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Prior work: Handling discontinuities

[Xu et al. 2023]
[Zhang et al. 2020]

[Li et al. 2018]
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Fig. 1. We develop a general-purpose differentiable renderer that is capable of handling general light transp,
with respect to scene parameters, such as camera pose (c), material parameters (d), mesh vertex positiont
computed from the output image. (c) shows the per-pixel gradient contribution of the L! difference with r
shows the gradient with respect to the red channel of table albedo. (e) shows the gradient with respect to the
As one of our applications, we use our gradient to perform an inverse rendering task by matching a real pha
(a) with a manual geometric recreation of the scene. The scene contains a fisheye camera with strong indirec
optimize for camera pose, material parameters, and light source intensity. Despite slight inaccuracies due
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Fig. 1. We introduce path-space differentiable rendering, a new theoretical framework to estimate deriv
to arbitrary scene parameters (e.g., material properties and object geometries). By directly differentiating f
integral framework, enabling the design of new unbiased Monte Carlo methods capable of efficiently estir
geometry and light transport effects. This example shows a dinning room scene lit by the sun from outside the
derivative image with respect to the vertical location of the sun. (Please use Adobe Acrobat to view the teas

method generates image (f) that almost matches the photo reference.

Gradient-based methods are becoming increasingly important for computer
graphics, machine learning, and computer vision. The ability to compute
gradients is crucial to optimization, inverse problems, and deep learning. In
rendering, the gradient is required with respect to variables such as camera
parameters, light sources, scene geometry, or material appearance. However,
computing the gradient of rendering is challenging because the rendering
integral includes visibility terms that are not differentiable. Previous work on
differentiable rendering has focused on approximate solutions. They often
do not handle secondary effects such as shadows or global illumination, or
they do not provide the gradient with respect to variables other than pixel
coordinates.

We introduce a general-purpose differentiable ray tracer, which, to our
knowledge, is the first comprehensive solution that is able to compute deriva-
tives of scalar functions over a rendered image with respect to arbitrary scene
parameters such as camera pose, scene geometry, materials, and lighting
parameters. The key to our method is a novel edge sampling algorithm that
directly samples the Dirac delta functions introduced by the derivatives of
the discontinuous integrand. We also develop efficient importance sampling
methods based on spatial hierarchies. Our method can generate gradients in
times running from seconds to minutes depending on scene complexity and
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Physics-based differentiable rendering, the estimation of derivatives of ra-
diometric measures with respect to arbitrary scene parameters, has a diverse
array of applications from solving analysis-by-synthesis problems to train-
ing machine learning pipelines incorporating forward rendering processes.
Unfortunately, general-purpose differentiable rendering remains challenging
due to the lack of efficient estimators as well as the need to identify and
handle complex discontinuities such as visibility boundaries.

In this paper, we show how path integrals can be differentiated with
respect to arbitrary differentiable changes of a scene. We provide a detailed
theoretical analysis of this process and establish new differentiable rendering
formulations based on the resulting differential path integrals. Our path-
space differentiable rendering formulation allows the design of new Monte
Carlo estimators that offer significantly better efficiency than state-of-the-art
methods in handling complex geometric discontinuities and light transport
phenomena such as caustics.

Authors’ addresses: Cheng Zhang, University of California, Irvine, chengz20@uci.edu;
Bailey Miller, Carnegie Mellon University, baileymark.miller@gmail.com; Kai Yan,
University of California, Irvine, kyan8@uci.edu; Ioannis Gkioulekas, Carnegie Mellon
University, igkioule@andrew.cmu.edu; Shuang Zhao, University of California, Irvine,
shz@ics.uci.edu.
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Fig. 1. We introduce the formulation of reparameterized differential path integrals for physics-based differentiable rendering. Our formulation can be efficiently
estimated using advanced methods like bidirectional path tracing without requiring explicit sampling of discontinuity boundaries. In this example, we show
several glass and metal chess pieces lit by an area light. The derivatives (obtained with our bidirectional estimator) are w.r.t. the position of the light.

Physics-based differentiable rendering is becoming increasingly crucial for
tasks in inverse rendering and machine learning pipelines. To address dis-
continuities caused by geometric boundaries and occlusion, two classes of
methods have been proposed: 1) the edge-sampling methods that directly
sample light paths at the scene discontinuity boundaries, which require
nontrivial data structures and precomputation to select the edges, and 2)
the reparameterization methods that avoid discontinuity sampling but are
currently limited to hemispherical integrals and unidirectional path tracing.

We introduce a new mathematical formulation that enjoys the benefits
of both classes of methods. Unlike previous reparameterization work that
focused on hemispherical integral, we derive the reparameterization in the
path space. As a result, to estimate derivatives using our formulation, we can
apply advanced Monte Carlo rendering methods, such as bidirectional path
tracing, while avoiding explicit sampling of discontinuity boundaries. We
show differentiable rendering and inverse rendering results to demonstrate
the effectiveness of our method.
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1 INTRODUCTION

Physics-based differentiable rendering is the task of numerically
computing derivatives of radiometric measurements with respect to
arbitrary scene parameters such as object shapes and optical prop-
erties. Such scene derivatives not only can enable gradient-based
optimization for solving inverse rendering problems (e.g., [Azinovi¢
et al. 2019; Luan et al. 2021]), but also are a key ingredient for inte-
grating physics-based rendering into probabilistic-inferences and
machine-learning pipelines (e.g., [Che et al. 2020]).

