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Fig. 1. Simulating refractive radiative transfer using bidrectional path tracing. Our technique enables path tracing estimators such as particle tracing,
next-event estimation, bidirectional path tracing (BDPT) for heterogeneous refractive media. Unlike photon mapping (PM), path tracing estimators are
unbiased and do not introduce artifacts besides noise. The above teaser shows that the proposed path tracing technique matches the real data acquired from
an acousto-optic setup (ultrasound frequency: 813 kHz, 3 mean free paths, anisotropy g = 0.85) more accurately compared to photon mapping. Notice the
complex caustics formed in a scattering medium whose refractive index field is altered using ultrasound. For more details and the reasons behind capture

system imperfections, see Section 7.2. Our renderer can accelerate developments in acousto-optics, photo-acoustics, and schlieren imaging applications. The
rendering time for BDPT and PM is 2.6 hrs on a cluster of 100 72-core (AWS c5n.18xlarge) machines.

Rendering radiative transfer through media with a heterogeneous refractive
index is challenging because the continuous refractive index variations re-
sult in light traveling along curved paths. Existing algorithms are based on
photon mapping techniques, and thus are biased and result in strong arti-
facts. On the other hand, existing unbiased methods such as path tracing and
bidirectional path tracing cannot be used in their current form to simulate
media with a heterogeneous refractive index. We change this state of affairs
by deriving unbiased path tracing estimators for this problem. Starting from
the refractive radiative transfer equation (RRTE), we derive a path-integral
formulation, which we use to generalize path tracing with next-event esti-
mation and bidirectional path tracing to the heterogeneous refractive index
setting. We then develop an optimization approach based on fast analytic de-
rivative computations to produce the point-to-point connections required by
these path tracing algorithms. We propose several acceleration techniques to
handle complex scenes (surfaces and volumes) that include participating me-
dia with heterogeneous refractive fields. We use our algorithms to simulate a
variety of scenes combining heterogeneous refraction and scattering, as well
as tissue imaging techniques based on ultrasonic virtual waveguides and
lenses. Our algorithms and publicly-available implementation can be used to
characterize imaging systems such as refractive index microscopy, schlieren
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imaging, and acousto-optic imaging, and can facilitate the development of
inverse rendering techniques for related applications.
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1 INTRODUCTION

Media characterized by continuously-varying refractive index, oc-
curring due to variations in temperature and pressure, or due to
heterogeneous mixing of materials, are common in the real world.
Examples of such heterogeneous refractive media include the atmo-
sphere, biological tissue, crystals, minerals, and transparent plastics.
When light travels through such media, it follows curved trajec-
tories due to the continuous refraction. This bending of light can
be observed by shining a laser beam on a heterogeneous refractive
medium, e.g., as shown in Figure 2.

Light transport in heterogeneous refractive media is described
using the refractive radiative transfer equation (RRTE) [Ament et al.
2014; Thrke et al. 2007] that, in addition to light bending due to con-
tinuous refraction, also models effects due to volumetric and surface
scattering. The light bending effects make this equation significantly
more challenging to simulate than its counterpart for homogeneous
refractive media, the radiative transfer equation [Novak et al. 2018].
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Existing rendering algorithms are based on photon mapping tech-
niques; these algorithms are efficient but biased, and can introduce
significant artifacts in the output images. By contrast, unbiased algo-
rithms such as path tracing, particle tracing, and bidirectional path
tracing, are inefficient or even completely intractable for rendering
refractive radiative transfer.

The main challenge in applying these unbiased algorithms to
heterogeneous refractive media is the difficulty of performing direct
connections between two points inside such a medium. Direct con-
nections are needed, e.g., for next event estimation in path tracing
and particle tracing, and to connect the source and sensor subpaths
in bidirectional path tracing. Connecting two points inside a homo-
geneous refractive medium is trivial—one only needs to trace the
linear segment between the two points. By contrast, connecting two
points inside a heterogeneous refractive medium requires finding
paths, generally curved, starting and ending at the two points that
are solutions of the eikonal equation. This equation accounts for the
variable (inversely proportional to refractive index) speed of light
inside heterogeneous refractive media. The solutions to the eikonal
equation are paths satisfying Fermat’s principle, in that they are
locally stationary with respect to the time it takes light to traverse
them or, equivalently, with respect to optical pathlength.

In this paper, we address this challenge by developing techniques
for computing these stationary paths, efficiently and without bias.
Our technique is based on the fact that the eikonal equation, and the
ray tracing equations derived from it, are differentiable. Therefore,
we show that we can use use efficient gradient-based optimiza-
tion algorithms to search for paths that connect two points, while
also satisfying the eikonal equation (Section 4). Special attention is
required to account for the fact that, in heterogeneous refractive
media, there may exist more than one stationary paths connecting
two points: our optimization-based technique in its simple form
would only find one of these paths, resulting in bias, and is not prac-
tical for enumerating all stationary paths. To ensure unbiasedness
and maintain efficiency, we introduce a Monte Carlo technique that
forms an unbiased estimate of the total throughput through multi-
ple stationary paths, through repeated random reinitializations of
our gradient-based optimization algorithm (Section 4.1). To further
improve efficiency, we show how to accelerate direct connections
using techniques similar to sphere tracing of signed distance func-
tions [Hart 1996], and inside-outside tests based on fast winding
numbers [Barill et al. 2018] (Section 5).

The ability to perform direct connections inside heterogeneous
refractive media allows us to extend unbiased rendering algorithms,
such as path tracing with next-event estimation and bidirectional
path tracing, to simulate refractive radiative transfer. We have imple-
mented these algorithms within a physically-based renderer [Jakob
2010], and validated the accuracy of our implementation using sim-
ple scenes with known solutions, as well as real measurements
(Figure 1, Section 7). Compared with previous photon mapping
techniques, our algorithms can accurately and efficiently reproduce
important effects, such as surface and volumetric caustics from
gradient-index (GRIN) optics. Our algorithms are also straightfor-
ward to extend for time-of-flight rendering and spectral rendering.

Besides faithfully rendering visual phenomena, our unbiased ren-
dering algorithms can be an invaluable tool to characterize scientific
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Scene set up Light propagation

Fig. 2. Light bending. This scene is inspired from Ament et al. [2014]. The
aquarium shown to the left is filled with a sugar solution whose refractive
index increases linearly with the liquid’s depth. A laser beam propagating
through this solution refracts and scatters continuously, resulting in a curved
light trajectory. Multiple such trajectories appear due to Fresnel reflection
of the beam on the aquarium’s wall. The rendering time for this scene is
5.5 hours on a 72-core (AWS c5n.18xlarge) machine.

imaging systems such as refractive index microscopy [Sun et al.
2014], schlieren imaging [Settles and Hargather 2017], and acousto-
optic techniques for light delivery and imaging [Chamanzar et al.
2019] that observe, induce, or exploit refractive index heterogeneity.
For example, consider the design of virtual optical elements such as
waveguides and lenses, formed inside the medium by acousto-optic
systems. In these systems, ultrasound induces controlled changes
of the refractive index field in a scattering medium (e.g., tissue),
and as a consequence, the wavefront of propagating light can be
modulated. A beam of light can be confined and steered deep in-
side the medium [Scopelliti and Chamanzar 2019], and in addition,
can be spatially modulated to generate complex spatial patterns
for targeted light delivery [Karimi et al. 2019] inside the scattering
medium. However, the ability of these systems to achieve desired
light throughput depends on optimizing several parameters, in-
cluding the choice of frequency, voltage, and phase coding of the
ultrasound system [Chamanzar et al. 2019]. Our algorithms and im-
plementation are well-suited to emulate such systems: We use our
implementation to simulate acousto-optic in-situ light modulation,
and reproduce real experimental data much more closely than what
was possible by previous photon mapping techniques (Figure 1). We
expect that our publicly-available implementation [Pediredla et al.
2020] will be useful for characterizing many imaging systems, de-
veloping inverse rendering techniques, or even training deep neural
networks for problems involving refractive radiative transfer.

2 RELATED WORK

Rendering heterogeneous refractive media. In geometric optics,
the eikonal equation can be used to describe the propagation of
light in a medium where the refractive index varies continuously
as a function of location [Kravtsov and Orlov 1990]. In particular,
given an initial location and direction, the eikonal equation can be
transformed into a Hamiltonian system of two partial differential
equations, which in turn can be used to trace the path light will
follow inside the medium [Muiioz 2014; Stam and Languénou 1996].
These paths will generally be continuous curves, and not straight
lines as in a medium with a constant refractive index. Computing



these non-linear light paths typically involves using expensive nu-
merical integration techniques [Sanz-Serna 1992], which introduces
a severe, and often prohibitive, computational overhead for ren-
dering algorithms intended to simulate images of light interacting
with heterogeneous refractive media. This has motivated the de-
velopment of techniques for accelerating non-linear ray tracing,
including specialized data structures [Ihrke et al. 2007] and analyti-
cal approximations to the solutions of Hamilton’s equations [Mo
et al. 2015; Steinberg 2020]. Non-linear ray tracing has also been
used to visualize gravitational lensing [Groller 1995; Weiskopf et al.
2004].

