-
pling is also the reason for the presence of the shad-
ing terms (—@; (), 7 (1)) (@ (x),n (x)) /||x — lH2 and
(—@s (), 7 (8)) (@s (x), 7 (x)) /|2 — s|* in the esti-
mate of Equation (39) (see Equation (9) in Veach and
Guibas [25]).

We note that standard path sampling algorithms (e.g.,
path tracing [9], bidirectional path tracing [24], Metropo-
lis light transport [20]) typically use directional sampling
instead of area sampling. However, area sampling is ad-
vantageous in our setting for two reasons: First, when the
NLOS surface Snpos is small compared to the LOS surface
Sios, directional sampling will result in a large number of
missed rays, greatly reducing rendering efficiency. This has
also been observed by Klein et al. [12], who report an or-
der of magnitude efficiency improvement when using area
sampling instead of directional sampling.

Second, area sampling facilitates stratified sampling [6].
We start by noting that, when Snios is a triangular mesh,
Equation (1) can be decomposed into a sum of per-triangle
integrals,

I:Z/ g(z,n(x))v(zl)v(x,s) dA(z), (40)

where 7}, is the k-th mesh triangle, and Snpos = UZ:1 Th-
We can then estimate [ as

r (111, (k.0 (xh)) v (2h,1) v (xh, s)

=1 j=1 H (a’?)

; (4D

where for each k, {ac’; €Tr,j=1,....[J/T]}. When p
is the uniform distribution, Equation (39) uses J points x;
uniformly sampled from the entire mesh Snpps. By con-
trast, Equation (4 1) splits the .J points into 1" equal-size sets,
with points in the k-th set uniformly sampled from a stratum
corresponding to the triangle 7. This stratification proce-
dure can signficantly reduce the variance of (I) [15, 21], by
up to a factor of 1/T if the integrand of Equation (40) is

approximately constant within each triangle—as is the case
for meshes with very fine triangulation. Empirically, we ob-
served that stratified sampling reduces variance by an order
of magnitude compared to uniform sampling.

An additional advantage of stratified sampling becomes
evident when we consider the visibility terms v in Equa-
tions (39) and (41). For large meshes, visibility tests can
account for the bulk of the rendering computational cost.
Therefore, it is critical that these tests be performed us-
ing highly-optimized libraries specifically designed for this
task [28, 17]. When using stratified sampling, the ray bun-
dles {s — ¥} and {I — %} for all points of the same
k can be treated as coherent ray packets for the purposes
of visibility testing [20, 27]. Empirically, we found that this
results in a fourfold rendering acceleration, highlighting an-
other advantage of our triangle-based stratification proce-
dure.

We conclude this discussion by noting one important dis-
advantage of our area sampling procedure (either stratified
or otherwise): When the reflectance f; of the underlying
surface becomes very specular, then the estimate of Equa-
tion (39) becomes very inefficient. This is because, when
x; is sampled uniformly on Snios or a triangle 7y, the
half-vector corresponding to the path I — x; — s will,
with high probability, deviate significantly from the normal
7 (x;). As a result, most of the sampled paths will have
very low integrand values g (x;, 7t (x;)). The effect of this
can be observed in Section 6.1 of the main paper, when opti-
mizing for the NLOS case under very specular BRDF (GGX
with o = 0.1). In the future, we plan to overcome this by
incorporating into our framework area sampling techniques
that can account for BRDF effects through half-vector im-
portance sampling [10]. An alternative direction is to com-
bine area and directional sampling techniques using multi-
ple importance sampling [25].

3.2. Optimization pipeline

In this section, we describe in detail our optimization
pipeline. We show an overview in Algorithm 2, and dis-
cuss below the various components and strategies we use to
make convergence faster and more robust.

Stochastic gradient descent. We alternatingly optimize
for reflectance and surface vertices using stochastic gradient
descent (SGD). In particular, we use the Adam [ | 1] variant
of SGD, in order to take advantage of the adaptive, per-
parameter, learning-rate scheduling.

