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Figure 1: We introduce differential sampling and adaptive sampling as new path sampling methods for differentiable rendering. Compared to
BRDF sampling, our method produces less noisy gradients and better inverse rendering optimization.

Abstract
We introduce a suite of path sampling methods for differentiable rendering of scene parameters that do not induce visibility-driven
discontinuities, such as BRDF parameters. We begin by deriving a path integral formulation for differentiable rendering of such
parameters, which we then use to derive methods that importance sample paths according to this formulation. Our methods are
analogous to path tracing and path tracing with next event estimation for primal rendering, have linear complexity, and can
be implemented efficiently using path replay backpropagation. Our methods readily benefit from differential BRDF sampling
routines, and can be further enhanced using multiple importance sampling and a loss-aware pixel-space adaptive sampling
procedure tailored to our path integral formulation. We show experimentally that our methods reduce variance in rendered
gradients by potentially orders of magnitude, and thus help accelerate inverse rendering optimization of BRDF parameters.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Differentiable rendering has emerged in the past decade as an impor-
tant methodology for solving inverse and design problems in light
transport. Starting with differentiable rendering algorithms special-

ized to subsurface scattering [GZB∗13] and progressing to more
general formulations [LADL18], differentiable rendering has ad-
vanced to support differentiation of surface and volumetric transport
with respect to arbitrary scene parameters. We distinguish between
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parameters that induce visibility-driven discontinuities—e.g., ob-
ject shape and pose—versus those that do not—e.g., bidirectional
reflectance distribution function (BRDF), scattering material, lo-
cal shading. We focus on improving rendering performance when
differentiating with respect to the latter type of parameters.

Thanks to the similarity between formulations for differentiable
and primal rendering, many existing Monte Carlo methods for dif-
ferentiable rendering use path sampling algorithms identical to those
for primal rendering (e.g., path tracing) [VSJ21,CLZ∗20,ZMY∗20].
However, this practice is suboptimal because such algorithms are
designed to approximate path integrands in primal rendering, which
in turn can be significantly different from path integrands in dif-
ferentiable rendering. To date, algorithms that adapt path sampling
techniques to differentiable rendering do so in a manner that requires
tracing additional “side paths” [ZSGJ21, ZDDZ21, BXB∗24]. Con-
sequently, such algorithms exhibit quadratic complexity and come
with a computational overhead that greatly outweighs the benefits
of the improved importance sampling they provide [VSJ21].

We introduce path sampling methods for differentiable render-
ing that simultaneously provide improved importance sampling
and maintain linear complexity. To this end, we first derive a
new differential path integral formulation (Section 3) for differ-
entiable rendering, which we relate to prior such formulations
[CLZ∗20, GLZ16, VSJ21, NDSRJ20]. We then derive path sam-
pling methods (Section 4) that are analogous to path tracing and
path tracing with next event estimation in primal rendering, but im-
portance sample paths based on our formulation. We show that our
methods have linear complexity, and can be readily combined with
path replay backpropagation [VSJ21] for efficient implementation.
We further enhance our path sampling methods using a multiple
importance sampling (MIS) procedure tailored to our differential
path integral formulation, and a loss-aware pixel-space adaptive
sampling procedure suitable for inverse rendering applications.

We use synthetic experiments (Section 5) to show that our im-
proved methods result in significantly reduced variance when esti-
mating derivatives with respect to BRDF parameters, and accelerated
convergence in related inverse rendering tasks. The code for our
path sampling methods is available on the project website†.

2. Related work

We focus on differentiable rendering with respect to scene parame-
ters that do not induce visibility-driven discontinuities, and in par-
ticular BRDF parameters. Thus, differentiable rendering techniques
that deal with such discontinuities [LADL18, ZMY∗20, XBLZ23,
BLD20, BGL∗22, VSJ22, LHJ19, ZWZ∗19] are outside our scope.

Original general-purpose differentiable rendering implementa-
tions targeted optimization of such parameters, albeit through expen-
sive forward-mode automatic differentiation [NDVZJ19]. Nimier-
David et al. [NDSRJ20] use radiative backpropagation (RB) to
compute derivatives in separate primal and adjoint steps, resulting in
much lower memory cost than naive automatic differentiation. How-
ever, they require a recursive radiance estimate at each scattering

†https://imaging.cs.cmu.edu/path_sampling_differentiable_rendering

event along a light path, resulting in branching and thus quadratic
time complexity. Vicini et al. [VSJ21] achieve linear complexity by
introducing path replay backpropagation (PRB) to the adjoint step.
PRB is analogous to previous score-based estimators for differen-
tiable rendering [ZWDR16, GLZ16, CLZ∗20, KSZ∗15].