Heterogeneous refractive index fields can be encountered not
just in transparent, but also in volumetric media. Light traveling
through such media not only refracts continuously, but addition-
ally scatters at discrete locations, due to interactions with medium
microstructures. This complex light transport process can be mod-
eled mathematically using the refractive radiative transfer equation
(RRTE), a generalization of the standard radiative transfer equation
(RTE) [Ishimaru 1978], that accounts for radiometric effects due
to both volumetric scattering and continuous refraction [Ament
et al. 2014]. Whereas research in computer graphics has produced
an array of physically-accurate and efficient algorithms for simu-
lating the RTE (e.g., volumetric path tracing and bidirectional path
tracing [Lafortune and Willems 1996; Novak et al. 2018]), rendering
algorithms for simulating the RRTE remain limited. A fundamental
challenge in generalizing volumetric path tracing techniques to the
RRTE is that these techniques rely critically (e.g., for next-event
estimation, or to connect the source and sensor subpaths) on the
ability to efficiently compute direct connections between points in
the medium, i.e,, find the path that light will follow to travel from
one point inside the medium to the other. When the medium has a
constant refractive index, a direct connection is equivalent to simply
computing the line connecting the two points. By contrast, when
the medium has a heterogeneous refractive index, performing the
direct connection requires solving the eikonal equation. Existing
RRTE rendering techniques sidestep this issue by adapting photon
mapping techniques, which replace direct connections with kernel
density estimation [Ament et al. 2014; Cao et al. 2010; Gutierrez
et al. 2005, 2006; Haber et al. 2005]. Unfortunately, these algorithms,
while efficient, are biased, and can result in images with strong arti-
facts. Our key technical contribution is a computationally-efficient
procedure for performing direct connections in heterogeneous re-
fractive media. In turn, this makes it possible for the first to develop
unbiased volumetric path tracing techniques for the efficient and
physically-accurate simulation of the RRTE.

Differentiation of specular and refractive ray tracing. At the core of
our technique for computing direct connections is the observation
that Hamilton’s equations for non-linear ray racing are differen-
tiable. Therefore, we can use efficient gradient descent techniques
to search for paths that satisfy these equations and, simultaneously,
connect two specified points. Our approach can be seen as a gener-
alization of techniques previously-developed in computer graphics
to tackle challenging specular and refractive rendering problems.
In particular, Chen and Arvo [2000b] showed that the equations
controlling how light can travel from one point to another through
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an intermediate specular reflection are differentiable. The associated
derivatives have been used to interactively render reflections of
curved reflectors [Chen and Arvo 2000a; Mitchell and Hanrahan
1992], as well as enable sampling of paths with complex specular
interactions in general-purpose Markov chain Monte Carlo render-
ing algorithms [Jakob and Marschner 2012; Kaplanyan et al. 2014].
More recently, these ideas have been used to enable next-event-
estimation connections through specular reflections [Hanika et al.
2015; Zeltner et al. 2020], including techniques that account for the
possible existence of multiple such connections. Likewise, Walter
et al. [2009] showed that the equations governing the process of
connecting two points through an intermediate refractive interface
are differentiable, and used the associated derivatives to acceler-
ate the rendering of caustics in optically-thin media. In both cases,
the underlying equations are equivalent to the eikonal equation,
restricted to allowing bending of light only at a specific surface. We
extend these ideas to the more general form of the eikonal equation,
allowing for continuous bending of light at any spatial point.

Imaging techniques involving heterogeneous refractive media. The
ability of heterogeneous refractive media to steer light along non-
linear paths has been at the core of a variety of imaging techniques.
In particular, gradient-index (GRIN) optics implement specific het-
erogeneous refractive index profiles that mimic or extend the focus-
ing properties of a lens. Examples include lenses and lightguides
with parabolic refractive profiles [Kapron 1970; Sharma and Ghatak
1981], Maxwell’s fish-eye lens [Merlin 2011], and the Luneburg
lens [Luneburg 1966]. GRIN optics can serve as a replacement for
standard optics in applications requiring minimal aberrations, or
in applications using wavelengths where it is impossible to manu-
facture regular lenses. More recently, ultrasonic techniques have
emerged that mechanically induce pre-programmed refractive index
profiles in media that would normally have a homogeneous refrac-
tive index. This capability can be used to, e.g., create varifocal lenses
that support very high tuning frequencies [Mermillod-Blondin et al.
2008], or to sculpt waveguides inside media such as tissue where it
is impossible to place conventional lenses [Chamanzar et al. 2019].
We re-visit these techniques in our experiments section, where we
show how our algorithms can be used to simulate their applications.

The ubiquity of heterogeneous refractive media in nature has
also motivated significant research towards imaging techniques
that can extract information about the heterogeneous refractive in-
dex profiles underlying image measurements. For example, schlieren
photography is a classical technique for visualizing the propagation
of light in gasses and other heterogeneous refractive media [Dalziel
et al. 2000; Howes 1984; Krehl and Engemann 1995; Settles and
Hargather 2017; Wetzstein et al. 2011]. Other techniques use mea-
surements similar to those from schlieren photography, together
with dedicated inverse algorithms, to estimate the three-dimensional
refractive index profile [Atcheson et al. 2008; Ji et al. 2013; Ma et al.
2014; Xue et al. 2014]. Closely related are techniques in seismic
imaging, which exploit the similarity between the propagation of
seismic waves below the Earth’s surface and the propagation of
light in heterogeneous refractive media, to create subsurface im-
ages [Robein 2010]. In particular, travel-time tomography techniques
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Algorithm 1: Symplectic integration for ray tracing

Input: n(x), Vn(x), ray(x, v), nSteps, s = step size
Output: ray(x, v)
for i =1: nSteps do
ray.v+ = 0.5sVn(ray.x);
ray.

Xt =s———;
ray.xt=s n(ray.x)
ray.v+ = 0.5sVn(ray.x);

end

recover the unknown subsurface refractive index values using gradi-
ent optimization, which requires differentiating through the eikonal
equation [Benmansour et al. 2010; Leung et al. 2006].

3 BACKGROUND ON REFRACTIVE RADIATIVE
TRANSFER

In this section, we provide background on geometric optics and
light transport inside media with a heterogeneous refractive index.
For details, we refer to Kravtsov and Orvol [1990] for the former,
and Ament et al. [2014] for the latter.

3.1 Non-linear ray tracing

The propagation of light inside a medium with continuously-varying
refractive index (heterogeneous refractive medium) can be described
using the eikonal equation. This equation accounts for the fact
that the speed of light varies continuously inside the medium, and
is inversely proportional to the refractive index. In particular, we
can define at any point x inside the medium the vector velocity
of light v(x) = w(x)/n(x), where w(x) is a three-dimensional unit-
norm vector indicating direction of propagation, and n(x) is the
local refractive index. Then, we can rewrite the eikonal equation
equivalently as the Hamilton’s equations [Ihrke et al. 2007]:

& Vn(w, )
dx v
el @

where ds is the infinitesimal arc length. Then, given an initial posi-
tion x and velocity v, we can trace the path light will follow through
the medium by evolving these two equations. The resulting paths
will typically be curves, rather than straight lines, and will corre-
spond to stationary points (local minima, local maxima, or saddle
points) of the optical pathlength t = / n(x(s)) ds, where integration
is along the path. We thus refer to these paths as stationary paths.
In practice, given initial x and v, we cannot evolve Hamilton’s
equations analytically except for very simple heterogeneous refrac-
tive media. Instead, the two equations need to be solved numerically.
Throughout this paper, we use a first-order symplectic integrator to
solve for ray propagation. Symplectic integrators are numerically-
stable algorithms developed specifically for Hamiltonian systems
such as the one defined through Equations (1)-(2) [Sanz-Serna 1992].
Compared to other numerical integration techniques (e.g., Runge-
Kutta techniques used by Ament et al. [2014] and Thrke et al. [2007]),
symplectic integrators remain stable and have low error for longer
ray propagation distances. We provide details on the integration
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procedure in Algorithm 1. Throughout the paper, we use the term
non-linear ray tracing to refer to the process of using symplectic in-
tegration to propagate a ray from the initial position x and velocity
v, in a way that satisfies Hamilton’s equations (1)-(2).

3.2 Refractive radiative transfer equation

Light transport inside a scattering medium is typically modeled in
computer graphics using the radiative transfer equation (RTE) [Chan-
drasekhar 2013]. The RTE models light emission, absorption, and
scattering, as a function of the medium’s absorption coefficient og,
scattering coefficient os, and phase function f;. The refractive ra-
diative transfer equation (RRTE) [Ament et al. 2014] extends the
RTE to model light transport in a medium that additionally has
heterogeneous refractive index n(x).

The RRTE employs basic radiance (I:(x, w) = L(x, w)/n(x)z) in-
stead of radiance. Ament et al. [2014] show that basic radiance is
conserved as light travels across stationary paths in a transparent
heterogeneous refractive medium; this is analogous to the conser-
vation of radiance along linear paths in a transparent homogeneous
medium. The RRTE can be written as:

w =—(0g+ 05)L(x, @) + 0gLe (%, )
S

+ 0'3/ fix, 0" - 0)l(x,0") do’. 3)

The RRTE is similar to RTE, with radiance replaced with basic ra-
diance. Another key difference is the streaming differential ds. In
a homogeneous refractive medium, where light propagates along
(piecewise-) linear paths, ds reduces to directional derivatives (where
direction is @ = v/||v||). However, due to the curved light paths in a
heterogeneous refractive medium, ds must also account for change
of propagation direction and velocity along a path. Therefore:

dl aidx+a£ dv @

ds  oxds ovds

3.3 Path-integral formulation of refractive radiative
transfer

The RRTE in its integro-differential form (3) does not directly lend
itself to the derivation of Monte Carlo rendering algorithms. Addi-
tionally, real-world scenes typically contain surface geometry and
homogeneous refractive volumes, in addition to heterogeneous re-
fractive volumes. To develop Monte Carlo rendering algorithms for
such general scenes, it will be helpful to first derive a path-integral
formulation for refractive radiative transfer. We provide here this
derivation, which closely follows the derivation of the path integral
formulation of radiative transfer [Novak et al. 2018; Veach 1997].

