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Rendering transient camera
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Path space integral for time-of-flight cameras

intensity time-gatedtransientcontinuous-wave

BDPT, PT, PM, KDE, etc no efficient rendererBDPT, PT, PM, KDE, etc

[Jarabo et al., 2014, 2017]

[Marco et al. 2017, 2018]

BDPT, PT, PM, KDE, etc

Path length ത𝐱Path length ത𝐱Path length ത𝐱Path length ത𝐱𝑊(|ത 𝐱|) 𝑊(|ത 𝐱|) 𝑊(|ത 𝐱|)𝑊(|ത 𝐱|)

light paths

image = න f(path)W(|path|) 
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Application: proximity detector for cars

road scene standard BDPT BDPT w/ ellipsoidal 

connections

Gate width: 200 ps (1.14% scene)

Rendering time: 10s per frame
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Non-line-of-sight imaging



multiple 

scattering

https://web.media.mit.edu/~raskar/cornar/

https://web.media.mit.edu/~raskar/cornar/

Applications



Time (in ns)

P
h

o
to

n
s

A lot of research on non-line-of-sight imaging

intensity imaging coherence imaging time-of-flight imaging

Bouman et al., ICCV 2017

Saunders et al., Nature 2019

Saunders et al., COSI 2019

Maeda et al., ICCP 2019

Lin et al., COSI 2020

Sharma, ICCV 2021

Katz et al., Nat. Photonics 2014

Lei et al., CVPR, 2019

Boger-Lombard, Nat. Com. 2019

Metzler et al., Optica 2020

Willomitzer et al., Nat. Com. 2021

Chen et al. SPIE 2022

Velten et al., Nat. comm. 2012

Toole et al., Nature 2018

Liu et al., Nature 2019, Nat. comm. 2020

Rapp et al. Nat. comm. 2020

Xin et al., CVPR 2019

Nam et al., Nat. comm. 2021
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How do we focus on a voxel?

challenge: 

non-specular photons

solution:

use a large lens?

expensive !!

what does a lens do?

delays rays such that 

they reach detector at 

same time instant
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Temporal focusing: imitate the lens

challenge: 

non-specular photons

solution:

use a large lens?

expensive !!

temporal focusing: 

imitate large lens

time
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without temporal focusing

time
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h

o
to

n
s

with temporal focusing

delayer

array
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Temporal focusing: Illumination should also be an ellipse

challenge: 

non-specular photons

solution:

use a large lens?

expensive !!

temporal focusing: 

imitate large lens

time

p
h

o
to

n
s

without temporal focusing

time

p
h

o
to

n
s

with temporal focusing
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Design choices for temporal focusing

temporal resolution (in ps)

103 102 101 100
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100
101
102

Kinect

PMD

ICCD

SPAD

Streak

time-of-flight camerasellipse size ellipse thickness

Pediredla et al. ICCP 2019.
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Rendering non-line-of-sight imaging by temporal focusing

scene standard BDPT BDPT w/ ellipsoidal connections

Gate width: 4 ps (0.4% scene)

Rendering time: 3 hr ∗ simulation results
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Design choices

large ellipses result in 

better resolution

thinner ellipses result in 

better resolution, but 

looses light

high resolution time-gate 

results in better 

resolution, but looses light
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Hardware prototype

Measured Jitter

64 ps

Thickness of ellipse 

(laser spot size)

5 mm

Size of ellipses

1 m

Pediredla et al. ICCP 2019. 118
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picosecond 

laser

SPAD
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galvo

imaging 

galvo

optical component
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streak 
ICCD 
kinect 
PMD 

LED

SLED

supercontinuum
femtosecond laser

MEMS 

Axicon 

SLM 

OPA 



Results: scanning limited ROI

scanning entire hidden scene
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Results: scanning limited ROI

scanning entire hidden scene

1.5 m

1.5 m 9 cm

9 cm

SNR of temporal focusing is 

> 10× higher for small ROI

7 cm

7 cm

scanning entire hidden scene

scanning only ROI

9 cm

cannot scan ROI

9 cm
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Results: real-time occupancy detection

focused voxel 

(hidden)
/home/apedired/Adi2TB/Dropbox/Blender/TemporalFocussing/j

obtalk/Metronome.png



• accurate and efficient simulation

• virtually design sensors, optics, and algorithms 

forward rendering

• accurate and efficient differentiable simulation

• tractably solve general inverse problems

inverse rendering

non-line-of-sight

imaging

tactile sensor 

design

speckle 

imaging
time-of-flight

imaging

ultrafast light 

scanning

acousto-optic 

lensing

differentiable 

renderer

inverse 

problems

Physics-based rendering and its applications to computational imaging
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Focusing light inside tissue

tumor

Gradient Refractive 

Index (GRIN) waveguide

virtual GRIN 

waveguide
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Focusing light inside tissue

tumor

Gradient Refractive 

Index (GRIN) waveguide

virtual GRIN 

waveguide
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45° mirror

ultrasonic

array

camera

laser

Ultrasonic light guiding inside tissue

[Chamanzar et al., Nat. Comm. 2019]

[Karimi et al., Optics Express, 2019]

[Scopelliti et al., LSA, 2019] 138
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45° mirror
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array

camera

laser

Ultrasonic light guiding inside tissue

[Chamanzar et al., Nat. Comm. 2019]
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ultrasound off