Most of these previous techniques reuse path sampling methods
for primal rendering (e.g., path tracing, with or without next event
estimation and MIS [HHM22]). Yet sampling methods tailored for
differentiable rendering can result in significant performance im-
provements [ZSGJ21]. Nimier-David et al. [NDMKJ22] propose
sampling methods for estimating derivatives of volumetric scattering
parameters. Their method requires branching only once per light
path and can be used with PRB to maintain linear complexity. In sur-
face rendering, Belhe et al. [BXB∗24] and Zhang et al. [ZDDZ21]
propose differential and antithetic (resp.) BRDF sampling methods
for estimating BRDF parameter derivatives. However, their methods
require branching at every scattering event and thus have the same
problem as RB—they have quadratic complexity for global illumi-
nation. We introduce a theoretical formulation and sampling method
that allows using the sampling methods of Belhe et al. [BXB∗24]
with global illumination and PRB, maintaining linear complexity.
Our method for achieving linear complexity in surface rendering
bears some similarity to that of Nimier-David et al. [NDMKJ22]
in volume rendering—both use a random differential scattering
event—yet our method completely avoids branching. Additionally,
our formulation allows MIS across entire paths, whereas theirs only
locally at each scattering event. Lastly, our method is orthogonal
to—and can be readily combined with—other techniques for accel-
erating differentiable and inverse rendering, e.g., recursive control
variates [NRN∗23] and caching [HZ22].

3. Differential path space integral

We differentiate the path integral formulation of light transport.
In this formulation, the path space P comprises all light paths x =
x0x1 . . .xN of length N ≥ 1 that connect the camera and light sources.
The pixel value I in the rendered image equals an integral over P:

I =
∫
P

f (x)dx =
∫
P

[ N

∏
i=0

fi(x)
]

dx. (1)

The path measurement contribution f (x) is the product of measure-
ment contributions fi(x) from each path vertex, where

fi(x) :=


We(x0,ωx1,x0)G(x0,x1), if i = 0,
G(xi,xi+1)ρs(xi−1,xi,xi+1), if 0 < i < N,

Le(xN ,ωxN ,xN−1), if i = N,

(2)

and: ωx,y is the unit direction from x to y; We is the sensor impor-
tance; G is the geometry term; ρs is the BRDF; and Le is the emitted
radiance from the light source.

The derivative of the path integral equation (1) with respect to a
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Figure 2: Given a light path, we can compute the contribution or differential contribution from each vertex. (a) Computing the contribution at
each vertex corresponds to computing the integrand of the primal rendering path integral (1). (b) Computing the differential contribution at
one vertex of the path corresponds to computing the integrand of the differential path space integral (7). (c) Computing both the contribution
and the differential contribution at each vertex makes it possible to compute the integrand of the path space integral (4).

scene parameter θ that does not induce discontinuities is

∂θI =
∫
P

∂θ

[ N

∏
i=0

fi(x)
]

dx (3)

⇒

path space integral

∂θI =
∫
P

[ N

∑
i=0

g(x, i; θ)

]
dx , (4)

where we define the differential measurement contribution:

g(x, i; θ) :=
[ N

∏
j=0

f j(x)
]

∂θ fi(x)
fi(x)

= f (x)∂θ fi(x)
fi(x)

. (5)

Each term g(x, i; θ) in the summation (4) is the same as the path
measurement contribution f (x), except at the vertex xi it replaces
fi(x) with its derivative ∂θ fi(x). We call xi the differential vertex.

Additionally, we denote by ∂PN
n the set of all light paths x =

x0x1 . . .xN with differential vertex xn (where n ∈ {0,1, ...,N}). We
define the differential path space as

∂P :=
∞⋃

N=1

N⋃
n=0

∂PN
n . (6)

Then, we can rewrite the path space integral (4) as:

differential path space integral

∂θI =
∫

∂P
g(x,n; θ)dx . (7)

We visualize the formulations of Equation (4) and Equation (7) in
Figure 2 and will alternate between them as we explain previous
work and our method. Our sampling method (Section 4.1) samples
paths from the differential path space of Equation (7), but estimates
the integrand of the path space integral in Equation (4).

Inverse rendering optimization. Given a loss function L(I(θ), Ĩ)
that compares rendered images I(θ) with reference images Ĩ, we
want to solve the optimization problem:

min
θ

L(I(θ), Ĩ) (8)

using gradient-based optimization. To do so, we need to estimate the

gradient of the loss function with respect to the parameter θ. We can
express this gradient as an integral over the differential path space:

∂θL= ∂IL·∂θI (9)

= ∂IL·
∫

∂P
g(x,n; θ)dx (10)

=
∫

∂P
∂IL·g(x,n; θ)dx. (11)

The image gradient ∂θI in Equation (9) is a forward-mode derivative
that captures how an infinitesimal perturbation of a scene parameter
changes the rendered image. Although forward-mode derivatives
are useful for visualization, they are impractical to compute during
inverse rendering [NDSRJ20]. Instead, we directly compute the
reverse-mode derivative ∂θL, which captures how an infinitesimal
change in the scene parameter changes the image loss.