Refractive volume rendering equation. We begin by converting
the RRTE into an integral form that we term the refractive volume
rendering equation, in direct analogy with the volume rendering
equation for homogeneous refractive media. Thanks to the similarity
between the RRTE and RTE, this can be done using a derivation



similar to Novak et al. [2018], which gives us the equation:

Lx,w) = /_ZOT(X, Xs) [Uaie(xs’ ws)+

as(xs)/fs(xs,w’ — ws)L(x5, 0") dw’ | ds
+T(x, %) L(x, @7), ©)

where:

e X is the point in the medium obtained by non-linear ray
tracing using Equations (1)-(2), starting from initial position
x and initial direction -, and evolve Hamilton’s equations
for a geometric distance s.

o T(x,Xs) =exp Iy v (x(s)) ds is the volumetric transmittance
along the curved path from x to x;.

® X, is the point where non-linear ray tracing from initial posi-
tion x and initial direction -, first intersects the boundary
of the medium, and x, = o if the medium is infinite.

Importantly, we note that volumetric transmittance depends on
geometric length and not optical length.

Refractive rendering equation. Radiative transfer for surfaces at a
point z is given by the rendering equation [Immel et al. 1986; Kajiya
1986]. This equation can modified for refractive radiative transfer
by simply changing radiance to basic radiance:

L(z,w) = Le(z, ) + / Li(zo)fi(z0' = w)do'™.  (6)

Here, L = L if the surface is interfaced with air, and L = L/n(z)?
if the surface is immersed in a heterogenous volume. 't is the
projected solid angle measure. L; is the incident basic radiance and
Li(z, ®) = L(x p (2, @), —®), where x p((z, @) is the intersection of
a ray, starting at point z and direction —w, with a surface M.

Path integral. The intensity I measured by a sensor equals the
inner product (with respect to a measure equal to the product of
area and projected solid angle measures) of the sensor importance
function W, (x, @) and the incident radiance on the sensor. By com-
bining and recursively expanding Equations (5)-(5) [Jakob 2016;
Veach 1997], we obtain the following path-integral expression for
refractive radiative transfer:

= (We(x @), n(x)?Li(x, @))|

:/7)We(XO)Xl)"(xk)zLe(Xk’Xk—l)G(X0=Xl)T(XO’XI)

K-1
[ ] 6tk %) T (ke Xiat) fo (ke X K1) dp(X)
k=1

- [ r@am, )
7)
where X = (%0, X1, ,Xg—1) € P is a light path with k bounces

satisfying Equations (1)-(2) between bounces; % is the space of all
such paths; du(X) is the total measure of the path; and all other
terms that depend on whether the point (x;) is in medium or on
surface and their values are shown in Table 1.
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Table 1. Definitions of terms for different types of connections.

symbol x; on surface Xy inside medium
fe(xy.2) fr(y 05 — op) a5 (Y fs(y, 05 — 0p)
T(xy) 1 T(xy)
y o \72
Gxy) NG -oglINW oz |/x-y| (/¥ as)

3.4 Monte Carlo estimators for refractive radiative transfer

Analytically evaluating the path integral in Equation (7) is typi-
cally not possible, except for trivial scenes. Monte Carlo rendering
algorithms approximate Equation (7) as:

K rE)
= pm)y

where p(-) is a probability distribution defined on path space #, and

I ®

{§<n) },ﬂ\’: ; are paths sampled from this distribution. Several path
sampling techniques have been proposed in computer graphics for
radiative transfer, including path tracing (PT) [Arvo 1995], bidirec-
tional path tracing (BDPT) [Veach and Guibas 1995] and Metropolis
light transport [Veach and Guibas 1997]. These techniques combine
computational efficiency and physical accuracy, resulting in inten-
sity estimates that are unbiased and consistent. Our focus in this
paper is on the first two of techniques, which sample paths inde-
pendently; we collectively refer to techniques of this kind as path
tracing estimators. Our goal is to develop path tracing estimators
for refractive radiative transfer. In Section 8, we discuss potential
future work on extending Metropolis light transport techniques to
the refractive radiative transfer setting.

Path tracing estimators work by first generating subpaths: in the
case of PT, this is a single subpath starting at the sensor, whereas in
the case of BDPT, there are two subpaths starting on the source and
sensor. In radiative transfer, these subpaths are generated by alter-
nating between linear ray tracing, and surface or volume scattering
events. Analogously, in refractive radiative transfer, these subpaths
are generated by alternating non-linear ray tracing and scattering
events. Then, complete paths are formed by performing direction
connections: in the case of PT, these are connections between ver-
tices of the subpath and points on a light source—often termed
next-event estimation—whereas in BDPT, these are connections
between any two vertices on the source and sensor subpath. When
these direct connections are between points in a homogeneous re-
fractive medium, as is most commonly the case in radiative transfer,
these connections require simply connecting the two points by a
line. By contrast, performing a direct connection between points in
a heterogeneous refractive medium, as needed in refractive radiative
transfer, requires finding a curved path connecting the two points,
while also satisfying Equations (1)-(2). Algorithms for performing
direct connections of this type is the key missing component for
enabling the use of path tracing estimators to simulate refractive
radiative transfer. In the next section, we develop such an algorithm,
which we then integrate into BDPT. Even though our discussion and
results focus on the BDPT case, we note that our direct connection
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Emitter o

Fig. 3. Types of direct connections. Based on the location of the source
(green) and sensor subpath (blue) ends, we have two different types of direct
connections (dotted curves). Type-1 direct connections have one vertex on
the medium boundary and another one inside the medium. Type-2 direct
connections have both vertices inside the medium.

algorithm can be used to extend any other path tracing estimator to
the refractive radiative transfer setting.

4 COMPUTING DIRECT CONNECTIONS

To join the source and sensor path ends, we need to find a curve
that terminates at the given two vertices (source and sensor path
ends) and satisfies Hamilton’s equations (1)-(2) at all the points on
the curve. In algebraic geometry, finding this curve is known as the
boundary value problem (BVP), and non-linear ray tracing is known
as the initial value problem (IVP). We will solve the BVP by solving
several IVP problems. For this, we first identify various connections
based on the vertex locations and propose techniques to compute
the curve joining these vertices.

Figure 3 identifies two types of direct connections based on the
location of the source and sensor path ends. While type-2 connec-
tions are a superset of type-1 connections, treating them as different
gives run time advantages for type-1 connections. Also, type-1 con-
nections are easier to derive than type-2 connections.

Type-1: A vertex at the boundary of the medium. In this case, one of
the vertices is inside the medium and another on the boundary. This
case occurs if the medium boundary is non-specular (rough or has
texture associated with it) or if the surface geometry is present inside
the heterogeneous refractive medium (i.e., participating medium).

Let x¢ and y be the two endpoints of the source and sensor sub-
paths (need not be in the same order) that have to be connected
via a refractive index field n(x). We assume that we have available
an implicit representation g(-) = 0 for the surface boundary that y
is located on. We have to determine initial velocity (vg) such that
X+« =y, where X« is obtained by solving initial value problem (ray
propagation) till geometric distance s*. For this, we define a loss
function L(vg) = %Hxs* —y||? and optimize it using the BFGS algo-
rithm, which requires the gradient of loss function (d£/dvy). For

a given initialization vo°, we next show the procedure to compute
the gradient d.£/dvy:
d.L T dXs*
— = (Xgx — -, 9
o = ey 3 ©)
dxgx _ OXgx  OXg* E (10)
dvy vy as* dvy
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Algorithm 2: Symplectic integration for derivative tracing
IV er

ax 3.3
Input: n(x), Vn(x), Hy (x), ray(x, v), ?SO = 03, Vo =1,
nSteps, s = step size
IXx OV
Output: Xs , =
vy dvg
for i = 1: nSteps do
ray.v+ = 0.5sVn(ray.x);
ov o
AL O.SSHn(ray.x)i;
avy avo
ray.v
ray.x+ = s ————;
n(ray.x)
OXgx . vsVn(ray.x) oxs N 1 Vg
s == s .
avo n(ray.x)2 ovg n(ray.x) avg
ray.v+ = 0.5sVn(ray.x);
OVgx OXg*
+ = 0.5sHp (ray.x) ;
avo avy
end

*
Computing jivo is tricky as the geometric length (s*) depends on vq
only at the solution of £ but is not defined for other vq. To mitigate
this problem, without loss of generality, we assume that x¢« is a
point on the medium’s boundary. Therefore, g(xg+) = 0, which
makes s* a function of vq for all initial velocity values. We can now
compute the missing ds* /dv by differentiating:

dg(xsx) dxex

x)=0 =0
9(xs+) = dxgx  dvp
dg(xsx) Oxsx
ds* dxg« v
R AL (11)
dvo dg(xgx) Ixex
dxgx  Os*
axs* dg(Xs*)
dXs* as* dXs* axs*
—— =|hxys - ——— | —. 12
dvp 3 dg(xs*) 9Xsx | 9vo ( )
dXS* Is*

The derivatives of the ray at distance s*: (9x« /dvg) are given in
Appendix A. The derivatives (9x4x /9vg, dvgx /dVg) can be computed
as part of the symplectic integration procedure used for Hamilton’s
equations, in parallel with ray tracing, as shown in Algorithm 2.