45° mirror

ultrasonic

array

camera

laser

Ultrasonic light guiding inside tissue

[Chamanzar et al., Nat. Comm. 2019]

[Karimi et al., Optics Express, 2019]

[Scopelliti et al., LSA, 2019] 141



ultrasound off ultrasound on

45° mirror

ultrasonic

array

camera

laser

Ultrasonic light guiding inside tissue

[Chamanzar et al., Nat. Comm. 2019]

[Karimi et al., Optics Express, 2019]
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High-dimensional, highly-non-linear 

design problem:

• ultrasound frequency

• ultrasound voltage

• placement of transducers

• shape of waveguides

• waveform shape

• and more…
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45° mirror

ultrasonic

array

camera

laser

Ultrasonic light guiding inside tissue

High-dimensional, highly-non-linear 

design problem:

• ultrasound frequency

• ultrasound voltage

• placement of transducers

• shape of waveguides

• waveform shape

• and more…

Efficiently explore using rendering

Build first rendering algorithm 



Rendering continuous refraction and scattering
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Rendering continuous refraction and scattering

continuous refraction 

scattering

+
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Rendering continuous refraction and scattering

continuous refraction 

scattering

+

[Kravtsov  and Orlov, Book, 1990]

[Gröller, Visual Comp., 1995]

[Stam and Languénou, Rend. Techn., 1996]

[Weiskopf et al., Com. Graph. forum, 2004]

[Guttirez et al., In Rend. Techn., 2005]

[Ihrke et al., ToG, 2007]

[Atcheson et al., ToG, 2008]

[Ji et al., CVPR, 2013]

[Pedrotti et al., Book, 2017]

[Scopelliti et al., Nature LSA, 2019]

[Chandrasekhar, book, 1960]

[Lenoble, book, 1985]

[Lafortune and Willems, 1996]

[Cammarano and Jensen, 2002]

[Guttirez et al., Com. and Graph. 2006]

[Jarosz et al., Comp. Graph. forum, 2008]

[Jakob et al. ,ToG, 2010]

[Jarosz et al., ToG, 2011]

[Pediredla et al., JBO, 2016]

[Novak et al., Comp. Graph. forum, 2018]

[Bitterli et al., ToG, 2018]
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Rendering continuous refraction and scattering

[Kravtsov  and Orlov, Book, 1990]

[Gröller, Visual Comp., 1995]

[Stam and Languénou, Rend. Techn., 1996]

[Weiskopf et al., Com. Graph. forum, 2004]

[Guttirez et al., In Rend. Techn., 2005]

[Ihrke et al., ToG, 2007]

[Atcheson et al., ToG, 2008]

[Ji et al., CVPR, 2013]

[Pedrotti et al., Book, 2017]

[Scopelliti et al., Nature LSA, 2019]
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Rendering continuous refraction and scattering

[Kravtsov  and Orlov, Book, 1990]

[Gröller, Visual Comp., 1995]

[Stam and Languénou, Rend. Techn., 1996]

[Weiskopf et al., Com. Graph. forum, 2004]

[Guttirez et al., In Rend. Techn., 2005]

[Ihrke et al., ToG, 2007]

[Atcheson et al., ToG, 2008]

[Ji et al., CVPR, 2013]

[Pedrotti et al., Book, 2017]

[Scopelliti et al., Nature LSA, 2019]
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Rendering continuous refraction and scattering
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[Guttirez et al., In Rend. Techn., 2005]

[Ihrke et al., ToG, 2007]

[Atcheson et al., ToG, 2008]

[Ji et al., CVPR, 2013]

[Pedrotti et al., Book, 2017]

[Scopelliti et al., Nature LSA, 2019]
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Rendering continuous refraction and scattering
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Rendering continuous refraction and scattering
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[Guttirez et al., In Rend. Techn., 2005]

[Ihrke et al., ToG, 2007]

[Atcheson et al., ToG, 2008]

[Ji et al., CVPR, 2013]

[Pedrotti et al., Book, 2017]

[Scopelliti et al., Nature LSA, 2019]
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Rendering continuous refraction and scattering
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Rendering continuous refraction and scattering

[Kravtsov  and Orlov, Book, 1990]

[Gröller, Visual Comp., 1995]

[Stam and Languénou, Rend. Techn., 1996]

[Weiskopf et al., Com. Graph. forum, 2004]

[Guttirez et al., In Rend. Techn., 2005]

[Ihrke et al., ToG, 2007]

[Atcheson et al., ToG, 2008]

[Ji et al., CVPR, 2013]

[Pedrotti et al., Book, 2017]

[Scopelliti et al., Nature LSA, 2019]
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Rendering continuous refraction and scattering
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[Kravtsov  and Orlov, Book, 1990]

[Gröller, Visual Comp., 1995]

[Stam and Languénou, Rend. Techn., 1996]

[Weiskopf et al., Com. Graph. forum, 2004]

[Guttirez et al., In Rend. Techn., 2005]

[Ihrke et al., ToG, 2007]

[Atcheson et al., ToG, 2008]

[Ji et al., CVPR, 2013]

[Pedrotti et al., Book, 2017]

[Scopelliti et al., Nature LSA, 2019]

refractive ray tracing



Rendering continuous refraction and scattering
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𝐱𝟎 𝐱𝟑
𝐱𝟐