Differentiable rendering techniques typically require a separate
rendering pass to estimate the gradient ∂IL. (also called adjoint
radiance [NDSRJ20]). This estimate must be uncorrelated with
the image gradient ∂θI in order for the final loss gradient ∂θL to
be unbiased [ALKN19, GZB∗13]. Including ∂IL in the integral
(11) [CSN∗23] creates importance sampling opportunities unique
to differentiable rendering [CSN∗23]; these opportunities include
sampling pixels based on their adjoint radiance (Section 4.2).

3.1. Relationship to previous formulations

Our formulation of the differential path integral closely relates to,
and helps explain and contrast, previous works, as we explain below.

Score function estimator. Previous work [KSZ∗15, GLZ16,
ZWDR16, CLZ∗20, STBLG20] describes a variant of our path inte-
gral formulation without the differential path space. For example,
Equation (5) from Che et al. [CLZ∗20] describes the same integral
as ours in terms of a path score function S:

∂θI =
∫
P

f (x)S(x)dx, (12)

S(x) :=
N

∑
i=0

∂θ fi(x)
fi(x)

. (13)

This equation is equivalent to our Equations (4) and (5) when ex-
panded. The differential path integral is usually estimated using

© 2024 The Authors.
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Monte Carlo integration, by sampling M paths from a distribution p,
and summing the integrands f (xm)S(xm) for each path xm:〈

∂θI
〉

:=
1
M

M

∑
m=1

f (xm)S(xm)

p(xm)
. (14)

Computing the integrand f (xm)S(xm) for a single path from the path
space P produces the same result as: taking all N paths from the
differential path space ∂P that have identical vertices but varying
locations of the differential vertex, and summing their differential
measurement contributions to obtain ∑

N
i=0 g(x, i; θ). For the esti-

mator of Equation (14) to have low variance, the distribution p(x)
should be a good approximation of the integrand. The standard
approach for surface rendering is to sample each path vertex propor-
tional to the local (cosine-weighted) BRDF; this is a good strategy
for primal rendering, but not necessarily for differentiable rendering,
because it only targets the f (xm) term and not the S(xm) term of the
integrand. Our sampling method in Section 4 corrects this issue.

Radiative backpropagation. We show in Appendix A that our path
integral formulation is equivalent to the recursive formulation based
on the rendering equation that Nimier-David et al. [NDSRJ20] and
Vicini et al. [VSJ21] use to formulate RB and PRB, respectively.
For path vertices xi with 0 < i < N, the rendering equation is

Lo(xi,ωxi,xi−1) =
∫
S2

fi(x)Li(xi,ωxi+1,xi)dωxi+1,xi (15)

and its derivative is

∂θLo(xi,ωxi,xi−1) =
∫
S2

[
∂θ fi(x)Li(xi,ωxi+1,xi)

+ fi(x)∂θLi(xi,ωxi+1,xi)
]
dωxi+1,xi , (16)

where Lo and Li are outgoing and incident radiance, and we assume
that light is only emitted at the end of a path.

RB estimates the loss gradient ∂θL by first computing the adjoint
radiance ∂IL and then backpropagating it through Equation (16)
with recursive Monte Carlo sampling. At each path vertex, RB
computes the differential measurement contribution ∂θ fi and the
measurement contribution fi, then combines them with recursive
estimates for the incident radiance Li and its gradient ∂θLi (resp.).
Each recursive invocation is equivalent to “unrolling” one vertex
in our path integral formulation. The disadvantage of RB is that it
requires two separate recursive estimates at each intermediate path
vertex to estimate both Li and ∂θLi, resulting in time complexity
that is quadratic in the number of path vertices.

Path replay backpropagation. Though Vicini et al. [VSJ21] formu-
late PRB in terms of the recursive rendering equation, it is easier to
explain in terms of a path integral that includes the adjoint radiance:

∂θL=
∫
P

∂IL·
[ N

∑
i=0

g(x, i; θ)

]
dx (17)

=
∫
P

N

∑
i=0

[
∂IL· f (x)∂θ fi(x)

fi(x)

]
dx. (18)

This integral is equivalent to Equation (11) but integrates over the
path space instead of the differential path space. PRB estimates
this integral by performing three rendering passes. The first pass
estimates the adjoint radiance ∂IL. The second pass, which is uncor-
related with the first, renders the image I again to precompute path

measurement contributions f (x) for the third pass. The third pass
replays the same paths as the second pass and computes the product
∂IL· f (x) · ∂θ fi(x)/fi(x) from Equation (18) at each path vertex xi. At
the end of each path, the sum of these products forms the estimate
of the loss gradient. By introducing an additional rendering pass to
precompute the path measurement contributions, PRB avoids the
double recursion of RB and achieves linear time complexity.