A key challenge for developing general-purpose differentiable
rendering techniques is the differentiation with respect to scene
geometries (such as the pose of an object or the position of a mesh
vertex). This is because such geometries affect visibility and, if not
handled properly, can lead to severely biased derivative estimates—
which has been demonstrated by many prior works (e.g., [Li et al.
2018; Loubet et al. 2019; Zhang et al. 2019]).

To address this problem, two categories of techniques have been
introduced. The first category directly samples discontinuity bound-
aries [Li et al. 2018; Zhang et al. 2019, 2020, 2021b], and the state of
the art is Zhang et al.’s [2020] differential path integral formulation
which tracks and handles discontinuities at the path level. The sec-
ond category, on the other hand, reparameterizes rendering integrals
to avoid explicit handling of discontinuities altogether [Loubet et al.
2019; Bangaru et al. 2020], with the state of the art being Bangaru
et al.’s [2020] warped-area reparameterization.

In practice, Zhang et al’s differential path integrals offer the
flexibility to develop advanced Monte Carlo estimators, such as
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Fig. 1. Inverse reconstruction of a scene with complex lighting and heterogeneous structure. Given the initialization (a), we seek to reconstruct the target
(b) involving normal-mapped surface variation and roughness changes on the fish sculpture, and the addition of a plant based on triangular geometry.
Using three rendered views of the target, we apply our proposed path replay backpropagation (PRB) (c) and a linear-time version of radiative backpropagation
(RB) [Nimier-David et al. 2020] (d) to reconstruct the modified sculpture and a heterogeneous medium approximating the plant. Our method computes
unbiased gradients and is able to converge to a higher-quality solution at equal time. The second and third rows show insets and PRB’s convergence over time.

Differentiable physically-based rendering has become an indispensable tool
for solving inverse problems involving light. Most applications in this area
jointly optimize a large set of scene parameters to minimize an objective
function, in which case reverse-mode differentiation is the method of choice
for obtaining parameter gradients.

However, existing techniques that perform the necessary differentiation
step suffer from either statistical bias or a prohibitive cost in terms of memory
and computation time. For example, standard techniques for automatic
differentiation based on program transformation or Wengert tapes lead
to impracticably large memory usage when applied to physically-based
rendering algorithms. A recently proposed adjoint method by Nimier-David
et al. [2020] reduces this to a constant memory footprint, but the computation
time for unbiased gradient estimates then becomes quadratic in the number

of scattering events along a light path. This is problematic when the scene
contains highly scattering materials like participating media.

In this paper, we propose a new unbiased backpropagation algorithm
for rendering that only requires constant memory, and whose computation
time is linear in the number of scattering events (i.e., just like path tracing).
Our approach builds on the invertibility of the local Jacobian at scattering
interactions to recover the various quantities needed for reverse-mode dif-
ferentiation. Our method also extends to specular materials such as smooth
dielectrics and conductors that cannot be handled by prior work.

CCS Concepts: « Computing methodologies — Rendering.

Additional Key Words and Phrases: differentiable rendering, inverse render-
ing, radiative backpropagation, gradient-based optimization
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® Differentiable rendering algorithm with
constant memory, linear time complexity
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Fig. 1. Differentiable rendering of a scene featuring specular interreflection between metallic surfaces of varying roughness. We differentiate the image with
respect to the combined roughness of all objects, which produces the gradients shown in the first column with insets. A disconcertingly large number of
differential estimators can solve this problem, albeit with drastically different statistical efficiency: the following four columns highlight the standard deviation
of emitter sampling and three material-based strategies. An overview of the exhaustive set of combinations (21 methods) and results for an additional four
estimators are provided in the supplemental material, which also contains uncropped images. The objective of our work is to provide intuition on how to

navigate the large design space of differential Monte Carlo estimators.

Physically based differentiable rendering algorithms propagate derivatives
through realistic light transport simulations and have applications in di-
verse areas including inverse reconstruction and machine learning. Recent
progress has led to unbiased methods that can simultaneously compute
derivatives with respect to millions of parameters. At the same time, ele-
mentary properties of these methods remain poorly understood.

Current algorithms for differentiable rendering are constructed by me-
chanically differentiating a given primal algorithm. While convenient, such
an approach is simplistic because it leaves no room for improvement. Differ-
entiation produces major changes in the integrals that occur throughout the
rendering process, which indicates that the primal and differential algorithms
should be decoupled so that the latter can suitably adapt.

Authors’ addresses: Tizian Zeltner, tizian zeltner@epfl.ch, Ecole Polytechnique Fédérale
de Lausapne (EPFL), Lausanne, Switzerland; Sébastien Speierer, sebastien.speierer@
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Lliyan Georgiev, iliyan.georgiev@autodesk.com, Autodesk, London, United Kingdom;
Wenzel Jakob, wenzel.jakob@epfl.ch, Ecole Polytechnique Fédérale de Lausanne (EPFL),

This leads to a large space of possibilities: consider that even the most
basic Monte Carlo path tracer already involves several design choices con-
cerning the techniques for sampling materials and emitters, and their com-
bination, e.g. via multiple importance sampling (MIS). Differentiation causes
a veritable explosion of this decision tree: should we differentiate only the
estimator, or also the sampling technique? Should MIS be applied before or
after differentiation? Are specialized derivative sampling strategies of any
use? How should visibility-related discontinuities be handled when millions
of parameters are differentiated simultaneously? In this paper, we provide a
taxonomy and analysis of different estimators for differential light transport
to provide intuition about these and related questions.

