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Resolving Shape Ambiguities using
Heat Conduction and Shading

Akihiko Oharazawa, Sriram Narayanan, Mani Ramanagopal, and Srinivasa G. Narasimhan

Abstract—Shape from shading using a single image of a Lambertian surface is inherently ambiguous. When the light source direction
is known, the surface normal estimation has a cone-ambiguity, which worsens when the source is unknown. Recently, shape from heat
conduction has emerged as an approach that leverages heat transport equations to estimate the Shape Laplacian operator, an intrinsic
measure of shape. However, deriving surface normals from the Laplacian operator encounters a local binary convex/concave
ambiguity. Our contribution introduces a novel theory to resolve these local shape ambiguities (excluding a few degeneracies) without
relying on priors like smoothness, by combining the cues from shading and heat conduction. Our method ensures the mathematical
constraints of both shading and the Laplacian are satisfied simultaneously, even with an unknown light source. We validate our theory
through simulations of complex shapes and analyze its performance in the presence of noise.

Index Terms—Shape Reconstruction, Heat Conduction, Concave/convex Ambiguity, Thermal Video
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1 INTRODUCTION

SHADING has long been a crucial cue for shape esti-
mation in computer vision. Woodham [1] introduced

photometric stereo, a technique where shape and albedo are
derived from images of a Lambertian surface illuminated
by at least three known distant light sources. When the
directions of these sources are unknown, Belhumeur et al.
[2] demonstrated that shape, albedo, and lighting can be
estimated up to three degrees of freedom, known as the
Generalized Bas-Relief (GBR) ambiguity. Subsequent works
enhance the realism of the appearance model by modeling
interreflections [3] and inverse-square fall-off [4] to resolve
the GBR ambiguity.

Even with a known source direction, when only a single
shading image of a Lambertian surface is available, the
estimation of the surface normal is highly ambiguous —
any normal along a cone around the source vector satis-
fies the shading/irradiance term (n.s). And if the source
direction is unknown, the ambiguity is worse. Thus, his-
torically, many approaches exploit additional shape (known
boundary, smoothness, etc.) [5] and/or lighting priors [6] to
overcome these ambiguities. Today, deep learning models
recover depth maps from a single image based on super-
vised pre-training on large datasets of captured images
and ground truth 3D models [7]. However, these models
may struggle to generalize when the scene conditions differ
significantly from the training data.

Recently, thermal heat conduction has been proposed as
a strong cue of surface shape [8]. From a single thermal
video of an object undergoing either heating or cooling,
the authors estimate the Shape Laplacian-Beltrami operator.
This operator is an intrinsic representation of shape (as
opposed to extrinsic surface normals or depths), and the
approach works under arbitrary and unknown lighting and
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Fig. 1. Reconstructed shapes using estimation techniques based on
Laplacian cues, shading cues, or both. While Laplacian cues constrain
the local curvature around a pixel, it is invariant to convex/concave defor-
mations. On the other hand, shading cues constrain the normal at each
pixel to lie on a cone around the source direction, but does not constrain
neighboring normals. This paper combines these complementary cues
to resolve ambiguities while enabling faithful 3D reconstructions.

even for non-Lambertian surfaces. But computing normals
or depth from the Laplacian operator suffers from a local
binary convex/concave ambiguity. The authors suggest cap-
turing 2-4 thermal videos under different lighting directions
to resolve this ambiguity [8].

Our key contribution lies in developing a novel theory to
resolve the ambiguities in shape recovery by combining two
cues: heat conduction and shading, under an unknown but
distant light source. Mathematically, we resolve the ambigu-
ities in normal estimation by simultaneously satisfying the
Shape Laplacian and the Cosine (or n.s) term in shading. As
before, shading is obtained by capturing a visible spectrum
image of the scene. Heat conduction is obtained using the
thermal transient video of the scene that is illuminated (and
hence heated) by the light source. For the purposes of our
theory, we assume the surface albedos are either uniform
or are estimated a priori using the visible-thermal intrinsic
decomposition approach [9].