4. Methods

We now present our new sampling methods for differentiable ren-
dering, which include importance sampling of paths from the differ-
ential path space (Section 4.1) and importance sampling of pixels
using the adjoint radiance (Section 4.2).

4.1. Sampling from the differential path space

Using our formulation in Equation (7), we estimate the differen-
tial path integral by sampling light paths from the differential path
space ∂P . This sampling method is tailored for derivative estima-
tion because the resulting paths are sampled proportionally to their
differential measurement contribution g, as opposed to the standard
measurement contribution f in primal rendering.

Given a path x with differential vertex xn from the differential
path space, we can compute not only its differential measurement
contribution g(x,n; θ), but also the differential measurement contri-
bution of all corresponding paths from the normal path space. We
thus compute the sum of all these contributions, that is, the integrand
∑

N
i=0 g(x, i; θ) of the path space integral (4), despite sampling paths

from the differential path space of Equation (7).

To sample a light path from the differential path space ∂P , we
need to determine which vertex on the path is the differential vertex.
We assume that vertices at the camera and light source do not de-
pend on the scene parameter being optimized, so only intermediate
vertices may be chosen as the differential vertex.

Local sampling of differential vertex. Ideally, we would like to
sample the differential vertex based on the expected differential mea-
surement contribution of a path, which depends on the scene’s global
illumination. However, there is no easy way to predetermine this
value, so we instead make local sampling decisions. This is similar
to Russian roulette techniques for stochastically terminating paths:
even though there are more optimal methods for Russian roulette
that consider the expected contribution of light paths, they require
iterative rendering processes [VK16, RGH∗22], thus in practice
Russian roulette is implemented using only local sampling.

In our setting, at each intermediate vertex xi, we first randomly
decide with probability q whether the vertex will be the differential
one. If it is, then we sample xi+1 from the differential probability
density p∂ f (xi), weigh its contribution by 1/p∂ f (xi)q, and set q = 0
for all subsequent vertices on the path (so that there is only one
differential vertex per path). Otherwise, we sample xi+1 using the
standard probability density p f (xi) and weigh its contribution by
1/p f (xi)(1−q). We write p f (xi) and p∂ f (xi) as shorthand for the sam-
pling probabilities p f (xi−1xi xi+1) and p∂ f (xi−1xi xi+1), which we
use to determine the location of vertex xi+1.

© 2024 The Authors.
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Figure 3: To incorporate multiple importance sampling (MIS) and next event estimation (NEE), we vary the location of the differential vertex
along a given path, as well as along NEE paths where the last vertex is sampled directly from the scene’s emitters. Purple lines represent
paths formed using BRDF or differential BRDF sampling, and orange lines represent paths formed using emitter sampling. Dashed lines
represent sampling methods that are not actually sampled but are included in MIS for NEE. We obtain the probability of generating any of
the paths shown by multiplying the probabilities labeled at each vertex of the path. Summing all of these path probabilities in (a) gives the
mixture probability from Equation (24). Summing the path probabilities for the full path x0x1x2x3 in (b) gives the mixture probability from
Equation (41), and summing them for either of the NEE paths (x0x1xe,1 or x0x1x2xe,2) in (b) gives the mixture probability from Equation (42).

When sampling the differential vertex, we want to use a proba-
bility density p∂ f that is proportional to the derivative of the BRDF.
Unlike the BRDF, however, the differential BRDF can have negative
values, and simply sampling proportionally to its absolute value
may result in high sign variance. Instead, we importance sample
differential BRDFs by applying the single-signed decompositions
from Belhe et al. [BXB∗24]. These decompositions remove sign
variance by separately sampling the positive and negative compo-
nents of a function and then combining their contributions. For some
of our experiments, we use the positivization technique by Zeltner
et al. [ZSGJ21] to sample derivatives of microfacet BRDFs with
respect to their roughness parameter. Whereas Zeltner et al. use
antithetic sampling to generate samples from both the positive and
negative components of the differential BRDF, we randomly choose
one of the two components to sample the differential vertex from.

The probability q is a hyperparameter that influences how early
we sample the differential vertex along each path. We experimented
with different values of q (Section 5) and decided to use q = 0.5.