CCS Concepts: « Computing methodologies — Rendering.
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Fig. 1. Differentiable rendering of a scene featuring specular interreflection between metallic surfaces of varying roughness. We differentiate the image with
respect to the combined roughness of all objects, which produces the gradients shown in the first column with insets. A disconcertingly large number of
differential estimators can solve this problem, albeit with drastically different statistical efficiency: the following four columns highlight the standard deviation
of emitter sampling and three material-based strategies. An overview of the exhaustive set of combinations (21 methods) and results for an additional four
estimators are provided in the supplemental material, which also contains uncropped images. The objective of our work is to provide intuition on how to

navigate the large design space of differential Monte Carlo estimators.

Physically based differentiable rendering algorithms propagate derivatives
through realistic light transport simulations and have applications in di-
verse areas including inverse reconstruction and machine learning. Recent
progress has led to unbiased methods that can simultaneously compute
derivatives with respect to millions of parameters. At the same time, ele-
mentary properties of these methods remain poorly understood.

Current algorithms for differentiable rendering are constructed by me-
chanically differentiating a given primal algorithm. While convenient, such
an approach is simplistic because it leaves no room for improvement. Differ-
entiation produces major changes in the integrals that occur throughout the
rendering process, which indicates that the primal and differential algorithms
should be decoupled so that the latter can suitably adapt.

Authors’ addresses: Tizian Zeltner, tizian zeltner@epfl.ch, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland; Sébastien Speierer, sebastien.speierer@
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Lliyan Georgiev, iliyan.georgiev@autodesk.com, Autodesk, London, United Kingdom;
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This leads to a large space of possibilities: consider that even the most
basic Monte Carlo path tracer already involves several design choices con-
cerning the techniques for sampling materials and emitters, and their com-
bination, e.g. via multiple importance sampling (MIS). Differentiation causes
a veritable explosion of this decision tree: should we differentiate only the
estimator, or also the sampling technique? Should MIS be applied before or
after differentiation? Are specialized derivative sampling strategies of any
use? How should visibility-related discontinuities be handled when millions
of parameters are differentiated simultaneously? In this paper, we provide a
taxonomy and analysis of different estimators for differential light transport
to provide intuition about these and related questions.
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Prior work: Differential BRDF sampling methods
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Fig. 1. Differentiable rendering of a scene featuring specular interreflection between metallic surfaces of varying roughness. V
respect to the combined roughness of all objects, which produces the gradients shown in the first column with insets. A di
differential estimators can solve this problem, albeit with drastically different statistical efficiency: the following four columns h
of emitter sampling and three material-based strategies. An overview of the exhaustive set of combinations (21 methods) an
estimators are provided in the supplemental material, which also contains uncropped images. The objective of our work is {
navigate the large design space of differential Monte Carlo estimators.

Physically based differentiable rendering algorithms propagate derivatives
through realistic light transport simulations and have applications in di-
verse areas including inverse reconstruction and machine learning. Recent
progress has led to unbiased methods that can simultaneously compute
derivatives with respect to millions of parameters. At the same time, ele-
mentary properties of these methods remain poorly understood.

Current algorithms for differentiable rendering are constructed by me-
chanically differentiating a given primal algorithm. While convenient, such
an approach is simplistic because it leaves no room for improvement. Differ-
entiation produces major changes in the integrals that occur throughout the
rendering process, which indicates that the primal and differential algorithms
should be decoupled so that the latter can suitably adapt.
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Antithetic Sampling for Monte Carlo Differentiable |
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(a) Ordinary image

(b) Deriv. image (w/o antithetic sampling) (c) Deriv. in

Fig. 1. In physics-based differentiable rendering, previous sampling techniques developed for forward renderi
derivatives (i.e., those with respect to scene geometry), when the scene contains highly glossy or near-specular surfi
antithetic sampling for Monte Carlo differentiable rendering. This example involves several pans exhibiting specular
derivatives with respect to the camera angle, state-of-the-art differentiable rendering methods produce high vari;
same base algorithm, significant variance reduction can be achieved in equal time (c).

Stochastic sampling of light transport paths is key to Monte Carlo forward
rendering, and previous studies have led to mature techniques capable of
drawing high-contribution light paths in complex scenes. These sampling
techniques have also been applied to differentiable rendering.

In this paper, we demonstrate that path sampling techniques developed
for forward rendering can become inefficient for differentiable rendering
of glossy materials—especially when estimating derivatives with respect
to global scene geometries. To address this problem, we introduce anti-
thetic sampling of BSDFs and light-transport paths, allowing significantly
faster convergence and can be easily integrated into existing differentiable
rendering pipelines. We validate our method by comparing our derivative
estimates to those generated with existing unbiased techniques. Further, we
demonstrate the effectiveness of our technique by providing equal-quality
and equal-time comparisons with existing sampling methods.
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Importance Sampling BRDF Derivatives
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Our techniques can importance sample the derivatives of a wide variety of materials, some of which are shown above. The insets indicate the regions where
our estimators have lower standard deviation (blue) and the regions where standard BRDF importance sampling has lower standard deviation (red).