Type-2: Both vertices inside the medium. When both the vertices
are inside the medium, we can retain most of the theory developed
for type-1 connections. However, we do not have the implicit surface
constraint to restrict the geometric curve length (s*). To mitigate
this problem, we define s* := arg, min |lx; — y||?, which is the
shortest geometric length the light path has to be propagated to be
closest to y. This definition of s* is equivalent to solving the implicit
surface (x; — y)Tvs = 0, which brings us back to the derivations
for type-1 connections. The exact gradient for this case is derived
in Appendix B. Figure 4 shows a visualization of a gradient descent
optimation.

We note that type-2 connections can handle type-1 connections
as well. However, we found that using type-1 connections increases
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Fig. 4. Visualization of gradient descent optimization. The background
image is the refractive index field (RIF) of the medium. The white circles
mark the location of the vertices between which a direct connection has
to be computed. The yellow curve is obtained by solving IVP for a given
initial velocity and vertex position. Using gradient descent, we converge to
a velocity that makes the yellow curve pass through both the vertices.
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Fig. 5. Multiple direct connections. Between a source path end (v5) and
sensor path end (v;), we can have multiple connections that all satisfy
Equations (1)-(2) at all the points on the path. Computing a path determin-
istically biases the Monte Carlo algorithm. To select all the paths randomly,
we initialize the gradient descent technique with random initial velocity vy.

the number of converged cases by 10%, which decreases the number
of times the optimizer must be reinitialized. We think this is because
of a better-behaved loss function: Whereas the loss function for
type-1 uses the point where the path intersects the surface, the
one for type-2 uses the closest point along the path, which may be
anywhere in the medium.

4.1 Multiple direct connections

In the case of a medium with a constant refractive index, there
is always only one stationary path between any two points. By
contrast, in a medium with a heterogeneous refractive index, there
can be more than one stationary paths between two points, as
shown in Figure 5. In such a case, one would need to compute the
total throughput Zle f(Cy), where f(Cy) is the throughput of the
complete light path formed by connecting the source and sensor
subpaths through the k-th stationary path Ci, and K is the number
of stationary paths. However, in practice, it is difficult to compute
all stationary paths between two points, effectively requiring using
the BVP solver with all possible initialization values.

To circumvent this, we compute an unbiased Monte Carlo esti-
mate of the above sum. This requires first having a procedure that
can randomly sample each of the K stationary paths with some
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Algorithm 3: Multiple direct connections

Input: x,y, n(x), Vn(x), Hp (x);
Output: C, p(C)
/* Initialization */
sample v ~ Unif(sphere);
C = Gradient Descent(ray(x,v),y, n, Vn, Hp);
1/p(C) =1
while true do
sample v ~ Unif(sphere);
C* = Gradient Descent(ray(x, v),y, n, Vn, Hy);
if ||C* = C|| < € then
| break;
end
1/p(C) =1/p(C) +1;

end

non-zero probability p(Cy); and second, being able to compute
the probabilities p(Cy) for al k. Then, after drawing a set of sam-
ples c ¢ {Cr,k=1,...,K},n=1,...,N, we estimate the total
throughput as Zﬁyzl F(C€™)/p(ctm). In practice, using just one sam-
ple (N = 1) is sufficient for creating an unbiased estimate.

Our approach for creating the sampling distribution p(Cy) is
analogous to the algorithm proposed by Zeltner et al. [2020] for the
unbiased estimation of total throughput through multiple possible
specular connections. We first randomly sample an initial velocity
of vo using some probability on the sphere (e.g., uniform). Then
we use Vg to initialize our BVP solver, which will converge to a
stationary path C € {Cy, k = 1,...,K}. The primary challenge is to
compute the probability p(C) of sampling this stationary path. This
would require integrating the probability we use to sample vo over
all possible values vo for which the above procedure produces the
same stationary path C—that is, computing the area of the attraction
basin of C. This integral can be approximated by a second Monte
Carlo procedure. However, as Zeltner et al. [2020] explains, this can
introduce significant bias, because ultimately we need to use the
inverse probability 1/p(C) in our Monte Carlo estimate of the total
throughput. Instead, Zeltner et al. [2020] use an algorithm proposed
by Booth [2007] that directly estimates the inverse probability. This
algorithm works by continually sampling initial velocities vo and
reinitializing the BVP solver until we arrive again at the stationary
path C; the number of reinitializations is an unbiased estimate of
1/p(C). We use this approach, as well. The procedure is summarized
in Algorithm 3, and we refer to Zeltner et al. [2020] for details.

We conclude this section with some notes. First, as our BVP solver
uses a gradient descent algorithm, it may fail to converge for some
initializations. To maintain unbiasedness, we can treat all cases of
non-convergence as corresponding to some virtual null path Cg, for
which f(Cgp) = 0. Then, Algorithm 3 will produce correct estimates
for 1/p(Cy), as well as the inverse probabilities for all the real station-
ary paths, ensuring unbiasedness. We note that, when the sampling
procedure produces Cg, the fact that f(Cp) = 0 means that it is not
necessary to run the subroutine for computing the corresponding
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inverse probability. We note that, when using N = 1 samples for es-
timating the total throughput, non-convergence would result in the
total light path (including source and sensor subpaths) not contribut-
ing to the final image, wasting significant computation. This can be
avoided by either using a number of samples N > 1 or continuing
to draw sample stationary paths C using, e.g., a Russian roulette
procedure [Veach 1997]. In practice, in the experiments we show in
Section 7, fewer than 1.5% of BVP initializations failed to converge,
and thus this issue did not significantly affect performance.

Second, both our discussion and that by Zeltner et al. [2020] as-
sume that there is a finite number K of stationary paths Cy. However,
it is possible to have infinitely many stationary paths: For exam-
ple, in the case of heterogeneous refractive media, this can happen
when connecting certain points through rotationally-symmetric
or spherically-symmetric refractive fields, e.g., two points placed
at diametrically opposite locations on the surface of a Maxwell
lens [Merlin 2011]. In the case of specular reflections studied by
Zeltner et al. [2020], this can happen when connecting points at the
foci of converging curved refectors [Mitchell and Hanrahan 1992],
e.g., the foci of an ellipsoidal reflector. In both of these examples, all
initializations of the BVP solver (in the heterogeneous refraction
case) or specular connection solver (in the specular refraction case
of Zeltner et al. [2020]) will result in valid stationary paths after zero
gradient iterations. In cases such as these, the subroutine for estimat-
ing inverse probabilities in Algorithm 3 will introduce a small bias,
directly controlled by the constant € used for terminating the resam-
pling procedure. Effectively, the subroutine will compute not p(C),
but the integral of p(C) in some neighborhood around C whose size
is controlled by €. In practice, these pathological situations arise
rarely and under very idealized, non-generic conditions.

Third, as discussed by Zeltner et al. [2020], one can also use
the biased estimator f(C), where C is a stationary path sampled
using the sampling subroutine of Algorithm 3. Compared to the
estimate f(C)/p(C) produced by the complete Algorithm 3, the biased
estimator can have significantly improved performance, as it skips
running multiple BVP solvers to estimate the inverse probability.
Additionally, when there is only one stationary path, then this biased
estimator is actually unbiased—in such cases, the inverse probability
estimation subroutine of Algorithm 3 would converge after one
iteration, resulting in p(C) = 1. This situation arose in all of the
experiments shown in Section 7, where we have not detected any
case of multiple stationary paths, and where both the unbiased and
biased estimators produced identical results, albeit with the biased
estimator being twice as fast thanks to avoiding the additional BVP
solver call for producing p(C) = 1.

5 ACCELERATION TECHNIQUES

In this section, we discuss some techniques for accelerating the
non-linear ray tracing and direct connection procedures used by
our rendering algorithms.

Checking for boundary intersections. When performing non-linear
ray tracing inside a heterogeneous refractive medium, it is necessary
to check after each step whether the ray has departed the medium.
In linear ray tracing, this check can be done using a single ray-mesh
intersection test for each traced ray, with the cost of each such
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intersection test depending on mesh complexity. However, using
intersection tests in non-linear ray tracing would be prohibitively
expensive, as we would need to perform an intersection test after
each ray tracing step, resulting in potentially hundreds of inter-
section tests per traced ray. We mitigate this issue by replacing
intersection tests with efficient inside-outside tests based on fast
winding numbers, as proposed by Barill et al. [2018]. To ensure that
there is no bias, when the ray is near the boundary (determined as
discussed below), we use binary search to find exact intersections.