Multiple importance sampling. After we have sampled an entire
path with a differential vertex xn, we can vary the location of the
differential vertex to obtain other ways we could have sampled the
same path (Figure 3a), thus creating an opportunity to incorporate
MIS [VG95b]. Similar to how bidirectional path tracing [VG95a]

uses MIS to combine sampling methods with varying camera and
light subpaths, we use MIS to combine sampling methods that vary
the location of the differential vertex along the path. The probability
of sampling a path x = x0x1 . . .xN with differential vertex xi is:

p(x, i) =
[N−1

∏
j=0

p f (x j)

]
p∂ f (xi)

p f (xi)
(1−q)i−1q. (19)

It is also possible to sample the path without a differential vertex,
an event that occurs with probability:

p(x) =
[N−1

∏
j=0

p f (x j)

]
(1−q)N−1. (20)

In total, there are N different ways in which the path could have
been generated. Assuming we actually sampled the path with xn as
the differential vertex, the balance-heuristic MIS weight is

w(x,n) = p(x,n)[
N−1
∑

i=1
p(x, i)

]
+ p(x)

. (21)

We estimate the path integral of Equation (4) by sampling M paths
{xm}M

m=1 from the differential path space in Equation (7) and com-

© 2024 The Authors.
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Algorithm 1 Path replay backpropagation with differential sampling
and multiple importance sampling.

1: function SAMPLEPATH(ray)
2: L = 0, β = 1, w1 = 0, w2 = 1, sampled_∂x = FALSE

3: for i = 0 to N −1 do
4: ▷ Accumulate radiance
5: L += β ·Le(. . .) / (w1 +w2)
6: ▷ Sample the BRDF or differential BRDF
7: if !sampled_∂x and RAND()< q then
8: ω

′, f = SAMPLE_∂BRDF(. . .)
9: sampled_∂x = TRUE

10: else
11: ω

′, f = SAMPLE_BRDF(. . .)
12: ▷ Update throughput and values for MIS
13: β ∗= f / p f (ω

′, . . .)
14: w1 += w2 ·q · p∂ f (ω

′, . . .) / p f (ω
′, . . .)

15: w2 ∗= 1−q
16: return L

17: function SAMPLEPATHADJOINT(ray, L, δL)
18: β = 1, w1 = 0, w2 = 1, sampled_∂x = FALSE

19: for i = 0 to N −1 do
20: ▷ Reconstruct incident radiance
21: L -= β ·Le(. . .) / (w1 +w2)
22: ▷ Sample the BRDF or differential BRDF
23: if !sampled_∂x and RAND()< q then
24: ω

′, f = SAMPLE_∂BRDF(. . .)
25: sampled_∂x = TRUE

26: else
27: ω

′, f = SAMPLE_BRDF(. . .)
28: ▷ Update gradient, throughput, and values for MIS
29: δθ += BACKWARDGRAD( f , δL ·L/ f )
30: β ∗= f / p f (ω

′, . . .)
31: w1 += w2 ·q · p∂ f (ω

′, . . .) / p f (ω
′, . . .)

32: w2 ∗= 1−q
33: return δθ

bining their weighted contributions:

〈
∂θI

〉MIS :=
1
M

M

∑
m=1

w(xm,nm)

Nm

∑
i=0

g(xm, i; θ)

p(xm,nm)
(22)

=
1
M

M

∑
m=1

Nm

∑
i=0

g(xm, i; θ)

pmix(xm)
, (23)

where we have

pmix(x) =
[ N

∏
i=0

p f (xi)

]

·
[[N−1

∑
i=1

p∂ f (xi)

p f (xi)
(1−q)i−1q

]
︸ ︷︷ ︸

w1

+(1−q)N−1︸ ︷︷ ︸
w2

]
. (24)

Algorithm 2 Inverse rendering with adaptive sampling.
1: while not converged do
2: I = RENDER(. . .) ▷ 1st pass
3: L, ∂IL = LOSS(I, Ĩ)
4: pixelWeights = |∂IL| / ∑ |∂IL|
5: rays = SAMPLERAYS(pixelWeights)
6: I′ = SAMPLEPATH(rays) ▷ 2nd pass
7: ∂θL = SAMPLEPATHADJOINT(rays, I′, ∂IL) ▷ 3rd pass
8: GRADIENTSTEP(∂θL)

In Equation (22), the probability p(xm,nm) with which we sample
each path cancels out the numerator of the MIS weight (21), leaving
the denominator of the estimator as a mixture probability pmix(xm)
that combines all possible ways we could have generated the path.

Next event estimation. Integrating our differential sampling method
with next event estimation (NEE) is straightfoward, with the only
complication being the derivation of the local MIS weight combining
area and BRDF sampling. This complication is due to the fact that
we have to consider also varying the location of the differential
vertex along paths where the last vertex is sampled directly from
the scene’s emitters (Figure 3b). We derive the MIS weights for
differential sampling with NEE in Appendix B.

Efficient implementation. As Algorithm 1 shows, we implement
our sampling method using a simple modification to PRB, which
outputs an estimate of differential radiance based on Equation (18).
The second and third rendering passes in PRB (one primal, one
adjoint) must sample the same light paths, so we use our differential
sampling method for both passes. We include MIS by updating the
values w1 and w2 (which form part of the mixture probability from
Equation (24)) as we sample each path vertex, and we use them to
weigh the radiance accumulated along the path. The product of den-
sities p f in the mixture probability (24) is included in the throughput
term β. In practice, we also integrate our sampling method with next
event estimation, which we omit in the pseudocode for simplicity.