BRDF 1x BRDF 1x

Our Pos 58.57x

Our Pos 1.96x
Standard deviation of derivative estimators: BRDF Importance Sampling (top left diagonal) vs our three decompositions, Positivization (Pos), Product
Decomposition (Prod), and Mixture Decomposition (Mix) (bottom right diagonal). Numbers indicate improvement in gradient estimation, higher is better.

Our Prod 1.56x

BRDF 1x BRDF 1x BRDF 1x BRDF 1x

Our Prod 3.61x Our Mix 3.91x Our Mix 4.72x

Fig. 1. We propose new importance sampling techniques for sampling derivatives of BRDFs , and they achieve significant variance reduction in the estimated
derivatives. Our techniques work better because they correctly deal with real-valued BRDF derivatives, for which BRDF importance sampling from forward
rendering is not well suited. Our techniques are general and apply to a wide variety of BRDF derivatives, which was not possible by previous work in
differentiable rendering [Zeltner et al. 2021; Zhang et al. 2021a]. 3D models courtesy of Turbosquid users id_inc (teapot), Evilordus (lion), Adrian Kulawik

(hydrant), 3d_molier International (cactus), cgaustria (fish vase).

We propose a set of techniques to efficiently importance sample the deriva-
tives of a wide range of BRDF models. In differentiable rendering, BRDFs are
replaced by their differential BRDF counterparts which are real-valued and
can have negative values. This leads to a new source of variance arising from
their change in sign. Real-valued functions cannot be perfectly importance
sampled by a positive-valued PDF, and the direct application of BRDF sam-
pling leads to high variance. Previous attempts at antithetic sampling only
addressed the derivative with the roughness parameter of isotropic micro-
facet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic
microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among
other analytic BRDFs.

Our method first decomposes the real-valued differential BRDF into a
sum of single-signed functions, eliminating variance from a change in sign.

Authors’ addresses: Yash Belhe, University of California San Diego, USA, ybelhe@ucsd.
edu; Bing Xu, University of California San Diego, USA, b4xu@ucsd.edu; Sai Praveen
Bangaru, MIT CSAIL, USA, sbangaru@mit.edu; Ravi Ramamoorthi, University of Cal-
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Next, we importance sample each of the resulting single-signed functions
separately. The first decomposition, positivization, partitions the real-valued
function based on its sign, and is effective at variance reduction when appli-
cable. However, it requires analytic knowledge of the roots of the differential
BRDF, and for it to be analytically integrable too. Our key insight is that the
single-signed functions can have overlapping support, which significantly
broadens the ways we can decompose a real-valued function. Our product
and mixture decompositions exploit this property, and they allow us to
support several BRDF derivatives that positivization could not handle. For
a wide variety of BRDF derivatives, our method significantly reduces the
variance (up to 58x in some cases) at equal computation cost and enables
better recovery of spatially varying textures through gradient-descent-based
inverse rendering.

ACM Reference Format:
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Li. 2024. Importance Sampling BRDF Derivatives. ACM Trans. Graph. 1, 1
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Prior work: Differential BRDF sampling methods

[Belhe et al. 2024]

[Zhang et al. 2021]
[Zeltner et al. 2021]

Monte Carlo Estimators for Dif

TIZIAN ZELTNER, Ecole Polytechnique Fédérale d
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Fig. 1. Differentiable rendering of a scene featuring specular interref
respect to the combined roughness of all objects, which produces t

differential estimators can solve this problem, albeit with drastically different statistical ] the following four nne
of emitter sampling and three material-based strategies. An overview of the exhaustive set of combinations (21 methods) a
estimators are provided in the supplemental material, which also contains uncropped images. The objective of our work is

navigate the large design space of differential Monte Carlo estimators.

Physically based differentiable rendering algorithms propagate derivatives
through realistic light transport simulations and have applications in di-
verse areas including inverse reconstruction and machine learning. Recent
progress has led to unbiased methods that can simultaneously compute
derivatives with respect to millions of parameters. At the same time, ele-
mentary properties of these methods remain poorly understood.

Current algorithms for differentiable rendering are constructed by me-
chanically differentiating a given primal algorithm. While convenient, such
an approach is simplistic because it leaves no room for improvement. Differ-
entiation produces major changes in the integrals that occur throughout the
rendering process, which indicates that the primal and differential algorithms
should be decoupled so that the latter can suitably adapt.

Antithetic Sampling for Monte Carlo Differentiable i

Importance Sampling BRDF Derivatives

YASH BELHE, University of California San Diego, USA
BING XU, University of California San Diego, USA

X Requires branching for global illumination

This leads to a large space of possibilitie
basic Monte Carlo path tracer already invol
cerning the techniques for sampling materia
bination, e.g. via multiple importance samplii
a veritable explosion of this decision tree: sl
estimator, or also the sampling technique? S
after differentiation? Are specialized derival
use? How should visibility-related discontint
of parameters are differentiated simultaneou
taxonomy and analysis of different estimator
to provide intuition about these and related

CCS Concepts: « Computing methodologi
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drawing high-contribution light paths in complex scenes. These sampling
techniques have also been applied to differentiable rendering.