Following [8], we model the Shape Laplacian using
cotangent weights on a mesh surface. Then, we develop a
mathematical relationship between these weights and the
local vertex surface normals. We consider the case of known
source direction first. Our method estimates normals by
satisfying both constraints — the equations for cotangent
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weights and the cosine term for irradiance — simultane-
ously, resolving ambiguities except in a few degenerate
cases. Then, we consider the general case of an unknown
source direction and develop an algorithm that uniquely
estimates both the normals (see Fig. 1) and source direction.

Previous approaches use priors such as smoothness (in-
cluding penalizing Laplacian or second derivatives of esti-
mated normals, for instance) that often clash with the “data”
terms and require setting a regularization hyperparameter
that changes with iterations. But our shape Laplacian is
actually a “data term” that provides the correct smoothness
too without the need for any regularization parameters.

Our contribution is primarily theoretical and we demon-
strate the theory using simulations. We conclude with a
discussion of limitations and future work in making the
approach practical and accurate for real-world scenes.

2 RELATED WORK

Single-view shape recovery from shading has been stud-
ied for several decades and remains an active research
topic in computer vision [10], [11], [12], [13]. Under the
assumption of Lambertian reflectance, shape-from-shading
is fundamentally ill-posed, especially when the light source
is unknown. This is because the observed shading can be
explained by a multidimensional space of possible surface
normal [14]. Over the years, a variety of techniques have
been proposed to address this ill-posedness, including par-
tial differential equation (PDE) [5], optimization [15], and
local analysis or linearization approaches [16]. However,
these methods often suffer from practical issues such as
convergence to local minima. As a result, many shape-
from-shading methods either assume known illumination or
introduce strong priors to constrain the solution space. For
example, SIRFS [6] employs distinct lighting priors for nat-
ural versus laboratory environments and imposes surface
normal priors around the occluding boundaries. Despite
such advancements, fully resolving the ambiguity of shape-
from-shading under the single-view and unknown-lighting
scenario remains an open challenge.

Thermal imaging offers a promising avenue to allevi-
ate some of these ambiguities. Because thermal cameras
capture wavelengths outside the visible spectrum, they
enable new applications that leverage material properties,
temperature distributions, and radiative characteristics that
are otherwise difficult to observe. Recent advances include
pose estimation for humans or objects [17], navigation [18]
and material classification [19]. Moreover, using the heat
conduction equation, researchers have estimated diffusivity
and emissivity for planar objects [20]. In [9], the authors
introduce the physical relationship between a visible image
and a thermal video of the scene and demonstrate that in-
trinsic image decomposition becomes a well-posed problem.

Several efforts have explored shape estimation via ther-
mal imaging. Nagase et al. [21] proposed a method for 3D
reconstruction using multispectral thermal radiation while
accounting for air attenuation. Tanaka et al. [22] introduced
a photometric stereo approach using steady-state (equilib-
rium) thermal images. Because the heat conduction equa-
tion strongly depends on surface curvature and boundary
conditions, the transient response of thermal diffusion can,

in principle, reveal shape information. Narayanan et al. [8]
exploited the Laplacian operator from the heat equation to
reconstruct surface shape, thereby highlighting the poten-
tial of time-resolved thermal observations. However, their
approach still requires two or more light sources to resolve
local concavity or convexity ambiguities. In contrast, our
method assumes a single, uncalibrated light source and
highlights the relationship between shading and Laplacian
cues derived from heat conduction. We provide a frame-
work for the simultaneous estimation of unknown light
source direction and shape, and theoretically demonstrate
that the mathematical constraints of both shading and
Laplacian cues resolved local ambiguities.

3 PROBLEM STATEMENT

The objective of this work is to estimate the scene geometry
(shape) and the light source direction (ŝ) given only a single
shading image (η) and the shape Laplacian (L). Similar to
the original Shape-from-Shading (SfS) problem definition,
we consider an orthographic camera and represent the
shape using surface normals (pi, qi) at each pixel i. Unlike
SfS, we do not know the light source direction and do not
use an arbitrary smoothness term.