𝐱𝟏
[Kravtsov  and Orlov, Book, 1990]

[Gröller, Visual Comp., 1995]

[Stam and Languénou, Rend. Techn., 1996]

[Weiskopf et al., Com. Graph. forum, 2004]

[Guttirez et al., In Rend. Techn., 2005]

[Ihrke et al., ToG, 2007]

[Atcheson et al., ToG, 2008]

[Ji et al., CVPR, 2013]

[Pedrotti et al., Book, 2017]

[Scopelliti et al., Nature LSA, 2019]
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Rendering continuous refraction and scattering
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𝐱𝟎 𝐱𝟑
𝐱𝟐

𝐱𝟏
[Kravtsov  and Orlov, Book, 1990]

[Gröller, Visual Comp., 1995]

[Stam and Languénou, Rend. Techn., 1996]

[Weiskopf et al., Com. Graph. forum, 2004]

[Guttirez et al., In Rend. Techn., 2005]

[Ihrke et al., ToG, 2007]

[Atcheson et al., ToG, 2008]

[Ji et al., CVPR, 2013]

[Pedrotti et al., Book, 2017]

[Scopelliti et al., Nature LSA, 2019]

refractive ray tracing



Rendering continuous refraction and scattering
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𝐱𝟎 𝐱𝟑
𝐱𝟐radiative transfer equation

[Chandrasekhar, book, 1960]

[Lenoble, book, 1985]

[Lafortune and Willems, 1996]

[Cammarano and Jensen, 2002]

[Guttirez et al., Com. and Graph. 2006]

[Jarosz et al., Comp. Graph. forum, 2008]

[Jakob et al. ,ToG, 2010]

[Jarosz et al., ToG, 2011]

[Pediredla et al., JBO, 2016]

[Novak et al., Comp. Graph. forum, 2018]

[Bitterli et al., ToG, 2018]
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2. trace a random sensor subpath
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𝐱𝟐radiative transfer equation
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𝐱𝐤−𝟏𝐱𝐤−𝟐 𝐱𝐤

bidirectional path tracing (BDPT):

1. trace a random emitter subpath

2. trace a random sensor subpath

3. join vertices with a straight line
curve

??
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𝐱𝟐radiative transfer equation
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bidirectional path tracing (BDPT):
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3. join vertices with a straight line
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𝐱𝟎 𝐱𝟑
𝐱𝟐radiative transfer equation

𝐱𝟏
𝐱𝐤−𝟏𝐱𝐤−𝟐 𝐱𝐤

bidirectional path tracing (BDPT):

1. trace a random emitter subpath

2. trace a random sensor subpath

3. join vertices with a straight line
curve

Pediredla et al. Path Tracing Estimators for Refractive Radiative Transfer, TOG 2020



Application: simulate Luneburg lenses
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Luneburg lenses
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Application: transient rendering

constant refractive index continuous refractive index
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Application: transient rendering

constant refractive index continuous refractive index
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Application: focusing light inside tissue

tumor

Gradient Refractive 

Index (GRIN) waveguide

virtual GRIN 

waveguide

High-dimensional, 

highly-non-linear 

design problem:

• ultrasound 

frequency

• ultrasound voltage

• placement of 

transducers

• waveform shape

• and more…

Efficiently explore 

using rendering
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real measurement

photon mapping 

(previous technique)

BDPT 

(our technique)

500 𝜇𝑚

Rendering virtual ultrasonic waveguides

184



Validation of simulated data
experimental data
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Optimized configurations are better than ideal external lens

ultrasoundideal external lens
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10 µm

On human bladder (10 scattering lengths, 2.67 mm thick)

• 50% higher focusing performance than external lens.

• 300% higher focusing performance than previous designs.

[Pediredla et al., to appear in Nature Communications]

On brain tissue (50 scattering lengths, 7.5 mm thick)

• 15% higher focusing performance than external lens.

• Experimentally validated on tissue phantoms.
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• accurate and efficient simulation

• virtually design sensors, optics, and algorithms 

forward rendering

• accurate and efficient differentiable simulation

• tractably solve general inverse problems

inverse rendering

non-line-of-sight

imaging

tactile sensor 

design

speckle 

imaging
time-of-flight

imaging

ultrafast light 

scanning

acousto-optic 

lensing

differentiable 

renderer

inverse 

problems

Physics-based rendering and its applications to computational imaging



scanning with galvos (1 kHz) is slow due to moving parts

microscopy lidarprojector
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our scanning technique (1MHZ) is fast without moving parts

microscopy lidarprojector

1000 × faster

*not up to scale

physics

ultrafast optics

synchronization

signal processing
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Hardware results: adaptive depth measurement

standard galvo (depth error = 51.3 cm)
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match wave equation solvers, 105x faster match real measurements of memory effect

Comparison with wave-equation solver and real measurements

[Bar et al., 2019]
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groundtruth input image prior algorithm our algorithm

Better algorithms for fluorescence microscopy

[Alterman et al., 2021]



Acquisition of scattering materials

acquisition camera

• records speckle 

correlations

Optical fiber

rotating illuminator

• two laser beams at 

4o separation

motorized sample mount

• 8 degrees of freedom

high-power coherent 

monochromatic laser

Use differentiable speckle rendering to recover material parameters from speckle images

material samples



Acquisition

Scattering Soap Sample

Speckle Video
(Camera Feed)



Rendering wave optics is a very active area
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Why tactile sensing?