In this paper, we demonstrate that path sampling techniques developed
for forward rendering can become inefficient for differentiable rendering
of glossy materials—especially when estimating derivatives with respect
to global scene geometries. To address this problem, we introduce anti-
thetic sampling of BSDFs and light-transport paths, allowing significantly
faster convergence and can be easily integrated into existing differentiable
rendering pipelines. We validate our method by comparing our derivative
estimates to those generated with existing unbiased techniques. Further, we
demonstrate the effectiveness of our technique by providing equal-quality
and equal-time comparisons with existing sampling methods.

CCS Concepts: « Computing methodologies — Rendering.

Authors’ addresses: Cheng Zhang, chengz20@uci.edu, University of California, Irvine,
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Facebook Reality Labs, USA; Shuang Zhao, shz@ics.uci.edu, University of California,

ACM Reference Format:
Cheng Zhang, Zhao Dong, Mi
tithetic Sampling for Monte Ca
Graph. 40, 4, Article 77 (Augus
3450626.3459783

1 INTRODUCTION

Forward rendering numerical
detectors given virtual scen
tries and optical material pro
contrary, focuses on computi
responses (with respect to dif
have applications in many ar
computational imaging, and

Recently, great progresses
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quadratic time complexity

e propose a set of techniques to efficiently importance sample the deriva-
tives of a wide range of BRDF models. In differentiable rendering, BRDFs are
replaced by their differential BRDF counterparts which are real-valued and
can have negative values. This leads to a new source of variance arising from
their change in sign. Real-valued functions cannot be perfectly importance
sampled by a positive-valued PDF, and the direct application of BRDF sam-
pling leads to high variance. Previous attempts at antithetic sampling only
addressed the derivative with the roughness parameter of isotropic micro-
facet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic
microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among
other analytic BRDFs.

Our method first decomposes the real-valued differential BRDF into a
sum of single-signed functions, eliminating variance from a change in sign.

Authors’ addresses: Yash Belhe, University of California San Diego, USA, ybelhe@ucsd.
edu; Bing Xu, University of California San Diego, USA, b4xu@ucsd.edu; Sai Praveen
Bangaru, MIT CSAIL, USA, sbangaru@mit.edu; Ravi Ramamoorthi, University of Cal-
ifornia San Diego, USA, ravir@ucsd.edu; Tzu-Mao Li, University of California San

Anisotropic Beckmann Oren-Nayar Mixture Model

me of which are shown above. The insets indicate the regions where
DF importance sampling has lower standard deviation (red).

BRDF 1x BRDF 1x BRDF 1x

Our Prod 3.61x Our Mix 3.91x
vs our three decompositions, Positivization (Pos), Product
)ers indicate improvement in gradient estimation, higher is better.

Our Mix 4.72x

tDFs, and they achieve significant variance reduction in the estimated
RDF derivatives, for which BRDF importance sampling from forward
¢ of BRDF derivatives, which was not possible by previous work in
of Turbosquid users id_inc (teapot), Evilordus (lion), Adrian Kulawik

Next, we importance sample each of the resulting single-signed functions
separately. The first decomposition, positivization, partitions the real-valued
function based on its sign, and is effective at variance reduction when appli-
cable. However, it requires analytic knowledge of the roots of the differential
BRDF, and for it to be analytically integrable too. Our key insight is that the
single-signed functions can have overlapping support, which significantly
broadens the ways we can decompose a real-valued function. Our product
and mixture decompositions exploit this property, and they allow us to
support several BRDF derivatives that positivization could not handle. For
a wide variety of BRDF derivatives, our method significantly reduces the
variance (up to 58x in some cases) at equal computation cost and enables
better recovery of spatially varying textures through gradient-descent-based
inverse rendering.

ACM Reference Format:
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[Nimier-David et al. 2022]

Unbiased Inverse Volume Rendering with Differential Trackers

MERLIN NIMIER-DAVID, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

THOMAS MULLER, NVIDIA, Switzerland
ALEXANDER KELLER, NVIDIA, Germany

WENZEL JAKOB, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Differential Ratio Tracking (ours Delta Tracking

Gradients with respect to medium density (parameter space)

Mean gradient

Variance

o, %) ¥

. Delta Tracking /// Biased

Fig. 1. We demonstrate the high-quality reconstruction of volumetric scattering parameters from RGB images with known camera poses (left). This is enabled
by our novel differential ratio tracking formulation, which yields unbiased, low-variance gradients of the radiative transfer equation that can be directly
used for optimization. Traditional free-flight sampling—e.g. by delta tracking—while effective at low-variance rendering, exhibits bias and high variance in
gradient estimation with respect to medium density (top right), which negatively affects optimization. Gradient mean and variance values are shown for slice
z = 64 of the 256X 128X 128 parameter space. In the chart (bottom right), we report the improvements in reconstruction error for stochastic gradient descent
with momentum (SGDm) as well as Adam. Using aggressive step size reduction, the Adam optimizer limits the impact of large gradient outliers, though our
unbiased gradients lead to the lowest reconstruction error with either optimizer.