When optimizing for surface vertices, Adam ordinarily
would maintain 3 - V' independent learning rates, where
V' is the number of vertices, and each vertex is a three-
dimensional vector. Empirically, we found it beneficial to
constrain all 3 coordinates of the same vertex to have the
same learning rate, reducing the independent learning rates
to V—one per 3D vertex vector. To achieve this, we modi-



Algorithm 1 Monte Carlo rendering for estimating tran-

sient I, or its derivatives ﬂ, AL
ov’ O

Integrand function G € {g, g5, g }-
Mesh SNLOS = Ule 72
Reflectance parameters 7.
Require: Virtual source I and detector s.
Require: Number of rendering samples J.

1: function RENDER(G, Snios, 7,1, s, J)

Require:
Require:
Require:

2: (I) « 0. > Initialize estimate.
3: fork e {1,...,K} do > Select triangle 7.
4: > Compute triangle quantities.
5: A <+ ComputeTriangleArea(7y).

6: 7 < ComputeTriangleNormal(7).

7: forj e {1,...,[J/K]} do

8: > Uniformly sample a point on the triangle.
9: x < SamplePointUniformly (7).

10: > Evaluate the function to be integrated.
11: y < EvaluateIntegrand(G;m, x, 7,1, s).
12: > Perform visibility tests.
13: v; + EvaluateVisibility (Sxios, @, ).
14: vs < EvaluateVisibility (Snios, x, S).
15: Iy« (I)+y-v-vs-AJ[J/K].

16: end for

17: end for

18: return (/).

19: end function

fied Adam to update the learning rate for each vertex using
the total magnitude of the 3D gradient for that vertex’s co-
ordinates. For the learning rate update rules, we refer to the
original Adam publication [ I 1].

Coarse-to-fine surface optimization. We use a coarse-to-
fine scheme to accelerate the surface optimization. We be-
gin with a mesh of a resolution equivalent to the scanning
resolution on the visible wall S s, as produced by a vol-
umetric reconstruction procedure. We then iterate between
evolving the mesh for N gradient-descent iterations, and
increasing the number of vertices by 1.25. As discussed in
the main paper, to increase the number of vertices, we first
use El Topo [3] to create a non-intersecting version of the
evolved mesh, then perform isotropic remeshing with an in-
creased number of target vertices.

Continuation. As discussed in the main paper and in Sec-
tion 2.4 of this supplement, we use a regularized loss func-
tion for surface optimization,

E(v,m)+ AR (v). 42)

Following common practice in regularized optimization [7],
we adopt a continuation scheme and gradually decrease the
weight A of the regularization term: We start with an initial
value \g, and decrease A by a factor of 1.25 every time we

increase the surface resolution. This gives more and more
emphasis on the data term in stead of the regularization.

Rendering sample budgeting. We follow the so-called
increasing precision strategy proposed by Pfeiffer and
Sato [18]: As the optimization proceeds, we increase the
number of samples J used for rendering the gradients with
respect to surface and reflectance. Intuitively, as the opti-
mization gets closer to a local minimum, and therefore the
true gradient becomes smaller, the gradient-descent proce-
dure becomes more sensitive to variance in the gradient es-
timates; therefore, reducing this variance by increasing the
rendering samples can help convergence. In our implemen-
tation, we use an initial number of Jy samples, and we in-
crease this by a factor of 1.25 every time we alternate be-
tween surface and reflectance optimization.

4. Additional Experiments

We show additional results from experiments using syn-
thetic data.

Quantitative evaluation of shape reconstructions. To
quantify the improvement in surface reconstruction in Fig-
ure 5 of the main paper, we compare in Table 9 initialization
and final reconstruction to ground-truth using two metrics:
1) the loss function of Equation (7) in the main paper; 2) the
mean vertex-to-surface error. In all cases, our method pro-
vides significant improvement, often by one or more orders
of magnitude. We note that mean vertex-to-surface error
is not representative of the difference in resolution between
the two meshes, because of the vastly different number of
vertices in the initialization and final reconstructions. The
following extreme example illustrates the issue: A mesh
consisting of just one triangle whose three vertices hap-
pened to be exactly on the ground-truth surface would have
zero error, despite not capturing the underlying shape.