Robotic manipulation

[Yuan et.al. 2018]

[Wilson et.al. 2023]

Object perception

[Huang et.al. 2022]

Neuroprosthetics

[Gu et.al. 2023]Advanced manufacturing

[Li et.al. 2014]
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Vision-based tactile sensors: working principle

Live view Sensor view

Sensor schematic

[Johnson and Adelson, 2021]



Vision-based tactile sensors: photometric stereo 

With photometric stereo, GelSight can encode surface normals as an RGB image. 

Camera Images

Normals

[Johnson and Adelson, 2021]



Vision-based tactile sensors: design variants

GelSlim Family

Donlon et. al. 2018

Ma et. al. 2019

Hogan et. al. 2020

Taylor et. al. 2021

FlatGel GelSight

Dong et. al. 2017

Agarwal et. al. 2021

RoundTip GelSight

Romero et. al. 2020
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Designing VBTS is hard

• Diversity of sensor shape and required form-factor

• Complex light interaction

Flat sensing surface Curved sensing surface

[Agarwal et al., 2023]
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Sensor design framework: optical simulation

• What makes simulation challenging

• SDS light paths

• Indirect illumination

• Require Markov Chain Monte Carlo rendering techniques

• Key idea       Slowly mutate paths to generate useful paths

Accepted

[Agarwal et al., 2023]



Optimization:
- Stochastic Gradient Descent (SGD)

MCMC sampling:
- Langevin Monte Carlo (LMC)

[Luan et al., 2020]
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Curved sensor material design
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Curved sensor illumination design

Light source



Curved sensor shape design

• Used gradient-free optimization, CMA-ES, for 

optimizing the sensor shape

• Optimized sensor design is 35% better than 

initial design

• Optimized sensor design outperforms human-

expert design in 3D shape reconstruction



Results: Robotic grasping

[Agarwal et al., 2023]



Results: surface inspection  

Experiment setup

Experiment 1: Detection accuracy vs text size

Human expert 

design
Optimized design

Text size = 1.5 mm

Text size = 1.0 mm

Text description: 

Tactile

Sensing

[Agarwal et al., 2023]



Results: surface inspection  

Experiment setup

Experiment 2: Detection accuracy vs contact location

Human expert 

design
Optimized design

Text description: Feeling of Touch

[Agarwal et al., 2023]
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[Agarwal et al., 2023]
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physically-accurate 

rendering

photorealistic 

simulated image

digital scene specification 

(geometry, materials, 

optics, light sources)

Forward renderingForward rendering
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inverse rendering

photorealistic 
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physically-accurate 

inverse rendering

digital scene specification 

(geometry, materials, 

camera, light sources)

image measurements

Inverse renderingInverse rendering
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(tissue properties)
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image(m)

known 
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solve with exhaustive search

computed with 
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Analysis by synthesis (a.k.a. inverse rendering)

min        ǁ              -   image(m) ǁ2

unknowns m

(tissue properties)

unknown 

parameters m 

(tissue properties)

∂image(m)

∂m

known 

parameters 

(camera, shape)

while (not converged)

update m with

solve with gradient descent

computed with 

differentiable 

rendering

differentiable 

rendering

∂loss(m)

∂m
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Analysis by synthesis (a.k.a. inverse rendering)

Analysis-by-synthesis optimization:

𝜋: BRDF 𝜋: scattering

𝜋: camera 

pose

𝜋: illumination

𝜋: 3D shape and pose

min sceneunknowns 𝜋 loss  , render sceneunknowns 𝜋
Stochastic gradient descent (e.g., Adam):

Differentiable 

rendering

initialize 𝜋 ← 𝜋0 

update 𝜋 ← 𝜋 + 𝜂 ∙ dloss 𝜋d𝜋
while (not converged)



How do we differentiate light transport?
sensor 

weight

light path

source 

weight

space of all light paths
path throughput

image

BSDF geometry
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Boundary terms
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Reynolds transport theorem
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(if they depend on 𝜋)

=Boundary domain
Reynolds transport theorem [1903]

   Generalization of the Leibniz rule

නΩ(𝜋) d𝑓(𝑥,𝜋)d𝜋 d𝐴 𝑥



Reynolds transport theorem

𝑓 = 0 𝑓 = 1

dd𝜋 නΩ 𝜋 𝑓 𝑥, 𝜋 d𝐴 𝑥 = + න𝜕Ω(𝜋)𝑔 𝑥, 𝜋 d𝑙 𝑥

𝜋

discontinuity points ∪ boundary of domain Ω
(if they depend on 𝜋)

=Boundary domain
Reynolds transport theorem [1903]

   Generalization of the Leibniz rule

නΩ(𝜋) d𝑓(𝑥,𝜋)d𝜋 d𝐴 𝑥



Reynolds transport theorem

𝑓 = 0 𝑓 = 1

dd𝜋 නΩ 𝜋 𝑓 𝑥, 𝜋 d𝐴 𝑥 = + න𝜕Ω(𝜋)𝑔 𝑥, 𝜋 d𝑙 𝑥

𝜋discontinuity points 

discontinuity points ∪ boundary of domain Ω
(if they depend on 𝜋)