Let Ω denote the unknown surface in 3D. We discretize
it into a mesh with V vertices, with each vertex lying along
the camera ray from a corresponding pixel. We use a regular
grid connectivity such that each vertex is connected to its six
neighbors, as depicted in Fig. 2.

The shading η at a pixel i can be written as

η(i) =
n⃗(i)

∥n⃗(i)∥
· s⃗

∥⃗s∥
where n⃗(i) =

 pi
qi
−1

 , s⃗ =
 psqs
−1

 . (1)

For scenes with spatially varying albedo, one could use
[9] to recover shading from the visible image and thermal
video.

The discrete Laplacian on Ω, denoted by ∆Ω, is repre-
sented by a sparse symmetric matrix L ∈ R|V |×|V |. Specifi-
cally, each non-zero entry represents a weight wij between
vertices i and j described as [8]:

Lij =

wij =
cotαij + cotβij

2
if i ̸= j

−
∑

j∈N (i) wij if i = j
(2)

where αij and βij are the angles of the two triangles adja-
cent to the edge (i, j). These edge weights can be computed
directly from vertex normals, as we will show in Sec. 4.1.

4 SHAPE FROM LAPLACIAN AND SHADING

We explore how the intrinsic geometry captured by Lapla-
cian operators can be combined with photometric cues
from shading to recover surface normals more accurately
and unambiguously. While Laplacian-based methods offer
geometric structure, they suffer from local ambiguities in
normal direction. Conversely, shape-from-shading provides
photometric constraints but has its own set of ambiguities
tied to lighting. In this section, we introduce a novel formu-
lation that connects Laplacian weights directly to surface
normals, allowing shading information to be integrated
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Fig. 2. A regular grid triangular mesh whose cotangent weights for any
vertex i depend on its neighboring six vertices.

seamlessly. We also analyze the nature of ambiguities in
each modality and show how their intersection leads to a
unique and consistent surface reconstruction.

4.1 Shape Laplacians using Vertex Normals

We introduce a novel parameterization of Laplacian weights
in terms of vertex normals. The surface normal at a vertex
can be expressed using depth gradients as p = ∂z

∂x and q =
∂z
∂y . Discretizing these derivatives and using the notation
illustrated in Fig. 2, we can write:

pi =
zj − zi
δp

, qi =
zl − zi
δp

(3)

where δp is the pixel pitch and zi is the depth of vertex i.
The edge vectors connecting vertex a to its neighbors can

then be written in terms of normals:

a⃗i = (0, δp, zi − za) a⃗j = (δp, δp, zj − za) (4)

Substituting depth differences in terms of p and q:

zi − za = qa · δp
zj − za = (pi + qa) · δp

(5)

Using these, we compute the cotangent of the angle αij

between edges a⃗i and a⃗j:

cotαij =
|a⃗i · a⃗j|
|a⃗i× a⃗j|

=
|1 + piqa + q2a|√

p2i + q2a + 1
(6)

Similarly,

cotβij =
|k⃗i · k⃗j|
|k⃗i× k⃗j|

=
|1 + piqj + q2j |√

p2i + q2j + 1
(7)

Therefore, one can write the weight wij in L from Eq. 2 as,

wij =
1

2

(
|1 + piqa + q2a|√

p2i + q2a + 1
+
|1 + piqj + q2j |√

p2i + q2j + 1

)
. (8)

This establishes a direct relationship between the cotan-
gent weights and the surface vertex normals. The corre-
sponding equations for all six edge weights are provided
in the Appendix.

Fig. 3. Left: Illustrates ambiguity in shape-from-shading, where a cone
of normals yields identical shading, and a local binary ambiguity in
shape-from-Laplacian, where different shapes with the same cotangent
weights appear as mirror reflections in normal space. The true object
shape is uniquely determined at the intersection of the shading cone
and Laplacian normals. Right: Demonstrates degenerate cases where
the proposed shape-from-Laplacian-and-shading method fails.