Number of measurements. We compare reconstructions
obtained by the technique of O’ Toole et al. [ 16] and our pro-
cedure, using measurements from confocal scans (I = s) at
5 different scanning resolutions within the same scanning
area on the visible wall S gs. In particular, we consider res-
olutions: 16 x 16, 32 x 32, 64 x 64, 128 x 128, and 256 x 256
scan points.

Figure 10 shows the results. We note that, for the
128 x 128 and 256 x 256 cases, we found it beneficial to
initialize our optimization procedure using a reconstruction
obtained by applying the algorithm of O’ Toole et al. [16] on
only 64 x 64 measurements. Despite the loss in detail, this
initialization provided better coverage on the NLOS sur-
face.

We observe that, even in the case of 16 x 16 measured
transients, our algorithm can recover some of the detail on
the surface of the ground-truth mesh (e.g., texture on the
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s . 10-4 .10-3 .10-3
Loss init 5.01-10 1.4-10 1.7 - 10
function  requit  1.13.10"5  2.3-10°5  2.57-1075
Vertex init 31-107* 6.6-1073 6-1073
distance  reqult  9.95-10"%  3.4-1073 1.2-1073

7.17-10"*  3.8-1073 1.3-1073 24-1073
6.49-107° 9.65-107> 4.31-107° 2.08-107*
34-1073 8.1-1073 6.8-1073 23-1073
1.9-1073 22-1073 2-1073 3.55-107*

Figure 9. Surface reconstruction metrics: For each shape in Figure 5 of the main paper, we compare the initialization and final reconstruc-
tion to ground-truth using two metrics: 1) the loss function of Equation (7) in the main paper (loss function; 2) the mean vertex-to-surface

error (vertex distance).

bunny’s leg), despite the fact that the initialization has no
visible details. We also see that, with just 32 x 32 measured
transients, our algorithm can reconstruct more detail than
what is possible using the volumetric reconstruction from
O’Toole et al. [ 16] with 256 x 256 measured transients. That
is, we can obtain a more detailed reconstruction even though
we are using 64 times fewer measurements.

Noise levels. In this experiment, we evaluate the perfor-
mance of our method as a function of the amount of noise
contaminating our transient measurements. We use syn-
thetic transients, and simulate SPAD noise using the method
of Hernandez et al. [8]. The simulated noise contains three
components, ambient noise, Poisson noise, and SPAD jitter.

Figure 11 shows reconstructions under three different
noise levels, corresponding to different number of laser
pulses M. Even though performance deteriorates as noise
increases, we see that our proposed method can take SPAD
jitter into account and is robust to ambient and Poisson
noise.

We note that, as the noise level increases, the level of
detail we can recover decreases. In this case, continuing to
increase the spatial resolution of the mesh can be counter-
productive, as the amount of noise means that gradient es-
timates have very high variance: We simply have not mea-
sured enough photons in order for our measurements to suf-
ficiently regularize the surface Sy os. This is shown in Fig-
ure 12, where we show the evolution of the mesh as we con-
tinue to upsample it at higher spatial resolutions. In prac-
tice, this implies that, for higher noise levels, we need to
stop the optimization procedure at earlier resolution levels.
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Algorithm 2 Surface and reflectance optimization pipeline.

Require:
Require:
Require:
Require:
Require:
Require:
Require:
Require:
Require:
Require:

Initial NLOS vertices vg.

Initial number of NLOS vertices V.
Initial NLOS triangles T'y.

Initial reflectance parameters 7.
Initial learning rates 7 o, 7, ¢-
Measured transient .