=Boundary domain
Reynolds transport theorem [1903]

   Generalization of the Leibniz rule

නΩ(𝜋) d𝑓(𝑥,𝜋)d𝜋 d𝐴 𝑥



Reynolds transport theorem

Boundary integral

𝑓 = 0 𝑓 = 1

dd𝜋 නΩ 𝜋 𝑓 𝑥, 𝜋 d𝐴 𝑥 = + න𝜕Ω(𝜋)𝑔 𝑥, 𝜋 d𝑙 𝑥

𝜋discontinuity points 

Reynolds transport theorem [1903]

   Generalization of the Leibniz rule
Interior integral

නΩ(𝜋) d𝑓(𝑥,𝜋)d𝜋 d𝐴 𝑥



DIFFERENTIATING DIRECT 
ILLUMINATION

59



Direct illumination integral

Radiance from 𝑥:

𝒙
𝐼 = නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 



Unit hemisphere

Direct illumination integral

Radiance from 𝑥:

𝒙 𝝎𝒊
𝐼 = නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 



Unit hemisphere

Incident 

radiance

Direct illumination integral

Radiance from 𝑥:

𝒙 𝝎𝒊
𝐼 = නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 



Unit hemisphere

Reflectance 

(BRDF)

Incident 

radiance

Direct illumination integral

Radiance from 𝑥:

𝒙 𝝎𝒊𝒇𝒓

𝐼 = නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 



Unit hemisphere

Reflectance 

(BRDF)

Incident 

radiance

Shading wrt 

normal 𝒏 

Direct illumination integral

Radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓

𝐼 = නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 



Unit hemisphere

Reflectance 

(BRDF)

Incident 

radiance

Shading wrt 

normal 𝒏 

Direct illumination integral

Radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓 Monte Carlo rendering:

𝐼 = නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 



Unit hemisphere

Reflectance 

(BRDF)

Incident 

radiance

Shading wrt 

normal 𝒏 

Direct illumination integral

Radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓 Monte Carlo rendering:

• Sample random directions 𝜔𝑖𝑠 from PDF 𝑝 𝜔𝑖

𝐼 = නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 



Unit hemisphere

Reflectance 

(BRDF)

Incident 

radiance

Shading wrt 

normal 𝒏 

Direct illumination integral

Radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓 Monte Carlo rendering:

• Sample random directions 𝜔𝑖𝑠 from PDF 𝑝 𝜔𝑖
• Form estimator𝐼 ≈ ෍𝑠 𝑓𝑟 𝜔𝑖𝑠, 𝜔𝑜  𝐿𝑖 𝜔𝑖𝑠 𝑛 ∙ 𝜔𝑖𝑠𝑝 𝜔𝑖𝑠

𝐼 = නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 



Differential direct illumination

Differential radiance from 𝑥:d𝐼d𝜋 = dd𝜋 නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 
𝒙 𝝎𝒊𝒏

𝒇𝒓



d𝐼d𝜋 = dd𝜋 නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 
Differential direct illumination: local parameters

Differential radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓



d𝐼d𝜋 = dd𝜋 නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 
Differential direct illumination: local parameters

Differential radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓𝝅: local parameters

• BRDF parameters

• shading normal

• illumination brightness



d𝐼d𝜋 = නℍ2 dd𝜋 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 
Differential direct illumination: local parameters

Differential radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓𝝅: local parameters

• BRDF parameters

• shading normal

• illumination brightness

Just move derivative inside integral



d𝐼d𝜋 = නℍ2 dd𝜋 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 
Differential direct illumination: local parameters

Differential radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓𝝅: local parameters

• BRDF parameters

• shading normal

• illumination brightness

Monte Carlo differentiable rendering:

• Sample random directions 𝜔𝑖𝑠 from PDF 𝑝 𝜔𝑖
• Form estimatord𝐼d𝜋 ≈ ෍𝑠

dd𝜋 𝑓𝑟 𝜔𝑖𝑠, 𝜔𝑜  𝐿𝑖 𝜔𝑖𝑠 𝑛 ∙ 𝜔𝑖𝑠𝑝 𝜔𝑖𝑠

Just move derivative inside integral

Just differentiate numerator

[Khungurn et al. 2015, Gkioulekas et al. 2015]



d𝐼d𝜋 = නℍ2 dd𝜋 𝑓𝑟 𝜔𝑖 , 𝜔𝑜, 𝜋 𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖 d𝜎(𝜔𝑖) 
Alternative estimator

Differential radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓𝝅: local parameters

• BRDF parameters

Monte Carlo estimation:

• Sample random directions 𝜔𝑖𝑠 from PDF 𝑝 𝜔𝑖 , 𝜋
• Form estimatord𝐼d𝜋 ≈ ෍𝑠

dd𝜋 𝑓𝑟 𝜔𝑖𝑠, 𝜔𝑜, 𝜋  𝐿𝑖 𝜔𝑖𝑠 𝑛 ∙ 𝜔𝑖𝑠𝑝 𝜔𝑖𝑠, 𝜋

Just move derivative inside integral



Differentiate entire contribution

[Zeltner et al. 2021]d𝐼d𝜋 ≈ ෍𝑠 dd𝜋 𝑓𝑟 𝜔𝑖𝑠, 𝜔𝑜, 𝜋  𝐿𝑖 𝜔𝑖𝑠 𝑛 ∙ 𝜔𝑖𝑠𝑝 𝜔𝑖𝑠, 𝜋

d𝐼d𝜋 = නℍ2 dd𝜋 𝑓𝑟 𝜔𝑖 , 𝜔𝑜, 𝜋 𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖 d𝜎(𝜔𝑖) 
Alternative estimator