4.2 Resolving Shape Ambiguities
In this section, we show that combining Laplacian-based
and shading-based cues, under known distant illumination,
resolves the shape ambiguity that arises when each is used
independently. Specifically, we demonstrate that the inter-
section of their solution spaces leads to a unique normal
direction at each point, except in a few degenerate cases.
We begin by revisiting the types of ambiguities that arise
when estimating shape from either Laplacian or shading
cues alone, assuming the light source direction (ps, qs) and
shading values η are known. While we make this assump-
tion here for clarity, the following section describes how the
source direction can also be robustly estimated through our
optimization framework.

4.2.1 Ambiguities in Shape from Laplacian
As shown in [8], the Laplace operator is intrinsic to a surface
and invariant to rigid transformations. This means there
are infinitely many 3D embeddings that share the same
Laplacian. However, when shapes are constrained to lie
along the camera rays and to preserve local edge lengths,
the ambiguity becomes binary. Note that flipping the sign
of all vertex normals in a patch, i.e. substituting (−px,−qx)
in place of (px, qx), in Eq. 8 does not change L. This local
binary ambiguity arises from isometric deformations and
reflects a convex/concave uncertainty at each point.

4.2.2 Ambiguities in Shape from Shading
Shape-from-shading suffers from a different kind of am-
biguity. Even when the albedo is constant and the light
source direction (ps, qs) is known, the surface normal is
not uniquely determined. Instead, all normals that make the
same angle with the light source produce the same shading.
Mathematically, from Eq. 1, this is written as

pps + qqs + 1√
p2 + q2 + 1

√
p2s + q2s + 1

= η (9)

This defines a cone of possible normals around the light
source direction, creating a continuous ambiguity distinct
from the binary ambiguity of Laplacian-based methods.
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4.2.3 Intersection of Shading and Laplacian Ambiguities
We seek a normal direction that satisfies both the binary
Laplacian constraint and the shading equation as shown in
Fig. 3 (left). If both possible Laplacian normals (p, q) and
(−p,−q) satisfy Equation 9, then:

pps + qqs + 1 = −pps − qqs + 1 (10)
⇒ pps + qqs = 0 (11)

This yields the condition pps = −qqs corresponding to
a narrow set of surface orientations in the normal space.
This ambiguity persists only under special cases: (i) Fronto-
parallel lighting: when ps = qs = 0, where both normal
directions yield identical shading. (ii) Specific surface orien-
tation: when p = − qs

ps
q, representing a plane orthogonal to

the bisector of (ps, qs) and (−ps,−qs).
Geometrically, these cases occur when the light direc-

tion (ps, qs) lies equidistant between (p, q) and its mirror
reflection (−p,−q) in the pq space–i.e., along the line where
shading distance to both normals is equal (see Fig. 3–
right). In such configurations, both candidate normals fall
within the same shading cone defined by Eq.9, making the
ambiguity unresolvable.

However, these conditions occur only for some rare and
isolated directions and typically do not persist across an en-
tire surface. Thus, in general lighting conditions, combining
Laplacian and shading cues yields a unique surface normal
almost everywhere.

5 JOINTLY ESTIMATING LIGHTING AND SHAPE

In the previous section, we looked at how individual am-
biguities in shape normals from Laplacian and shading
can be solved when the source direction is given. Building
on the theoretical framework, in this section, we describe
our optimization process in detail that allows estimating
the uncalibrated light source direction and surface normal
across the entire image in a three step process. First, we
identify a few locally near-planar patches for an initial
estimate of the source direction. Second, we refine both the
surface normals at these patches and the light source direc-
tion by minimizing photometric error under shading and
Laplacian constraints, iterating until convergence. Finally,
we propagate the refined surface normals across the entire
image domain to ensure global consistency.