Even though the tests based on fast winding numbers are sig-
nificantly faster than intersection tests, having to perform them
multiple times for each ray still results in a large computational
overhead. We can further reduce this overhead by using a technique
inspired by sphere tracing [Balint and Valasek 2018; Hart 1996; Seyb
et al. 2019] to only perform inside-outside tests after several steps
of the non-linear ray tracing procedure. In particular, we assume
that we have available the signed distance function (SDF) of the
heterogeneous refractive medium. At each point inside the medium,
the SDF can be used to compute the minimum number of steps
needed to reach the boundary. Therefore, when performing a se-
quence of ray tracing steps, we only need to run the inside-outside
test when this minimum number of steps is reached, instead of after
every step. In our implementation, we precompute the SDF of all
heterogeneous refractive volumes in a scene at sparse points on a
uniform grid inside the volumes, and interpolate the SDF values
using cubic splines. We also use the SDF to determine when, during
the ray tracing process, to switch from fast-winding-number tests
to exact intersections. We observed that the use of SDFs resulted on
a rendering speedup of around 30%.

Approximate normals for Type-1 connections. Type-1 connections
require computing surface normals at multiple points on the medium
boundary, as these normals are needed to compute the derivatives
in Equation (12). However, computing exact surface normals can be
expensive, especially for large meshes. We side-step this issue by
replacing normals in the derivative calculation with the gradient
of the SDF at the corresponding boundary points: this gradient
would be exactly equal to the surface normal if we knew the SDF
exactly [Sethian 1996], and is otherwise a sufficient approximation
when using the computed derivatives to perform gradient descent.
The SDF gradients can be computed in constant time (O(1)) by
interpolating with derivative cubic spline kernels [Unser 1999].

6 IMPLEMENTATION

We have implemented the BDPT algorithm with direct connections
as a plugin to the Mitsuba renderer [Jakob 2010]. Our implementa-
tion is publicly available [Pediredla et al. 2020]. In this section, we
discuss some important implementation details.

Representation of heterogeneous refractive fields. The heteroge-
neous refractive field is provided as a set of discrete grid values. We
use cubic B-splines [Unser 1999] to interpolate these values and
obtain a continuously varying refractive index given by

M-1N-1P-1

n(xp2)= ) > > CompBlx —m)P(y -mP(z—p). (13)

m=0 n=0 p=0



Table 2. Default options and parameter values used in our implementation.

parameter default value
step size 1 mm
direct connection tolerance 1 mm
Russian roulette weight 0.01
precision (for exact intersection with boundary) 1pm
optimizer BFGS
max iterations 20
function tolerance (termination) 1 mm
gradient tolerance (termination) 0
parameter tolerance (termination) 0

We chose B-spline interpolation as coefficients (Cynnp) can be com-
puted in linear time (O(n)) [Unser 1999] and the values can be
interpolated in constant time (O(1)). Additionally, the gradient and
Hessian required for direct connections can also be computed in
O(1) time analytically without numerical differentiation.

Optimizer. For the optimization algorithm required for direct
connections, we tested a few gradient-based algorithms (standard
gradient descent, steepest descent, accelerated gradient descent, con-
jugate gradient descent, BFGS, LBFGS, DFP, Levenberg-Marquardt),
on a few test heterogeneous refractive media. We found that BFGS
performs the best in terms of both the number of iterations until
convergence and the percentage of tests where it succeeded. We
used the BFGS implementation of the Ceres solver [Agarwal et al.
[n. d.]], which we integrated with Mitsuba. Various default options
used for the optimization algorithm are listed in Table 2.

7 EXPERIMENTS

We use our implementation to perform a series of experiments on
different scenes, including robustness tests for our direct connec-
tion procedure, visualization of volumetric caustics, time-of-flight
and spectral rendering, as well as ultrasonic lensing. In the latter
case, we also compare our renderings to real measurements. All
rendering experiments were performed using Amazon Web Services
(AWS) cloud computing, and we report the corresponding machine
specifications and running times throughout this section.

Effect of RIF frequency. We first characterize the effect of a medium’s
RIF on the convergence rate of IVP and BVP. Intuitively, we expect
that increasing the frequency RIF should decrease the convergence
rate of both IVP and BVP. In the limiting case of very-high-frequency
RIF, the discretized tracing techniques of Algorithms 1 and 2 will
always fail for any numerically stable step size.

To quantify this intuition, we ran IVPs and BVPs on RIFs of the
form described in Section 7.2, with progressively increased frequen-
cies. We show the results in Figure 6. To compute the maximum
step size required for convergence, we first randomly sampled a
point and direction inside the RIF. We then computed the ground
truth IVP solution by propagating the ray using Algorithm 1 for a
distance for 50 mm with a very small step size of 1 ym. Finally, we
repeated the IVP for different step size values, and computed the er-
ror between the final ray position and the ground truth IVP solution.
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Fig. 6. Effect of RIF frequency on IVP and BVP. If the step size used in
Algorithm 1 is not small enough, then the symplectic integration technique
will fail. The step-size required is a function of the refractive index gradient.
An RIF with high frequencies or high refractive index gradients requires a
small step size. In the left half of the above figure, we show the maximum
step size required for acousto-optic RIFs (discussed in detail in Section 7.2).
As the frequency of the acousto-optic RIF, which is proportional to the
maximum refractive index gradient is increased, the maximum step size
required for the IVP problem to converge decreases, and hence, the ray
tracing time increases. An increase in the frequency of RIF also decreases
the probability that the direct connections are made, as shown in the figure
on the right side.

We repeated the above procedure for several randomly sampled
positions and directions and averaged the errors. The largest step
size where the average error is less than a threshold of 0.1 ym is the
step size for which IVP converges. In agreement with our intuition,
we observe in Figure 6 that the largest step size decreases as RIF
frequency increases, and that the optimal ray tracing time (number
of steps needed for convergence when using the largest step size)
increases almost linearly with RIF frequency. In the same figure, we
also show the effect of RIF frequency on the success rate of BVPs.
As solving BVPs involve solving several IVPs, we fixed the step
size to be 1 mm for which the IVP converges for all frequencies. We
observe that, as RIF frequency increases, the number of successful
direct connections decreases, albeit slightly

Light propagation in sugar solution. To showcase the bending of
light inside a refractive medium, we created in Figure 2 a scene
similar to Ament et al. [2014]. The scene comprises an aquarium
filled with a solution of sugar in water. The sugar solution concen-
tration is highest at the bottom of the aquarium and lowest at the
top. The refractive index of the sugar water is proportional to the
concentration of the solution. Hence, the refractive index is lowest
at the top of the aquarium and highest at the bottom and varies
linearly as we measure RIF from bottom to the top.

Volumetric caustics. Luneburg lenses are spherical GRIN lenses
that focus a parallel beam of light to a point on the opposite side
on the lens. Visible-range Luneburg lenses are realized with 3D
printing technology [Zhao et al. 2016], and are used as spherical
retroreflectors on satellites [Shargorodsky et al. 2000]. In Figure 7,
we simulate volumetric caustics created by Luneburg lenses with
different refractive index profiles. In Figure 8, we use the same scene
to perform equal-time comparisons between BDPT and the photon
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n(r) = 1.5

BDPT BDPT

(standard) : (ours)

BDPT
(ours)

Fig. 7. Volumetric caustics of various Luneburg lens profiles. The
above volumetric caustic scene is inspired from the dataset by Bitterli [2016].
The scene consists of either a homogeneous glass sphere (rendered with

standard BDPT) or a Luneburg lens with refractive index n(r) = /2 - (}%)P

(rendered with our BDPT), placed inside a volumetric scattering medium.
The observed volumetric caustics are dependent on the refractive index
profile of the lens. As the order of the lens increases, its focusing power
decreases. The standard and our BDPT had runtimes of 5 min and 10 min,
respectively, on a 72-core (AWS c5n.18xlarge) machine.

mapping algorithm of Ament et al. [2014]. | We observe that BDPT
converges faster than photon mapping, even after optimizing the
hyper-parameters of the latter, and that photon mapping renderings
have blur and other artifacts. We note that advanced photon map-
ping techniques such as progressive photon mapping [Hachisuka
et al. 2008] and stochastic progressive photon mapping [Hachisuka
and Jensen 2009] can potentially improve convergence speed com-
pared to the technique of Ament et al. [2014]. However, adapting

! As the source code of Ament et al. [2014] is not publicly available, we use our own
implementation of their technique in Mitsuba.
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Fig. 8. Equal runtime comparison with photon mapping. We compare
the photon mapping (PM) technique of Ament et al. [2014] with our BDPT
algorithm. As PM has several hyper-parameters, we show results using
both the default Mitsuba parameter values, and values optimized using
parameter sweeping. We do this parameter fine-tuning for two PM radii, the
Mitsuba default and the smallest possible value. We note that the PM result
is noiser than BDPT, and also has blur and other artifacts. The runtime for
all renderings is 10 min on a 72-core (AWS c5n.18xlarge) machine.

these biased techniques to the RRTE setting is still a matter of future
research, beyond the scope of this paper.

Appearance change due to subsurface heterogeneity. Due to pro-
longed exposure to heat and pressure (a process known as metamor-
phism [Gillen 2012]), materials such as marble and jade typically
exhibit both heterogeneous refractive index and subsurface scat-
tering. In Figure 9, we show an example of this combination: The
dragon shape has a refractive index profile that varies as a function
of the shape’s signed distance function; on the dragon’s skeleton,
the refractive index equals 1.5, and towards the dragon’s surface,
it is set to 1.1. We can observe that the caustics on the table, the
surface caustics on the dragon, and the appearance of thin geometric
features on the dragon mesh all change significantly compared to
the case of constant refractive index.
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Fig. 9. Appearance change with subsurface heterogeneity. Subsurface scattering and refractive index influence the appearance of an object. Here, we
observe that sub-surface refractive index heterogeneity also has a strong influence on the appearance of both the object and the caustics produced. The
scalar refractive index field, in this case, is assigned similar to the Luneburg lenses. The signed distance function (SDF) is used as a proxy for the radius, and
hence, the refractive index is higher deep inside the medium compared to the surface. The homogeneous RIF (left figure) was rendered in 7.33 hours, and the

heterogeneous RIF (right figure) was rendered in 39 hours on a 72-core (AWS

Homogeneous
Steady-state image Transient video

..
o = -
S o

c5n.18xlarge) machine.