Volumetric representations are popular in inverse rendering because they
have a simple parameterization, are smoothly varying, and transparently han-
dle topology changes. However, incorporating the full volumetric transport
of light is costly and challenging, often leading practitioners to implement
simplified models, such as purely emissive and absorbing volumes with
“baked” lighting. One such challenge is the efficient estimation of the gradi-
ents of the volume’s appearance with respect to its scattering and absorption
parameters. We show that the straightforward approach—differentiating a
volumetric free-flight sampler—can lead to biased and high-variance gra-
dients, hindering optimization. Instead, we propose using a new sampling
strategy: differential ratio tracking, which is unbiased, yields low-variance

Authors’ addresses: Merlin Nimier-David, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland, merlin.nimier-david@epfl.ch; Thomas Miiller, NVIDIA,
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gradients, and runs in linear time. Differential ratio tracking combines ra-
tio tracking and reservoir sampling to estimate gradients by sampling dis-
tances proportional to the unweighted transmittance rather than the usual
extinction-weighted transmittance. In addition, we observe local minima
when optimizing scattering parameters to reproduce dense volumes or sur-
faces. We show that these local minima can be overcome by bootstrapping the
optimization from nonphysical emissive volumes that are easily optimized.

CCS Concepts: « Computing methodologies — Rendering.

Additional Key Words and Phrases: differentiable rendering, inverse render-
ing, volumetric rendering, radiative backpropagation, importance sampling

ACM Reference Format:
Merlin Nimier-David, Thomas Miiller, Alexander Keller, and Wenzel Jakob.
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Prior work: Differentiable volume rendering

® Sampling methods tailored tor
differentiable rendering of volumes
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Fig. 1. We demonstrate the high

by our novel differential ratio tr

used for optimization. Tradition g

gradient estimation with respect to medium density (top

z = 64 of the 256X 128 128 parameter space. In the chart (bottom right), we report the improvements in reconstruction error for stochastic gradient descent
with momentum (SGDm) as well as Adam. Using aggressive step size reduction, the Adam optimizer limits the impact of large gradient outliers, though our

unbiased gradients lead to the lowest reconstruction error with either optimizer.

Volumetric representations are popular in inverse rendering because they
have a simple parameterization, are smoothly varying, and transparently han-
dle topology changes. However, incorporating the full volumetric transport
of light is costly and challenging, often leading practitioners to implement
simplified models, such as purely emissive and absorbing volumes with
“baked” lighting. One such challenge is the efficient estimation of the gradi-
ents of the volume’s appearance with respect to its scattering and absorption
parameters. We show that the straightforward approach—differentiating a
volumetric free-flight sampler—can lead to biased and high-variance gra-
dients, hindering optimization. Instead, we propose using a new sampling
strategy: differential ratio tracking, which is unbiased, yields low-variance

Authors’ addresses: Merlin Nimier-David, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland, merlin.nimier-david@epfl.ch; Thomas Miiller, NVIDIA,
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gradients, and runs in linear time. Differential ratio tracking combines ra-
tio tracking and reservoir sampling to estimate gradients by sampling dis-
tances proportional to the unweighted transmittance rather than the usual
extinction-weighted transmittance. In addition, we observe local minima
when optimizing scattering parameters to reproduce dense volumes or sur-
faces. We show that these local minima can be overcome by bootstrapping the
optimization from nonphysical emissive volumes that are easily optimized.

CCS Concepts: « Computing methodologies — Rendering.

Additional Key Words and Phrases: differentiable rendering, inverse render-
ing, volumetric rendering, radiative backpropagation, importance sampling
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Our contributions

~. % Differential path space integral

New theoretical formulation
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Our contributions

~. % Differential path space integral
aa New theoretical formulation

o _ Differential sampling method

Importance sample paths using the new formulation (linear time complexity)
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Our contributions

~. % Differential path space integral
aa New theoretical formulation

o _ Differential sampling method

Importance sample paths using the new formulation (linear time complexity)

Adaptive pixel sampling method

Importance sample pixels during inverse rendering optimization
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Our contributions

~. % Differential path space integral
aa New theoretical formulation

o _ Differential sampling method

Importance sample paths using the new formulation (linear time complexity)

Adaptive pixel sampling method

Importance sample pixels during inverse rendering optimization

» Lower gradient variance + improved inverse rendering performance
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Differential path space integral



Path integral
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Path integral

[ =

1

value of a pixel

/7> (%) dx
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Path integral

=M

I= [ f(x)dx
! /7’ !

value ot a pixel

contribution of a path
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Path integral

=M

L

I= [ f(x)dx
! /7’ !

value ot a pixel

contribution of a path

Path space P
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Path integral
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Path integral

]:/Pfofl'“fj\fdf

product of
contributions
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Estimating the path integral

[ = /Pf(i)di

1 M f(§m> path contribution
~ M Z p(im) probability of sampling

m=1 the path x™
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Estimating the path integral

I = /Pf(i)di

1 M f(§m> path contribution
~ M Z p(im) probability of sampling

m=1 the path x™

% p should be a good approximation of f
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Estimating the path integral

I = /Pf(i)di
1

M f(iﬁl) path contribution

X

Z Sl robability of sampling
M p(x"™) P Y P

m=1 the path x™

% p should be a good approximation of f

4 Forward rendering: Use BRDF sampling at every vertex
X Differentiable rendering: Need a better strategy
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Derivative of path integral
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Derivative of path integral