Differential radiance from 𝑥:

𝒙 𝝎𝒊𝒏
𝒇𝒓𝝅: local parameters

• BRDF parameters

Monte Carlo estimation:

• Sample random directions 𝜔𝑖𝑠 from PDF 𝑝 𝜔𝑖 , 𝜋
• Form estimator

Just move derivative inside integral



Differential direct illumination: global parameters

Differential radiance from 𝑥:d𝐼d𝜋 = dd𝜋 නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 
𝒙 𝝎𝒊𝒏

𝒇𝒓𝝅: global parameters

• shape and pose of 

different scene elements 

(camera, sources, objects)



Differential direct illumination: global parameters

Differential radiance from 𝑥:d𝐼d𝜋 = dd𝜋 නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 
𝒙 𝝎𝒊𝒏

𝒇𝒓𝝅: global parameters

• shape and pose of 

different scene elements 

(camera, sources, objects)

= නℍ2 dd𝜋 𝑓𝑟 𝜔𝑖 , 𝜔𝑜  𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖  d𝜎(𝜔𝑖) 
Need to use full Reynolds transport theorem



𝐼 = නℍ2 𝑓𝑟 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝜔𝑖 𝑛 ∙ 𝜔𝑖 d𝜎(𝜔𝑖) 

Discontinuities in the integrand

Integrand𝑓 𝜔𝑖 Discontinuous points 

(𝜋-dependent)

Low High

𝝅: size of the emitter

𝑓 𝜔𝑖



Applying the Reynolds transport theorem

Low High𝐼 = නℍ2 𝑓 𝜔𝑖 , 𝜔𝑜 d𝜎(𝜔𝑖) 

Integrand𝑓 𝜔𝑖 Discontinuous points 

(𝜋-dependent)



Applying the Reynolds transport theorem

Low High𝐼 = නℍ2 𝑓 𝜔𝑖 , 𝜔𝑜 d𝜎(𝜔𝑖) 
d𝐼d𝜋 = නℍ2 d𝑓d𝜋  d𝜎  +  න𝜕ℍ2𝑔 d𝑙

Interior integral

(same as for local 

parameters)

Boundary 

integral
Integrand𝑓 𝜔𝑖 Discontinuous points 

(𝜋-dependent)

[Ramamoorthi et al. 2007, Li et al. 2019]



Reparameterizing the direct illumination integral

Hemispherical integral

𝒙 𝝎𝒊

𝐼 = නℍ2𝑓 𝝎𝒊  d𝜎(𝝎𝒊) 



Reparameterizing the direct illumination integral

Hemispherical integral

Change of 

variables

Change of 

variables

Surface integral𝒚𝓛(𝜋)

𝐼 = න𝓛(𝜋)𝑓 𝒚 → 𝒙  𝐺 𝒙, 𝒚  d𝐴(𝒚) 

𝒙𝒙 𝝎𝒊

𝐼 = නℍ2𝑓 𝝎𝒊  d𝜎(𝝎𝒊) 



Includes visibility, fall-off, 

and foreshortening terms

Reparameterizing the direct illumination integral

Hemispherical integral

Change of 

variables

Change of 

variables

Surface integral𝒚𝓛(𝜋)

𝐼 = න𝓛(𝜋)𝑓 𝒚 → 𝒙  𝐺 𝒙, 𝒚  d𝐴(𝒚) 

𝒙𝒙 𝝎𝒊

𝐼 = නℍ2𝑓 𝝎𝒊  d𝜎(𝝎𝒊) 



Reparameterizing the direct illumination integral

Hemispherical integral

Change of 

variables

Change of 

variables

Surface integral

Low High

𝐼 = නℍ2𝑓 𝜔𝑖  d𝜎(𝜔𝑖) 𝐼 = නℒ(𝜋)𝑓 𝑦 → 𝑥  𝐺 𝑥, 𝑦  d𝐴(𝑦) 



continuousdiscontinuous

Reparameterizing the direct illumination integral

Hemispherical integral

Change of 

variables

Change of 

variables

Surface integral

Low High

𝐼 = නℍ2𝑓 𝜔𝑖  d𝜎(𝜔𝑖) 𝐼 = නℒ(𝜋)𝑓 𝑦 → 𝑥  𝐺 𝑥, 𝑦  d𝐴(𝑦) 



constant domain evolving domain

continuousdiscontinuous

Reparameterizing the direct illumination integral

Hemispherical integral

Change of 

variables

Change of 

variables

Surface integral

Low High

𝐼 = නℍ2𝑓 𝜔𝑖  d𝜎(𝜔𝑖) 𝐼 = නℒ(𝜋)𝑓 𝑦 → 𝑥  𝐺 𝑥, 𝑦  d𝐴(𝑦) 