Heterogenous
Steady-state image Transient video

. .

Fig. 10. Spectral transient rendering. Transient rendering refers to binning various light paths based on their optical pathlength. The path tracing estimators
developed in this paper can be straightforwardly extended to transient rendering. To accurately render spectral dispersion, we used spectral rendering to
produce these RGB images. The homogeneous sphere (left) was rendered in 6.18 hours, and the heterogeneous one (right) was rendered in 12.67 hours on a
72-core (AWS c5n.18xlarge) machine. (Please use Adobe Acrobat to view this figure, to see the animated transient video.)
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7.1 Extension to time-of-flight rendering

Time-of-flight cameras, which accept or reject photons based on the
optical length of their travelled paths, are nowadays common in sev-
eral applications [Jarabo et al. 2017]. Several rendering algorithms
for simulating measurements from such cameras have appeared
in recent years [Cammarano and Jensen 2002; Jarabo et al. 2014;
Pediredla et al. 2019]. Analogously to Pediredla et al. [2019], we can
extend the path integral formulation of Equation (7) to model time-
of-flight cameras in a scene containing heterogeneous refractive
media, by introducing a pathlength-dependent term:

I= / W (I f () dyu(), (14)
P

where Wr(+) is the camera-dependent pathlength importance func-
tion, [1%nll = i) d(xk. Xksr) and d(xgxpn) = 11 J7 n(y) ds]l.
Importantly, when simulating heterogeneous refractive media, it
is important to take into account the fact that time-of-flight cam-
eras separate photons based on their optical pathlength, that is,
pathlength weighted by the refractive index.

In Figure 10, we show RGB steady-state images and transient
sequences of both homogeneous and heterogeneous spheres; tran-
sient refers to sequences of images where each image records con-
tributions of paths within a narrow range of optical lengths. These
images were created using spectral rendering: we first rendered
a hyperspectral cube corresponding to multiple wavelengths in
the visible range, and then converted this cube into an RGB im-
age through the color transform equations. Spectral rendering is
required because the medium is dispersive, that is, its refractive
index is a function of wavelength. The refractive index of the homo-
geneous sphere is modeled after crown glass [Johnson and Christy
1972]. The heterogeneous spheres are modeled as heterogeneous
mixtures of crown glass and flint glass, with the resulting refrac-
tive index at each location inside the sphere varying as n(r, 1) =
ricrown (4) + (R—r)ngint (A); r is the distance from the sphere center,
and R is the outer sphere radius.

From the steady-state images in Figure 10, we observe that the
focusing power of the heterogeneous lens is higher than the homo-
geneous lens, and the caustics formed on the floor are ring-shaped
instead of the Gaussian profile of the homogeneous lens. Different
frames additionally show different color patterns due to dispersion.
In supported PDF viewers, the figure can be animated to show the
entire transient sequences. As flint glass has a higher refractive
index than crown glass, we notice that the heterogeneous transient
exits the sphere later than the homogeneous transient. The tran-
sients also show that the chromatic dispersion is slightly less for
the heterogeneous case, because flint glass is less dispersive than
crown glass. Different chromatic effects can also be observed in
the fixed transient frames shown at times 8.7 ns and 9.7 ns. In all
cases, red wavelengths travel faster (e.g., exit the sphere or reach
the floor earlier) than green and blue wavelengths, as expected from
the dispersion properties of real-world materials.

7.2 Simulating in-situ ultrasonically sculpted waveguides

When ultrasonic pressure waves travel through a medium, the
density and the medium’s refractive index will be locally modu-
lated, and the medium’s refractive index becomes heterogeneous.
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Fig. 11. Acousto-optic setup. An ultrasonic transducer is mounted inside a
scattering medium (water and intralipid in our experiments). The transducer
has four elements. The elements coded in light gray are always on the same
phase and out-of-phase with the dark gray elements. This setup is used to
modulate the refractive index field inside the scattering medium, which in
turn acts as a waveguide for the light traveling through the medium.

The change in refractive index as a function of local density is
described by the Lorentz-Lorenz relation [Born and Wolf 2013].
Chamanzar et al. [2019] showed that this phenomenon can be used
to sculpt arbitrary spatial refractive index patterns, to shape and
control the trajectory of light in transparent and turbid media. They
have demonstrated the ability to form virtual ultrasonically-defined
optical elements, such as waveguides, within the target medium.
These optical elements can be used for light delivery or relaying
images through the medium. For example, a virtual relay lens can be
sculpted in the medium to relay images of fluorescent targets to an
external microscope [Scopelliti and Chamanzar 2019]. These virtual
optical components can additionally be configured so that light will
form specific caustic patterns inside the medium [Karimi et al. 2019].
This type of ultrasonic modulation of refractive index profiles can
be performed using a phased array of ultrasonic transducers from
outside the medium, as shown in Figure 11. Our physically accurate
rendering algorithms can be used to characterize the performance of
these in-situ ultrasonic sculpting techniques, and help assess their
utility in different application areas (e.g., tissue and brain imaging).

To demonstrate the applicability of our algorithms for this imag-
ing technique, and to evaluate the accuracy of our algorithms, we
used the setup of Figure 11 to perform experiments similar to Karimi
et al. [2019]. The refractive index field generated by this ultrasonic
array is given by [Karimi et al. 2019]:

n(r,¢,t) = no + nmaxJm (krr) cos(me) sin(Qt), (15)

where r and ¢ are the radial and azimuthal components of the
position x in cylindrical coordinates induced by the transducer. Note
that n is independent of depth. ¢ is time, n, is the refractive index of
the host medium, npyayx is the maximum amplitude of the refractive
index contrast pattern. J, is the m*"-order Bessel function of the
first kind, k, is the radial component of the ultrasound wavevector,
and Q is the angular frequency of the ultrasound. By driving the
array elements with a phase and amplitude sequence of (10 V /7,
10 V£0, 10 V£, 10 V£0), a caustic pattern of four bright spots can
be formed at a depth of d = 3 cm through a turbid medium with an



optical thickness of 3 MFP as shown in Figure 1. This caustic pattern
corresponds to m = 2 in Equation (15).

In Figure 1, we compare the real data we captured against ren-
derings from BDPT and photon mapping. (We refer to Appendix C
for more details on these renderings.) The runtime for both BDPT
and PM for each 0 rendering is approximately 3 hours on a 72-core
(AWS c5d.18xlarge) machine. From the renderings, we observe that
BDPT more closely matches the real data than PM. However, there
are some mismatches between BDPT and real data due to hardware
non-idealities in our optical setup:

o OQuter rings of BDPT rendering are not as sharp as the real
data. This mismatch is due to the assumptions in deriving
Equation (15). McLeod et al. [2006] derived Equation (15)
assuming an infinite-length transducer. However, in reality,
the transducer is finite-sized.

® Real-data intensity is less than BDPT intensity at the boundaries.
This difference is due to the fact that the collimated beam
coupled into the medium is a Gaussian beam in experiments,
and an ideal collimated beam in renderings.

e Mismatch in the right side of the intensity profile plot. As
the transducer is symmetric, we would ideally expect real
data also to be symmetric. This does not happen in practice
as, due to the wire connections made to the transducer, the
impedance is higher on one side. This explains the mismatch.

8 CONCLUSION

We introduced Monte Carlo rendering algorithms for simulating
the refractive radiative transfer equation (RRTE), describing light
transport in media characterized by both volumetric scattering and
heterogeneous refractive index. At the core of our algorithms is a
procedure that enables efficiently performing direct connections be-
tween points in such media by discovering paths connecting the two
points while at the same time satisfying Hamilton’s equations for
continuously-refracting light. We used this procedure as a building
block to develop non-linear variants of the volumetric path tracing
and bidirectional path tracing algorithms. These new algorithms
produce unbiased image estimates and allow us to simulate the
RRTE in a way that is both computationally-efficient and physically-
accurate. In our experiments, we verified that our algorithms could
closely match real-world measurements of materials with scattering
and heterogeneous refractive properties, reproducing effects such
as complex volumetric caustics that other rendering techniques (e.g.,
photon mapping) cannot reproduce in equal time.

Even though we focused on path tracing algorithms, our techni-
cal and algorithmic results can potentially be used to enable other
types of Monte Carlo rendering to simulate the RRTE. For example,
a useful by-product of our direct connection technique is the deriva-
tives of solutions to Hamilton’s equations with respect to initial
conditions. These derivatives can be used to generate perturbations
of sampled paths for Markov chain Monte Carlo algorithms, analo-
gously to manifold exploration techniques [Jakob and Marschner
2012; Kaplanyan et al. 2014]. By facilitating advances in the physi-
cal accuracy and computational efficiency of tools for simulating
the RRTE, we believe that our techniques have strong potential for
impact in scientific imaging applications involving heterogeneous

Path Tracing Estimators for Refractive Radiative Transfer « 2471:13

refractive media. For example, our rendering algorithms can be used
to virtually evaluate the performance limits of existing imaging
techniques, without the need for painstaking lab experiments; and
to explore, potentially in a data-driven way, new designs that can
optimize performance in different application settings. We made
our implementation public [Pediredla et al. 2020], to accelerate the
adoption of our algorithms in scientific imaging applications, and
to facilitate reproducibility and follow-up research.