Opl = /P@e Sofi fn|dX
— /7)[(39f0)f1-..fN + fo(Oof1)f2 - fn —I—...—I—fo-.,fN_l(ﬁefN)] I
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Derivative of path integral

Opl = /P@e Sofi fn|dX
— L[(aef())fy..fj\f + fo(Qof1)f2- - fn —I—...—I—fo-.,fN_l(ﬁefN)] I

32



Derivative of path integral

5’912/7389[f0f1'“fj\f}d§

= [ [@af)fie v+ falOofi) oS+ oo oo Iva(Oufy

go(X) g1(X)

differential contributions

gn (X)
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Derivative of path integral

89[:/7)89[f0f1“-f]v}di
:/ [(aef())fy..fj\f—|—f0(5’9f1)f2-..fN—I-...—I-fo-.,fN_l(ang)] 1%

P
N

— Zgn(i) dx
P =0
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Differential contributions

Jgo - 4 8Gf() f %‘
\Q/f/
N I f
Opl = Z X - g
P gn(X) dX L
n=0
gs 4 Jo p
W7
44— differential

vertex
Oy [2 47"

93; 4 fO
\Q/f/
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Difterential path space

Path space P
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Difterential path space

Path space P

Differential path space 0P
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Difterential path space integral

N
Opl = / Zgn(i) dx
P n=0
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Difterential path space integral

Our formulation

Opl = /73 nzN:Ogn(X) dx = /877 gn(X)dx

(X has differential vertex at x,,)
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Difterential path space integral

Our formulation

Dol — /7> EN: g (%) A% = /a g, (%)%

1>

Differential path

Path space integral ,
space integral

(X has differential vertex at x,,)
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Our method

Forward rendering

I = /Pf(i)di

Sample paths from P
oroportionally to f

Differentiable rendering

Ogl = / gn (X)dx
oP

Sample paths from OP
proportionally to g
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Sampling paths from 0P



Sampling paths from 0P

4\//

Need a path with one differential vertex
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Sampling paths from 0P

Qo

Pof

Py = standard pdf
Pof = differential pdf

44



Sampling paths from 0P

Qo

Pof

Py = standard pdf, proportional to the BRDF

Pof = differential pdf, proportional to the BRDF's derivative
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Choosing the difterential vertex

\ Should this vertex

be differential?
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Choosing the difterential vertex

Russian roulette

\ Should this vertex \ Terminate path at

be differential? this vertex?
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Choosing the difterential vertex

4\9 probability 1 — ¢

probability g
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Choosing the difterential vertex

normal vertex

4 probability 1 — @ =——f |
\O sample py, weight ;17—

probability g
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Choosing the difterential vertex

normal vertex

4 probability 1 — @ =——f |
\9 sample py, weight ;17—

brobability g | differential vertex |

sample poyr, weight

set ¢ = 0 for later vertices
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Sampling probability for a full path
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Sampling probability for a full path
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Sampling probability for a full path
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Sampling probability for a full path

Ppath = Df(x1) - (1 —¢q) - pas(x2) - q - pr(x3)

weight path contribution by Poath
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Multiple importance sampling (MIS)
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Multiple importance sampling (MIS)

Differential vertex at x4 Differential vertex at x»

No differential vertex
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Multiple importance sampling (MIS)

Zad Zad

vora P g T g MUY
Differential vertex at x4 Differential vertex at x» No differential vertex
Ppath = Paf(X1) - q - pr(X2) Ppath = Pf(X1) - (1 = ¢q) - pag(x2) - ¢ Ppath = Pf(x1) - (1 = ¢q) - pr(x2) - (1 —q)
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Multiple importance sampling (MIS)

7 Za Za
4\// do\// 4\//
. iy Pof - 4 py- (1 —=q)
pord pr-(1—0q) pr-(1—0q)
Differential vertex at x4 Ditferential vertex at xo No differential vertex

' ' '

Pmixture = paf(X1) “q 'pf(Xz) +pf(X1) ‘ (1 — C]) 'paf(Xz) " {q +pf(X1) ' (1 — Q) ‘pf(XZ) ' (1 — Q)

1

weight path contribution by

Pmixture
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Multiple importance sampling (MIS)

7‘
\// o/ \//
ps-(1—q) o (1 —q) =9

Pof - g
Differential vertex at x4 Ditferential vertex at xo No differential vertex

Bidirectional path tracing

So.

%‘

40\/%‘
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Next event estimation (NEE)

Pof - (
or pr- (1 —q)

NEE connection
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Next event estimation (NEE)

A
S AV
4\//‘?
Pof g
or ps - (1 —gq)

NEE connection

% Details are in the paper

A
Q
4\0/‘\/
pf - (

pr-(1—q) '~

Other possible sampling methods
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Computing path contributions

Differential path
space integral

Opl = / Zgn ) dX = /w gn (X)dX
1

Sample paths from here

Path space integral
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Computing path contributions

Path space integral

= [ i9n<x>dx [

7>

Differential path
space integral

gn(X)dx
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Computing path contributions

Path space integral

= [ jéwdx [

7>

Differential path
space integral

gn(X)dxX
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Computing path contributions

Differential path
space integral

Opl = / Zgn ) dX = /w gn (X)dX
1

Sample paths from here

Path space integral
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Computing path contributions