Differentiating the hemispherical integral

Low High Discontinuities of 𝑓 𝜋: size of the emitter

𝒙 𝝎
DifferentiationDifferentiation

Reynolds transport 

theorem 

𝐼 = නℍ2𝑓 𝜔𝑖 d𝜎(𝜔𝜄) 
d𝐼d𝜋 = නℍ2 d(𝑓)d𝜋 d𝜎 + න𝜕ℍ2𝑔 d𝑙

Interior Boundary



𝒙

Differentiating the area integral

Low High Boundary of 𝓛(𝜋) 𝜋: size of the emitter

DifferentiationDifferentiation

Reynolds transport 

theorem 

d𝐼d𝜋 = න𝓛(𝜋) d(𝑓𝐺)d𝜋 d𝐴 + න𝜕𝓛(𝜋)𝑔 d𝑙
Interior Boundary

𝐼 = නℒ(𝜋)𝑓 𝑦 → 𝑥 𝐺 𝑥, 𝑦 d𝐴(𝑦) 



Sources of discontinuities

Boundary edge Silhouette edgeSharp edge



Sources of discontinuities

Boundary edge Silhouette edgeSharp edge



Sources of discontinuities

Boundary edge Silhouette edgeSharp edge



Sources of discontinuities

Boundary edge Silhouette edgeSharp edge



Sources of discontinuities

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge



Sources of discontinuities

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette

detection



Sources of discontinuities

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette

detection

• We still need to account for discontinuities when using smooth closed 
surfaces (e.g., neural SDFs)



Sources of discontinuities

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette

detection

• We still need to account for discontinuities when using smooth closed 
surfaces (e.g., neural SDFs)



Sources of discontinuities

Boundary edge

Topology-driven Visibility-driven 

Silhouette edgeSharp edge

Silhouette

detection

• We still need to account for discontinuities when using smooth closed 
surfaces (e.g., neural SDFs)

[Gargallo et al., ICCV 2007] 



Significance of the boundary integral

73

Original image Derivative image

w.r.t. vertical offset of

the area light and the cube

Derivative image

w/o boundary integral



Significance of the boundary integral

73

Original image Derivative image

w.r.t. vertical offset of

the area light and the cube

Derivative image

w/o boundary integral



Gradient Accuracy Matters

74

Inverse-rendering results with identical optimization settings

Luan et al. 2021



Differential Global Illumination

75



Very active area of research

76



Remember: Path Integral for Global Illumination

Measurement

contribution

Path space

Area-product

measure

Pixel value

[Zhang et al., 2020]



Differential Path Integral

Path-space differentiable rendering

Interior integral Boundary integral

dd𝜃 ∫Ω𝑓(𝒙)d𝜇(𝒙) = ∫Ω𝑓· (𝒙)d𝜇(𝒙) + ∫𝜕Ω𝑔(𝒙)d𝜇′(𝒙)

[Zhang et al., 2020]



(The full derivation is quite involved…)

Differential Path Integral

Path-space differentiable rendering

Interior integral Boundary integral

dd𝜃 ∫Ω𝑓(𝒙)d𝜇(𝒙) = ∫Ω𝑓· (𝒙)d𝜇(𝒙) + ∫𝜕Ω𝑔(𝒙)d𝜇′(𝒙)

[Zhang et al., 2020]



Differential Path Integral

Path-space differentiable rendering

Interior integral

dd𝜃 ∫Ω𝑓(𝒙)d𝜇(𝒙) = ∫Ω𝑓· (𝒙)d𝜇(𝒙) + ∫𝜕Ω𝑔(𝒙)d𝜇′(𝒙)

Interior integral

• Defined on the ordinary path space Ω
• The integrand 𝑓·  can be obtained by differentiating

the ordinary measurement contribution function 𝑓

[Zhang et al., 2020]



Differential Path Integral

Boundary integral

Path-space differentiable renderingdd𝜃 ∫Ω𝑓(𝒙)d𝜇(𝒙) = ∫Ω𝑓· (𝒙)d𝜇(𝒙) + ∫𝜕Ω𝑔(𝒙)d𝜇′(𝒙)
Boundary integral

• Defined on the boundary path space 𝜕Ω
• A boundary light path is the same as an original one

except having exactly one boundary segment



Path-Space Differentiable Path Tracing

Unidirectional path tracing + NEE

Unidirectional estimator

• Interior: unidirectional path tracing

• Boundary: unidirectional sampling of subpaths

[Zhang et al., 2020]



Path-Space Differentiable Path Tracing

Unidirectional path tracing + NEE

Unidirectional estimator

• Interior: unidirectional path tracing

• Boundary: unidirectional sampling of subpaths

Bidirectional path tracing

Bidirectional estimator

• Interior: bidirectional path tracing

• Boundary: bidirectional sampling of subpaths

[Zhang et al., 2020]



NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [MildenHall et al. ECCV 2020]

Application: neural rendering



Acquisition of scattering materials

mustard

whole milk

shampoo

hand cream

coffee

wine

robitussin

olive oil curacao

mixed soap

milk soap

liquid clay

reduced milk

[Gkioulekas et al., 2013]



Acquisition setup

[Gkioulekas et al., 2013]



Acquisition setup

[Gkioulekas et al., 2013]



Acquisition setup

Invert using 

differentiable 

rendering

[Gkioulekas et al., 2013]