ACKNOWLEDGMENTS

This work was supported by NSF Expeditions award 1730147, NSF
award 1935849, DARPA REVEAL contract HR0011-16-C-0028, and
a gift from AWS Cloud Credits for Research.

REFERENCES

Sameer Agarwal, Keir Mierle, and Others. [n. d.]. Ceres Solver. http://ceres-solver.org.

Marco Ament, Christoph Bergmann, and Daniel Weiskopf. 2014. Refractive radiative
transfer equation. ACM Transactions on Graphics (TOG) 33, 2 (2014), 17.

James Arvo. 1995. Analytic methods for simulated light transport. Ph.D. Dissertation.

Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus
Magnor, and Hans-Peter Seidel. 2008. Time-resolved 3d capture of non-stationary
gas flows. ACM transactions on graphics (TOG) 27, 5 (2008), 1-9.

Csaba Balint and Gabor Valasek. 2018. Accelerating Sphere Tracing.. In Eurographics
(Short Papers). 29-32.

Gavin Barill, Neil G Dickson, Ryan Schmidt, David IW Levin, and Alec Jacobson. 2018.
Fast winding numbers for soups and clouds. ACM Transactions on Graphics (TOG)
37, 4 (2018), 43.

Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, and Filippo Santambrogio.
2010. Derivatives with respect to metrics and applications: subgradient marching
algorithm. Numer. Math. 116, 3 (2010), 357-381.

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

Thomas E Booth. 2007. Unbiased Monte Carlo estimation of the reciprocal of an integral.
Nuclear science and engineering 156, 3 (2007), 403-407.

Max Born and Emil Wolf. 2013. Principles of optics: electromagnetic theory of propagation,
interference and diffraction of light. Elsevier.

Mike Cammarano and Henrik Wann Jensen. 2002. Time Dependent Photon Mapping.
In EGWR, Paul Debevec and Simon Gibson (Eds.). 135-144. https://doi.org/10/c54t

Chen Cao, Zhong Ren, Baining Guo, and Kun Zhou. 2010. Interactive Rendering of
Non-Constant, Refractive Media Using the Ray Equations of Gradient-Index Optics.
In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1375-1382.

Maysamreza Chamanzar, Matteo Giuseppe Scopelliti, Julien Bloch, Ninh Do, Miny-
oung Huh, Dongjin Seo, Jillian Iafrati, Vikaas S Sohal, Mohammad-Reza Alam, and
Michel M Maharbiz. 2019. Ultrasonic sculpting of virtual optical waveguides in
tissue. Nature communications 10, 1 (2019), 1-10.

Subrahmanyan Chandrasekhar. 2013. Radiative transfer. Courier Corporation.

Min Chen and James Arvo. 2000a. Perturbation methods for interactive specular
reflections. IEEE Transactions on Visualization and Computer Graphics 6, 3 (2000),
253-264.

Min Chen and James Arvo. 2000b. Theory and application of specular path perturbation.
ACM Transactions on Graphics (TOG) 19, 4 (2000), 246—-278.

SB Dalziel, Graham O Hughes, and Bruce R Sutherland. 2000. Whole-field density
measurements by ‘synthetic schlieren’. Experiments in fluids 28, 4 (2000), 322-335.

Cornelius Gillen. 2012. Metamorphic geology: an introduction to tectonic and metamorphic
processes. Springer Science & Business Media.

Eduard Gréller. 1995. Nonlinear ray tracing: Visualizing strange worlds. The Visual
Computer 11, 5 (1995), 263-274.

Diego Gutierrez, Adolfo Munoz, Oscar Anson, and Francisco J Seron. 2005. Non-linear
Volume Photon Mapping.. In Rendering Techniques. 291-300.

Diego Gutierrez, Francisco J Seron, Adolfo Munoz, and Oscar Anson. 2006. Simulation
of atmospheric phenomena. Computers & Graphics 30, 6 (2006), 994-1010.

Jorg Haber, Marcus Magnor, and Hans-Peter Seidel. 2005. Physically-based simulation of
twilight phenomena. ACM Transactions on Graphics (TOG) 24, 4 (2005), 1353-1373.

Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic progressive photon
mapping. In ACM SIGGRAPH Asia 2009 papers. 1-8.

Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive photon
mapping. In ACM SIGGRAPH Asia 2008 papers. 1-8.

Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Manifold next event estimation.
In Computer graphics forum, Vol. 34. Wiley Online Library, 87-97.

John C Hart. 1996. Sphere tracing: A geometric method for the antialiased ray tracing
of implicit surfaces. The Visual Computer 12, 10 (1996), 527-545.

ACM Trans. Graph., Vol. 39, No. 6, Article 241. Publication date: December 2020.


http://ceres-solver.org
https://doi.org/10/c54t

241:14 + Pediredla et al.

Walton L Howes. 1984. Rainbow schlieren and its applications. Applied Optics 23, 14
(1984), 2449-2460.

Ivo Ihrke, Gernot Ziegler, Art Tevs, Christian Theobalt, Marcus Magnor, and Hans-Peter
Seidel. 2007. Eikonal rendering: Efficient light transport in refractive objects. ACM
Transactions on Graphics (TOG) 26, 3 (2007), 59.

David S Immel, Michael F Cohen, and Donald P Greenberg. 1986. A radiosity method for
non-diffuse environments. Acm Siggraph Computer Graphics 20, 4 (1986), 133-142.

Akira Ishimaru. 1978. Wave propagation and scattering in random media. Vol. 2. Aca-
demic press New York.

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

Wenzel Jakob. 2016. Path Space Markov Chain Monte Carlo Methods in Computer
Graphics. In Monte Carlo and Quasi-Monte Carlo Methods. Springer, 107-141.

Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: a Markov Chain
Monte Carlo technique for rendering scenes with difficult specular transport. ACM
Transactions on Graphics (TOG) 31, 4 (2012), 1-13.

Adrian Jarabo, Julio Marco, Adolfo Mufioz, Raul Buisan, Wojciech Jarosz, and Diego
Gutierrez. 2014. A framework for transient rendering. ACM Transactions on Graphics
(ToG) 33, 6 (2014), 1-10.

Adrian Jarabo, Belen Masia, Julio Marco, and Diego Gutierrez. 2017. Recent advances in
transient imaging: A computer graphics and vision perspective. Visual Informatics
1,1 (2017), 65-79.

Yu Ji, Jinwei Ye, and Jingyi Yu. 2013. Reconstructing gas flows using light-path ap-
proximation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2507-2514.

Peter B Johnson and R-WJPrB Christy. 1972. Optical constants of the noble metals.
Physical review B 6, 12 (1972), 4370.

James T Kajiya. 1986. The rendering equation. In ACM SIGGRAPH computer graphics,
Vol. 20. ACM, 143-150.

Anton S Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The natural-
constraint representation of the path space for efficient light transport simulation.
ACM Transactions on Graphics (TOG) 33, 4 (2014), 1-13.

Felix P Kapron. 1970. Geometrical optics of parabolic index-gradient cylindrical lenses.
JOSA 60, 11 (1970), 1433-1436.

Yasin Karimi, Matteo Giuseppe Scopelliti, Ninh Do, Mohammad-Reza Alam, and
Maysamreza Chamanzar. 2019. In situ 3D reconfigurable ultrasonically sculpted
optical beam paths. Optics express 27, 5 (2019), 7249-7265.

Yu A Kravtsov and Yu I Orlov. 1990. Geometrical optics of inhomogeneous media.
Springer-Verlag.

P Krehl and S Engemann. 1995. August Toepler—the first who visualized shock waves.
Shock Waves 5, 1-2 (1995), 1-18.

Eric P Lafortune and Yves D Willems. 1996. Rendering participating media with
bidirectional path tracing. In Rendering techniques’ 96. Springer, 91-100.

Shingyu Leung, Jianliang Qian, et al. 2006. An adjoint state method for three-
dimensional transmission traveltime tomography using first-arrivals. Commu-
nications in Mathematical Sciences 4, 1 (2006), 249-266.

Rudolf Karl Luneburg. 1966. Mathematical theory of optics. Univ of California Press.

Chenguang Ma, Xing Lin, Jinli Suo, Qionghai Dai, and Gordon Wetzstein. 2014. Trans-
parent object reconstruction via coded transport of intensity. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 3238-3245.

Euan McLeod, Adam B Hopkins, and Craig B Arnold. 2006. Multiscale Bessel beams
generated by a tunable acoustic gradient index of refraction lens. Optics letters 31,
21 (2006), 3155-3157.

Roberto Merlin. 2011. Maxwell’s fish-eye lens and the mirage of perfect imaging.
Journal of Optics 13, 2 (2011), 024017.

Alexandre Mermillod-Blondin, Euan McLeod, and Craig B Arnold. 2008. High-speed
varifocal imaging with a tunable acoustic gradient index of refraction lens. Optics
letters 33, 18 (2008), 2146—2148.

Don Mitchell and Pat Hanrahan. 1992. Illumination from curved reflectors. In Proceed-
ings of the 19th annual conference on Computer graphics and interactive techniques.
283-291.