4.2. Adaptive pixel sampling

In addition to importance sampling an intermediate differential ver-
tex for each path, we can also importance sample the pixel location
of its first vertex using the adjoint radiance ∂IL: the adjoint radiance
plays in Equation (11) a role analogous to the sensor importance
in the standard path integral. After computing ∂IL from the first
rendering pass in each optimization iteration, we compute a weight
for each pixel that is proportional to the value of |∂IL| at that pixel.
We then use these weights to sample the sensor vertices of paths
for the second and third rendering passes, which evaluate the loss
gradient ∂θL. Algorithm 2 shows pseudocode for this procedure.

The adjoint radiance ∂IL has negative values, and sampling pro-
portional to its absolute value may produce sign variance. We can
remove this variance by applying positivization [BXB∗24]—that is,
sample the positive and negative components of ∂IL separately and
then combine their estimates of the loss gradient ∂θL. In practice,
we found that positivization had little effect on estimation variance.
We thus avoid complicating implementation and use the simpler
method of sampling proportionally to |∂IL|.

© 2024 The Authors.
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Figure 4: Image gradients consist of contributions from multiple bounces of global illumination. We visualize the contributions of paths where
the differential vertex occurs at the first (a), second (b), or third (c) intermediate vertex.

5. Experiments

We implement our methods in Mitsuba 3 [JSR∗22] and perform
experiments to evaluate the impact of several hyperparameters of
our proposed methods (Section 5.1). We evaluate our methods on
BRDF optimization tasks by comparing their gradient variance
(Section 5.2) and inverse rendering performance (Section 5.3) with
standard path tracing that uses primal BRDF sampling (with and
without NEE). All our comparisons are equal-time comparisons. We
provide our code on the project website.

Figure 4 shows scenes we use for our experiments. The birds-
eye-view bowl, sphere in a Cornell box, and pans use isotropic
Beckmann microfacet BRDFs; we compute gradients with respect
to the roughness of the microfacet distribution. The dragon and the
living room vases use a mixture BRDF with diffuse and specular
(isotropic GGX microfacet) lobes; we compute gradients with re-
spect to the mixture weight. All scenes use area lights and contain
significant interreflections. To highlight the importance of global
illumination for differential light transport, the figure shows sep-

arately image gradient contributions from paths with differential
vertex at the first, second, or third intermediate vertex.

5.1. Setting hyperparameters

Probability of sampling differentially. We experiment with the
hyperparameter q (Section 4.1) that influences how early the differ-
ential vertex is sampled. Intuitively, we want the differential vertex
to occur early (higher value of q) and thus have a large weight in the
path contribution. However, we also want to consider later occur-
rences of the differential vertex to include differential contributions
from indirect lighting. We find that q= 0.5 strikes a balance between
the two and generally leads to the lowest variance (Figure 5).

Sample budget for adaptive sampling. In Table 1, we experiment
with the proportion of samples used for evaluating the primal im-
age (first rendering pass) versus the loss gradient (second and third
rendering passes). We estimate the variance of loss gradients as
follows: we set the parameter to some initial value different from
the reference, render the primal image to compute per-pixel sam-

© 2024 The Authors.
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Figure 5: We vary the value of the hyperparameter q and visualize
the per-pixel variance of image gradients estimated using differen-
tial sampling with NEE and MIS. Numbers represent ratios of mean
variance with the last column, lower is better.

pling weights, use these weights to estimate the loss gradient 100
times, and then compute the sample variance of the 100 estimates.
Because we use the primal image to compute the per-pixel weights
for adaptive sampling, using more samples for the first rendering
pass produces better sampling weights. We find that the variance of
loss gradients is lowest when we allocate 75% of the sample budget
for the primal phase and 25% of the sample budget for the adjoint
phase; we use this ratio for the rest of our experiments.

5.2. Variance reduction

Variance of image gradients. We evaluate the impact of differential
sampling, MIS, and NEE on the per-pixel variance of image gradi-
ents in Figure 6. We estimate this variance by rendering the image
gradient 100 times and computing the sample variance for each pixel
across the 100 estimates. With all features combined, our method
yields significant variance reduction compared to BRDF sampling—
with NEE, our method reduces variance to 0.69−−0.84× for the
microfacet BRDF, and 0.0048−−0.042× for the mixture BRDF.
We also estimate variance for microfacet BRDFs with varying rough-
ness values in Figure 7. We find that our method leads to greater
variance reduction for more specular (lower roughness) BRDFs.

Variance of loss gradients. To evaluate our adaptive sampling
method, we estimate the variance of loss gradients and report them
in Table 2. The experiment setup is the same as in Table 1 except

Table 1: We report variance of loss gradients with varying sample
budgets for the primal image versus the loss gradient, lower is better.
We estimate gradients using adaptive sampling with differential
sampling, MIS, and NEE. Sample ratios are primal : adjoint.