Virtual source I and detector s.

Initial regularization weight Ag.

Initial number of rendering samples Jy.
Number of iterations V.

Initialization.

R e AN A R e

V < V.

V + V.

T+ T.

T < Q.

A < Ao

Ns < 773,0~

n, < 777~,0~

J +— Jo.

while not converged do

Gradient-descent optimization.

10:
11:
12:
13:
14:

Snros < CreateMesh(v, T).
> Update reflectance.

7 + OptReflectance(mw, n,, Sxios, 1,1, 5, N, J).

> Update surface.
v/ + OptSurface(v,n,, 7, T,I,l,s,\, N, J).

Geometry processing.

15:
16:
17:
18:
19:

> Deform mesh.
(v,T) + ElTopo(v,v!,T).
> Increase mesh resolution.
V<« V.1.25.
(v,T) < IsoRemesh(v, T, V).

Update parameters.

20: A< A/1.25. > Continuation.

21: J <+ J-1.25. > Increasing precision.

22: end while
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Algorithm 3 Adam routines for optimizing NLOS mesh
vertices and reflectance.

Require:
Require:
Require:
Require:
Require:
Require:
Require:
Require:
Require:

Initial NLOS vertices vy.

Initial learning rates 7.
Reflectance parameters .
NLOS triangles T'.

Measured transient 1.

Virtual source I and detector s.
Regularization weight A.
Number of iterations V.
Number of rendering samples .J.

1: function OPTSURFACE(vo, 0o, 7, T, I,1,8,\, N, .J)

2:

10:

3
4
5:
6:
7
8
9

> Initialize estimate.
> Initialize learning rates.

V < Vg.
7 < No-
forn e {1,...,N} do
SnLos  CreateMesh (v, T).
> Render required quantities.
I + Render(g; Snros, 7,1, s, J).
I, + Render(gs; Snios, 7,1, s, J).
R, + ComputeReguGradient(Snios).
> Compute gradient.
« (1-1)1,+ R,
> Perform Adam updates.
v + AdamUpdateParameters(v,n, g)
n + AdamUpdateLearningRates(v, 7, g)
end for
return v.

17: end function

Require: Initial reflectance parameters 7.

Require: Initial learning rates 7.

Require: NLOS mesh Syios-

Require: Measured transient I.

Require: Virtual source I and detector s.

Require: Number of iterations V.

Require: Number of rendering samples .J.

18: function OPTREFLECTANCE(7ry, 1, SNLOS; I,l,s,N,J)
19: ™ . > Initialize estimate.
20: 7 Np- > Initialize learning rates.
21: forn e {1,...,N}do

22: > Render required quantities.
23: I + Render(g; Snios, 7,1, 8, J).

24: I, + Render(g,;Snios, T, 1, s, J).

25: > Compute gradient.
26: g« (I -1 ) I,

27: > Perform Adam updates.
28: 7 < AdamUpdateParameters(w, 7, g)
29: 1 < AdamUpdateLearningRates(w, 7, g)
30: end for

31 return 7.

32: end function
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Figure 10. Surface optimization using different number of measurements: We perform experiments for different numbers of measured
transients (i.e., scanned points on the LOS surface Sios). When the number of measurements is very small, the initialization does not
recover any discernible shape, whereas our surface optimization framework still recovers details of the ground-truth mesh. As the number
of measurements increases, the level of detail of both the initialization and our reconstruction increases; in all cases our method significantly
improves the final surface reconstruction.
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Figure 11. Noise experiment: We simulate measurement noise by including ambient light, Poisson noise, and SPAD jitter. (Top) Sample
of the noisy transients. (Middle) Initialization (Bottom) Our recovered results.
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Figure 12. Noise experiment: We show the progression of the surface optimization for the case of the highest noise (M = 200). The
number of mesh vertices increases with iteration. As the spatial resolution of the surface increases, the effect of noise is to reduce local
surface quality, even if the global surface shape remains acceptable.