Qi Mo, Hengchin Yeh, and Dinesh Manocha. 2015. Tracing analytic ray curves for light
and sound propagation in non-linear media. IEEE transactions on visualization and
computer graphics 22, 11 (2015), 2493-2506.

Adolfo Muiioz. 2014. Higher order ray marching. In Computer Graphics Forum, Vol. 33.
Wiley Online Library, 167-176.

Jan Novak, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte carlo
methods for volumetric light transport simulation. In Computer Graphics Forum,
Vol. 37. Wiley Online Library, 551-576.

Jan Novak, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo
Methods for Volumetric Light Transport Simulation. Computer Graphics Forum
(2018).

Adithya Pediredla, Yasin Karimi Chalamiani, Matteo Giuseppe Scopelliti, Maysam
Chamanzar, Srinivasa Narasimhan, and Gkioulekas Ioannis. 2020. Mitsuba Eikonal
Renderer. https://github.com/cmu-ci-lab/MitsubaER.

Adithya Pediredla, Ashok Veeraraghavan, and Ioannis Gkioulekas. 2019. Ellipsoidal
path connections for time-gated rendering. ACM Transactions on Graphics (TOG)

ACM Trans. Graph., Vol. 39, No. 6, Article 241. Publication date: December 2020.

38,4 (2019), 1-12.

Etienne Robein. 2010. Seismic imaging: a review of the techniques, their principles, merits
and limitations. EAGE publications.

Jesus M Sanz-Serna. 1992. Symplectic integrators for Hamiltonian problems: an
overview. Acta numerica 1 (1992), 243-286.

Matteo Giuseppe Scopelliti and Maysamreza Chamanzar. 2019. Ultrasonically sculpted
virtual relay lens for in situ microimaging. Light: Science & Applications 8, 1 (2019),
1-15.

James Albert Sethian. 1996. Level set methods: Evolving interfaces in geometry, fluid
mechanics, computer vision, and materials science. Vol. 1999. Cambridge University
Press Cambridge.

Gary S Settles and Michael ] Hargather. 2017. A review of recent developments in
schlieren and shadowgraph techniques. Measurement Science and Technology 28, 4
(2017), 042001.

Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wojciech Jarosz. 2019. Non-
linear sphere tracing for rendering deformed signed distance fields. ACM Transac-
tions on Graphics (TOG) 38, 6 (2019), 1-12.

VD Shargorodsky, VP Vasiliev, NM Soyuzova, VB Burmistrov, IS Gashkin, MS Belov, TI
Khorosheva, and E Nikolaev. 2000. Experimental spherical retroreflector on board
of the meteor-3M satellite. In Proceedings of the 12th International Workshop on Laser
Ranging. 1-5.

Anurag Sharma and AK Ghatak. 1981. A variational analysis of single mode graded-
index fibers. Optics Communications 36, 1 (1981), 22-24.

Jos Stam and Eric Languénou. 1996. Ray tracing in non-constant media. In Rendering
Techniques’ 96. Springer, 225-234.

Shlomi Steinberg. 2020. Accurate Rendering of Liquid-Crystals and Inhomogeneous
Optically Anisotropic Media. ACM Transactions on Graphics (TOG) 39, 3 (2020),
1-23.

Teng-Qian Sun, Qing Ye, Xiao-Wan Wang, Jin Wang, Zhi-Chao Deng, Jian-Chun Mei,
Wen-Yuan Zhou, Chun-Ping Zhang, and Jian-Guo Tian. 2014. Scanning focused
refractive-index microscopy. Scientific reports 4 (2014), 5647.

Michael Unser. 1999. Splines: A perfect fit for signal and image processing. IEEE Signal
processing magazine (1999).

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Vol. 1610.
Stanford University PhD thesis.

Eric Veach and Leonidas Guibas. 1995. Bidirectional estimators for light transport. In
Photorealistic Rendering Techniques. Springer, 145-167.

Eric Veach and Leonidas J Guibas. 1997. Metropolis light transport. In Proceedings of
the 24th annual conference on Computer graphics and interactive techniques. 65-76.

Bruce Walter, Shuang Zhao, Nicolas Holzschuch, and Kavita Bala. 2009. Single scattering
in refractive media with triangle mesh boundaries. In ACM Transactions on Graphics
(TOG), Vol. 28. ACM, 92.

Daniel Weiskopf, Tobias Schafhitzel, and Thomas Ertl. 2004. GPU-based nonlinear ray
tracing. In Computer graphics forum, Vol. 23. Wiley Online Library, 625-633.

Gordon Wetzstein, Ramesh Raskar, and Wolfgang Heidrich. 2011. Hand-held schlieren
photography with light field probes. In 2011 IEEE International Conference on Com-
putational Photography (ICCP). IEEE, 1-8.

Tianfan Xue, Michael Rubinstein, Neal Wadhwa, Anat Levin, Fredo Durand, and
William T Freeman. 2014. Refraction wiggles for measuring fluid depth and velocity
from video. In European Conference on Computer Vision. Springer, 767-782.

Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. 2020. Specular manifold sampling
for rendering high-frequency caustics and glints. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 149-1.

Yuan-Yuan Zhao, Yong-Liang Zhang, Mei-Ling Zheng, Xian-Zi Dong, Xuan-Ming Duan,
and Zhen-Sheng Zhao. 2016. Three-dimensional Luneburg lens at optical frequencies.
Laser & Photonics Reviews 10, 4 (2016), 665—672.

A RAY DERIVATIVES

Hamilton’s equations (1)-(2) can be written in integral form:

S g
Xs = X + / —ds, (16)
o n(xs)
S
Vg = Vo + / Vn(xs) ds. (17)
0

Differentiating these equations with respect to initial velocity (vs),
we get the following equations for the propagation of the derivatives:

ox s 1 [2). 1 ov
il :/ (——vsVn(xs)—S+ —2 ds,

vy 0 n(xs)? avp n(xs) dvo

Vg S X

D 14 | Hy(xe) 2 ds. 18
o /o (x5 ds (18)
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Note that, for computing derivatives, we need to have access to
the Hessian of the refractive index field, in addition to the gradi-
ent already required for ray propagation. Finally, differentiating
Equations (16)-(17) with respect to the geometric distance s:

JdXs Vs ovg
ds  n(xs) s

= n(xs). (19)

B DERIVATIVES FOR TYPE-2 CONNECTIONS

We can write the derivative used for type-2 connections as:

ox ov
T 9%s T 9Vs
vel — + (x5 —
dx; _ 2.9 _ JXs ° Vo (xs Y) avo (20)
dvg vy  Os* v T 9%s (% — )T Vs
S as* sTY as*

C DERIVATIVE AND HESSIAN FOR ACOUSTO-OPTICS

We note that the modulated spatial refractive index profile in Equa-
tion (15) changes over time, because ultrasound waves propagate
and change over time. The temporal scale of these variations is
on the order of microseconds, for ultrasound in the MHz range.
Given the much faster temporal dynamics of light and its much
faster speed of propagation, we assume that photons emitted at
different times would each interact with a temporally-static, but
spatially-varying refractive index profile. In practice, the integration
time of the sensor is on the order of a few milliseconds,and thus
several ultrasonic cycles will be captured and averaged when using
continuous-wave illumination. Therefore, the sensor measures:

n /t /pn(m Fan) (%) du(3) dr. (21)

As n(t) is sinusoidal, with an integer number of half-cycles in the
integration time, we approximate Equation (21) as

I:/gj_% /%fe(i) du(x) dt. (22)

We compute the inner integral with Monte Carlo integration. For
BDPT, the Monte Carlo integration is extended to the outer integral
by sampling 6 ~ [-7 7] for each sample. However, such an exten-
sion is non-trivial for photon mapping. To make a fair comparison,
we have evaluated the outer integral numerically using trapezoidal
rule for both photon mapping and BDPT. For this numerical inte-
gration, we used 100 6 values uniformly spaced in [-%, Z].

For the specific case of in-situ acousto-optic spatial modulation in
Equation (15), the analytical expression for the scalar refractive in-
dex profile is known. Therefore, instead of using spline interpolation,
we compute the refractive index gradient and Hessian analytically.
To derive these analytical expressions, we first relate cylindrical and

Cartesian coordinates as:

r=+/x2+12, ¢ =tan"! (2)’ (23)

x
o_xor_yo_ Yy p_x (24)
ax ray r oox r2 oy r?

ox2  rt axay  rt ay? ot
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Then, we compute the refractive index gradient as follows:

n(r, ¢, t) = no + nmaxJm (Krr) cos(me)

P10 = i [T (Ke)Ke = cos(mg) + i (Ker)m % sin(ms)
ox r re

(26)
where
Jn(Err) = = I (Ko) = st (Kr). (27)
T
Substituting, we get:
?(r, $,) =Nmax | — cos {(m = 1)p} Jon (Kr7)
x r

— K cos ¢ cos me Jm+1 (Krr)]. (28)

Similarly,
j—Z(r, 8.1) i [ (Ko )K 2 cos(md) = T (Kyrym % sin(mg) |

= — max [ sin {(m = 1)¢ L Jon (K, 7)

+ K sin ¢ cos m¢ Jm+1 (Krr)] . (29)
We compute the refractive index Hessian as follows:
1 &n m
— e f) =+ Kr[——cos m-—2
S () =+ (o) - T cos (m—2)¢
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g $ 0 =m0 = sin(m - 2)9
2
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2
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