Scene 1 : 3 2 : 2 3 : 1

BOWL 6.18 3.79 3.49
SPHERE 25.6 13.1 8.62
PANS 1.01 0.967 0.412
DRAGON 0.0171 0.0141 0.0109
VASES 2.29×10−5 2.54×10−5 1.31×10−5

Table 2: We report variance of loss gradients with and without
adaptive sampling and differential sampling, lower is better. We
estimate the gradients with MIS and NEE.

Scene BRDF BRDF +
adaptive

Differential +
adaptive

BOWL 13.6 4.34 3.49
SPHERE 172 51.7 8.62
PANS 4.32 0.487 0.412
DRAGON 4.76 0.633 0.0109
VASES 0.00164 0.000193 1.31×10−5

that we do not compute sampling weights for the baseline method
(BRDF sampling), and we use a consistent sample budget ratio of
3:1. Figure 8 shows the per-pixel weights. We find that our combined
differential and adaptive sampling method reduces variance by 1–2
orders of magnitude for the five scenes that tested.

5.3. Inverse rendering

Our method’s improvement in gradient estimation leads to improved
inverse rendering performance. In Figure 1 and Figure 9b, we op-
timize the mixture weight of a BRDF with diffuse and specular
lobes. In Figure 9a, we optimize the roughness of an isotropic Beck-
mann microfacet BRDF. For all inverse rendering results, we render
the primal image using 3–6 samples per pixel, and we estimate
the loss gradient using 1–2 samples per pixel. We use the Adam
optimizer [KB14] with the image’s relative mean square error as
the loss function. Our method improves convergence in all cases,
although the improvement varies for different BRDFs. For example,
the “Dragon” scene shows greater improvement with the mixture
BRDF (Figure 1) than with the microfacet BRDF (Figure 9a). We
can understand this difference, which is consistent with previous
work [BXB∗24], as follows: improvements from our method are
more significant for BRDFs whose differential and primal probabil-
ity density functions are very different. If the two are similar, then
our method gives similar results as path tracing with primal BRDF
sampling. In our examples, the differential versus primal difference
is larger for the mixture BRDF than for the microfacet BRDF.

6. Conclusion

We introduced methods that importance sample paths for differen-
tiable rendering of scene parameters that do not induce visibility-
driven discontinuities. Our methods incorporate recent differential

© 2024 The Authors.
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Figure 6: We visualize the per-pixel variance of image gradients with and without differential sampling, multiple importance sampling (MIS),
and next event estimation (NEE). Numbers represent ratios of mean variance between our method and BRDF sampling, lower is better.

BRDF sampling routines [ZSGJ21,BXB∗24] with a new differential
path integral formulation, to achieve linear complexity and enable
efficient implementation through PRB. Additionally, our methods
incorporate new MIS and adaptive sampling procedures tailored for
differentiable and inverse rendering applications.

Our paper takes only first steps towards developing path sampling
methods for differentiable rendering. Thus, our methods are still
limited in a few important ways, all of which suggest directions
for future exploration. First, we have demonstrated our methods
only for differentiation and optimization with respect to BRDF
parameters, though our theory should apply for other parameters that
do not induce visibility-driven discontinuities, e.g., local shading
and normals, texture-space parameters [NDDJK21], and scattering
materials [GLZ16,CLZ∗20]. The latter case would require handling
derivatives of transmittance terms [NDMKJ22] and null-scattering
path integral formulations [MGJ19].

Second, our methods sample paths with high derivative contri-

butions for a specific scene parameter, but such paths are typically
suboptimal when computing derivatives for other scene parameters.
Making our methods practical for inverse rendering problems that
optimize more than one scene parameter could be done using ideas
from spectral sampling, e.g., using a “hero” parameter [WND∗14].

Third, our methods are specific to parameters that do not intro-
duce visibility-driven discontinuities. Developing path sampling
techniques for parameters that create such discontinuities, and thus
necessitate computing boundary integrals [ZMY∗20], remains a
significant challenge and fascinating future research direction.
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Figure 9: We perform inverse rendering to optimize a microfacet BRDF (a) and a mixture BRDF (b). Our path sampling methods result in
better convergence than BRDF sampling. We use only the relative image loss for optimization, but show also the parameter loss to assess
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Appendix A: Equivalence of recursive and path-based
formulations of differential light transport.