Differential path
space integral

Oyl = / Zgn ) dX = /579 gn(X)dx
1 T

| hs f
Compute this integrana >ample paths from here

Path space integral
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Computing path contributions | ™=

fori=0toN—1do

function SAMPLEPATH(ray)
L=0,p=1
fori=0toN—1do
L+= B-Le(...)
o', f = SAMPLE_BRDF(...)
Bx=f/pr(e,...)

return L

function SAMPLEPATHADJOINT(ray, L, dL)
B=1
fori=0toN—1do
L-=B-L...)
o', f = SAMPLE_BRDF(...)
09 += BACKWARDGRAD(f, OL-L/f)
Br=f/ps(a,...

return Og

L+= B-Le(...) / (Wi +wp)

if !sampled_odx and RAND() < g then
®’, f = SAMPLE_J0BRDF(...)
sampled_o0x = TRUE

else
o', f =SAMPLE_BRDF(...)

Bx=f/pr0,...)
wi+= wy-q-pas(@,...) / pp(a’,...)
Wy *= l—q

return L

function SAMPLEPATHADJOINT(ray, L, OL)
B=1,w; =0, wp =1, sampled_0Jx = FALSE
fori=0toN—1do
L-=PB-Le(...) / (w1 +wp)
if !sampled_odx and RAND() < g then
®’, f = SAMPLE_J0BRDF(...)
sampled_o0x = TRUE

else
o', f = SAMPLE_BRDF(...)

dg += BACKWARDGRAD(f, OL-L/f)
Bx=f/ps(e,...)

Wi += W2'Q'Paf(°3,7---) /pf((’),,)
Wy *= l—q

return dg

% Implement with simple modifications to Path Replay Backpropagation
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Adaptive pixel sampling



Inverse rendering optimization

-~

min L (I(6), I)

scene parameter =——p @ / r \

loss rendered reference
function image image

% Need to estimate OyL to do gradient descent
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Loss gradient integral

OpL = L -0l
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Loss gradient integral

OpL = L -0yl

= O1L - / gn(i)di
oP

/2



Loss gradient integral

OpL = L - 0yl

= O1L - / gn(X)dx
oP

adjoint radiance
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Loss gradient integral

OpL = O1L - Opl
= O1L - / gn(X)dx
oP

— oL - gy (f) dx

o

Separate rendering passes
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Adaptive pixel sampling

O L = / hL - g,(X)dx
oP

T

adjoint radiance

Forward rendering

I= /Pv;ef(x) dx

sensor importance
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Adaptive pixel sampling

Op L = oL - g, (i) dx

OP T

Use to importance sample

Our method: ,
pixels to start paths from
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Adaptive pixel sampling

Rendere —_— L —_— BIE —_—

Loss Adjoint
radiance

Reference I

Sampling weights
oroportional to |01 L]

high

low
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Adaptive pixel sampling

high

Sample pixels to

—
start paths from

low

Sampling weights

oroportional to |O1 L]

— 89£ —» QGradient step

l

Next iteration of
optimization...
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Experiments



Visualizing gradients

Forward render
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Visualizing gradients

Full gradient

A+
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Visualizing gradients

Fixed differential vertex at x4

. -
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Visualizing gradients

Fixed differential vertex at x-

. -
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Visualizing gradients

Fixed differential vertex at x3

-+
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Visualizing

gradients

¥
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Visualizing gradients
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Image gradients (equal-time comparison)

BRDF sampling Differential sampling (ours)

2 orders of magnitude less noisy
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Numbers = ratios of mean variance
with the baseline (lower is better)

Variance of image gradients 0yl
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low

10.0028x

Diff. sampling BRDF sampling  Diff. sampling

BRDF sampli Diff. sampli
sampiing  Dif. sampling with MIS with NEE  with MIS + NEE
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Numbers = ratios of mean variance
with the baseline (lower is better)

Variance of imag
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Lowest variance: our differential sampling method with MIS + NEE o



Variance of loss gradients 0y L
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Variance of loss gradients 0y L

Scene BRDF BRDF + Differential +
adaptive adaptive
BOwL 13.6 4.34 3.49
SPHERE 172 51.7 8.62
PANS 4.32 0.487 0.412
DRAGON 4.76 0.633 0.0109
VASES 0.00164  0.000193  1.31x107°
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Variance of loss gradients 0y L

Scene BRDF BRDF + Differential +
adaptive adaptive
BOwL 13.6 4.34 3.49
SPHERE 172 51.7 8.62
PANS 4.32 0.487 0.412
DRAGON 4.76 0.633 0.0109
VASES 0.00164  0.000193  1.31x107°

/

L owest variance: our combined method
(1-2 orders of magnitude better)
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Inverse rendering performance
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Inverse rendering performance
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Inverse rendering performance
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Inverse rendering performance
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e Differential path sampling method tailored to the integral computed in
differentiable rendering
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Conclusion

e Differential path sampling method tailored to the integral computed in
differentiable rendering

e Adaptive pixel sampling method for path launching in each inverse
rendering optimization step

Future work: extending differential sampling to scenes that optimize more
than one scene parameter
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Thanks for listening :-)

ALFRED P. SLOAN
FOUNDATION

Project website: https://imaging.cs.cmu.edu/path_sampling_differentiable_rendering/
Code: https://github.com/cmu-ci-lab/path_sampling_differentiable_rendering/