Synthetic renderings

mixed soap

glycerine soap olive oil curacao whole milk

[Gkioulekas et al., 2013]



Particle sizing of industrial nanodispersions

[Gkioulekas et al., 2013]



Particle sizing of industrial nanodispersions
unknown nanodispersion

particle material

dispersing medium

[Gkioulekas et al., 2013]



Particle sizing of industrial nanodispersions
unknown nanodispersion

particle material

dispersing medium

size

%

measurements

[Gkioulekas et al., 2013]



Particle sizing of industrial nanodispersions
unknown nanodispersion

particle material

dispersing medium

size

%

measurements

[Gkioulekas et al., 2013]



Particle sizing of industrial nanodispersions

polystyrene aluminum oxide

very precise dispersions (NIST 

Traceable Standards)

[Gkioulekas et al., 2013]



Particle sizing of industrial nanodispersions

polystyrene aluminum oxide

polystyrene 1 polystyrene 2 polystyrene 3 aluminum oxide

ground-truth

very precise dispersions (NIST 

Traceable Standards)

[Gkioulekas et al., 2013]



Particle sizing of industrial nanodispersions

polystyrene aluminum oxide

polystyrene 1 polystyrene 2 polystyrene 3 aluminum oxide

ground-truth

very precise dispersions (NIST 

Traceable Standards)

θ

-π π

p(θ)

θ

p(θ) [Gkioulekas et al., 2013]
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[Gkioulekas et al., 2015]
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Active area of research

woven fabrics

[Khungurn et al. 2015, 

Zhao et al. 2016]

cloud tomography

[Levis et al. 2015, 

2017, 2020]

industrial dispersions

[Gkioulekas et al. 2013]

computed tomography

[Geva et al. 2018]

efficient algorithms

[Nimier-David et al. 2019, 2020]

3D printing

[Elek et al. 2019, 

Nindel et al. 2021]
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single-photon avalanche 

photodiode (SPAD)

picosecond 

laser
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NLOS shape optimization

visible surface

source 

and 

sensor

NLOS 

scene

Simulated time-of-flight data 100,000 vertices

[Tsai et al., 2019]



Underwater 3D using imaging SONAR

Underwater robot with sonar Robotics Institute High Bay

[Qadri et al., 2023]



Underwater 3D using imaging SONAR

Test structure
Ground truth mesh 

obtained using a laser scan

Sonar image collection points

[Qadri et al., 2023]



Underwater 3D using imaging SONAR

differentiable 

rendering

virtual 

aperture

back-

projection

1 degree 14 degrees 28 degrees

[Qadri et al., 2023]



Underwater 3D using imaging SONAR

Millimeter-accuracy underwater 3D reconstructions using 

data captured with an acoustic sonar mounted on robot.

[Qadri et al., 2023]
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[Ahn et al., CVPR 2023, Tuesday PM]
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ProjectorCamera

Kaleidoscope

Object

kaleidoscopic system camera view virtual cameras

[Ahn et al., CVPR 2023, Tuesday PM]



Example 3D scans
photograph 3D reconstruction

[Ahn et al., CVPR 2023, Tuesday PM]



Optimizing Gradient-Index (GRIN) Optics

Luneburg Lens GRIN Fiber

[Teh et al., 2022]
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Luneburg Lens

[Luneburg, R. K. 1944]
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https://en.wikipedia.org/wiki/Optical_fiber
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[Teh et al., 2022]
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Multiview Display

Target Target

optimization

results

[Teh et al., 2022]



Differentiable 
rendering for 
wildfire monitoring

[USDA NIFA project jointly with Sebastian Scherer and Katia Sycara]



What differentiable rendering does 
not give us
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Ambiguities between BRDF and lighting 

[Romeiro and Zickler 2010] 

Ambiguities between shape and lighting 

[Xiong et al. 2015] 

Ambiguities between scattering 

parameters [Zhao et al. 2014] 
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Why we need discriminative loss functions

• Well-designed loss functions can help reduce ambiguities

• Perceptual losses can help emphasize design aspects that matter

• Differentiable rendering can be combined with any loss function that can be 

backpropagated through
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VGG-based perceptual loss [Johnson et al. 2016] 
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Optical gradient descent [Chen et al. 2020] 
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Non-line-of-sight imaging [Tsai et al. 2019] 



Physics-based rendering and its applications to computational imaging

• accurate and efficient simulation

• virtually design sensors, optics, and algorithms 

forward rendering

• accurate and efficient differentiable simulation

• tractably solve general inverse problems
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sensors). 
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Take-Home Messages

• Great progress has been made in physics-based rendering

• Capable of handling multiple types of imaging systems beyond RGB cameras (e.g., time-of-flight, sonar, tactile 
sensors). 

• Capable of handling more general scene models and light-matter interactions (e.g., speckle, continuous 
refraction and scattering).

• Capable of acting as digital twins for scientific imaging applications.

• Capable of differentiation for general inverse rendering problems.

GRIN optic 
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source 
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sensor
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scene

underwater 

sonar



Monte Carlo rendering for more general physics and sensing

Simulation of general diffusion 

processes like heat transfer 

and oxygen flow 

Joint work with 

Rohan Sawhney, Bailey Miller, 

Keenan Crane

SIGGRAPH 2023



Many thanks to our collaborators



Many thanks to our sponsors
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