The value I of each pixel in the rendered image equals:

I =
∫
S2

We(x0,ωx1,x0)G(x0,x1)Li(x0,ωx1,x0)dωx1,x0 (25)

=
∫
S2

f0(x)Li(x0,ωx1,x0)dωx1,x0 . (26)

For all intermediate vertices on a path, we have:

Li(xi,ωxi+1,xi) = Lo(xi+1,ωxi+1,xi), (27)

and at the end of the path, we have

Lo(xN ,ωxN ,xN−1) = Le(xN ,ωxN ,xN−1) = fN(x). (28)

We differentiate Equation (26) and recursively expand using the
rendering equation (15), its derivative (16), and Equations (27)–(28):

∂θI = ∂θ

[∫
S2

f0(x)Li(x0,ωx1,x0)dωx1,x0

]
(29)

=
∫
S2

∂θ

[
f0(x)Lo(x1,ωx1,x0)

]
dωx1,x0 (30)

=
∫
S2

[
∂θ f0(x)Lo(x1,ωx1,x0)+ f0(x)∂θLo(x1,ωx1,x0)

]
dωx1,x0

(31)

=
∫
S2

[
∂θ f0(x)

∫
S2

f1(x)Li(x1,ωx2,x1)dωx2,x1

+ f0(x)
∫
S2

[
∂θ f1(x)Li(x1,ωx2,x1)

+ f1(x)∂θLi(x1,ωx2,x1)
]
dωx2,x1

]
dωx1,x0 (32)

=
∫
S2

∫
S2

[
∂θ f0(x) f1(x)Lo(x2,ωx2,x1)

+ f0(x)∂θ f1(x)Lo(x2,ωx2,x1)

+ f0(x) f1(x)∂θLo(x2,ωx2,x1)
]
dωx2,x1 dωx1,x0 (33)

= . . . (34)

=
∫
S2

. . .
∫
S2

[
∂θ f0(x)

[ N

∏
i=1

fi(x)
]
+ f0(x)∂θ f1(x)

[ N

∏
i=2

fi(x)
]

+ . . .+

[N−1

∏
i=0

fi(x)
]

∂θ fN(x)
]

dωxN ,xN−1 . . .dωx1,x0 (35)

=
∫
P

[ N

∑
i=0

g(x, i; θ)

]
dx. (36)

This result is the same as the path space integral (4).

Appendix B: Derivation of multiple importance sampling weights
for next event estimation.

For a path x0x1 . . .x jxe, j where the first j+1 vertices are from the
path x but the last vertex xe, j is sampled from the emitters with
probability pe(x jxe, j), the probability of generating the path with
differential vertex xi (where 1 ≤ i < j) is:

pnee(x, x jxe, j, i)=
[ j−1

∏
k=0

p f (xk)

]
pe(x jxe, j)

p∂ f (xi)

p f (xi)
(1−q)i−1q. (37)

Generating this path without a differential vertex has probability:

pnee(x, x jxe, j) =

[ j−1

∏
k=0

p f (xk)

]
pe(x jxe, j)(1−q) j−1. (38)

We could also generate the paths above using BRDF or differential
sampling for xe, j , which would result in the following probabilities:

p(x, x jxe, j, i)=

pnee(x, x jxe, j, i)
p f (x j−1x jxe, j)

pe(x jxe, j)
, if 1≤ i < j,

pnee(x, x jxe, j)
p∂ f (x j−1x jxe, j)

pe(x jxe, j)
, if i = j,

(39)

p(x, x jxe, j)= pnee(x, x jxe, j)
p f (x j−1x jxe, j)

pe(x jxe, j)
. (40)
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By considering both BRDF sampling and emitter sampling with
varying locations of the differential vertex, we obtain the following
mixture probabilities for generating the paths x and x0x1 . . .x jxe, j:

pmix(x) = p(x)+
[N−1

∑
i=1

p(x, i)
]
+ pnee(x,xN−1xN)

+

[N−1

∑
i=1

pnee(x,xN−1xN , i)
]
, (41)

pmix(x, x jxe, j) = p(x, x jxe, j)+

[ j

∑
i=1

p(x, x jxe, j, i)
]
+ pnee(x, x jxe, j)

+

[ j−1

∑
i=1

pnee(x, x jxe, j, i)
]
.. (42)

The differential measurement contribution of the path x0x1 . . .x jxe, j
with differential vertex xi is the same as g(x, i; θ) from Equation (5),
except that we need to adjust the contributions at the end of the path:

g(x, x jxe, j, i; θ) :−
[ j−1

∏
k=1

fk(x)
]

G(x j,xe, j)ρs(x j−1,x j,xe, j)

·Le(xe, j)
∂θ fi(x)

fi(x)
. (43)

The final estimator for the differential path integral with MIS and
NEE combines contributions from the standard path x and paths{

x0x1 . . .x jxe, j
}N−1

j=1 that are directly connected to an emitter:

〈
∂θI

〉NEE :=
1
M

M

∑
m=1

[ Nm

∑
i=0

g(xm, i; θ)

pmix(xm)

+
Nm−1

∑
j=1

j
∑

i=0
g(xm, xm

j xm
e, j, i; θ)

pmix(xm, xm
j xm

e, j)

]
. (44)
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