5.1 Initializing Normals for Near-Planar Patches
In our pixel-based mesh parameterization with connectivity
as shown in Fig. 2 we can see that every vertex is connected
to a maximum of six neighbors. Given this connectivity
scheme, to estimate an initial source direction we first iden-
tify nearly flat regions based on the insight that Laplacian
weights of diagonally opposite edges are approximately
equal for planar patches. These near-planar regions are
not known apriori but are automatically identified from
the Laplacian. Specifically, for Fig. 2 if the shown vertices
correspond to a locally flat surface then,

wij ≈ wic, wik ≈ wib, wia ≈ wil. (12)

We choose pixels with the least sum of absolute differences
between diagonally opposite edge weight at that pixel. For

Fig. 4. The above visualization shows a subset of vertices in F marked
with red dots and highlighted with green markers for visibility. These
candidate patches were picked as near-planar regions based on the
input Laplacian weights.

such a nearly planar pixel i, the Laplacian weights can be
expressed in terms of the unknown patch normal (p, q) as:

wia + wil

2
≈ p(p+ q) + 1√

p2 + q2 + 1
= w1

wij + wic

2
≈ q(p+ q) + 1√

p2 + q2 + 1
= w2 (13)

wik + wib

2
≈ −pq√

p2 + q2 + 1
= w3

Using the symmetry in the above equations, note that

p2 + q2 + 2√
p2 + q2 + 1

= w1 + w2 + 2w3, (14)

which reduces to

x2 + 1

x
= w1 + w2 + 2w3, (15)

where x =
√
p2 + q2 + 1 and by definition, x ≥ 1. We solve

this quadratic equation in x and pick the solution that is
greater than or equal to 1. In appendix, we show that the
other solution is less than 1. To recover the values of p and
q, observe that

p2 + 1

x
= w1 + w3. (16)

From this equation, we can compute |p| =√
(w1 + w3)x− 1 and similarly, |q| =

√
(w2 + w3)x− 1.

Finally, to recover the sign of p, q, we use the sign of w3

as follows. If Sign(w3) < 0, then the two solutions are
(|p|, |q|) and (−|p|,−|q|). If Sign(w3) > 0, then the two
solutions are (|p|,−|q|) and (−|p|, |q|). When w3 = 0, the
solutions simplify to either p = 0 and q = ±

√
w2

2 − 1 or
p = ±

√
w2

1 − 1 and q = 0.
This formulation allows us to recover surface normals

nF = {(pi, qi,−1) ∀i ∈ F} directly from Laplacian weights
in locally planar patches where F is the set of all vertices
whose diagonal weights are approximately equal.

5.2 Estimating Source Given Normals

Once surface normals are known at a set of pixel locations,
we can estimate the lighting direction using a reverse photo-
metric stereo approach, derived from the shading equation
in Eq. 9. In matrix form, this estimation can be expressed as: p̃0 q̃0 α0

...
...

...
p̃N p̃N αN


p̂sq̂s
βs

 =

 η0...
ηN

 (17)
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Algorithm 1 Shape from Laplacian and Shading (SFLS)
1: procedure SFLS(L,η)
2: // Normals for near-planar patches
3: F ,nF ← planarPatchNormals(L)
4: // Optimize ŝ and refine nF
5: while ∥∆ŝ∥ > ϵs or ∥∆nF∥ > ϵn do
6: ŝ← estimateSourceDir(F ,nF ,ηF )
7: nF ← shapeGivenSource(F ,nF ,L, ŝ)
8: end while
9: // Propagate normals to full surface

10: M← F
11: whileM ≠ V do ▷ V : all mesh vertices
12: K ←M∪N (∂M) ▷ Expand frontier
13: nK ← shapeGivenSource(K,nM,L, ŝ)
14: M←K
15: end while
16: return nV
17: end procedure

Here, (p̂s, q̂s, βs) represents the estimated lighting direction,
inferred from N observed pixels. The term βs is a normal-
ization factor. The entries p̃ and q̃ in the above matrix are
normalized components of the surface normals, computed
as p̃ = αp and q̃ = αq, where α = 1/

√
p2 + q2 + 1 ensures

unit norm.
However, an inherent ambiguity arises because a surface

normal (p̃, q̃) and its flipped version (−p̃,−q̃) yield identical
shading under correspondingly flipped lighting direction
(−ps,−qs). At the same time, both versions of the surface
normals satisfy the Laplacian weights. Here, the value of
(p̃, q̃) corresponds to one of the two signed solutions from
the previous subsection.

To disambiguate the correct sign for the surface normals,
we apply a RANSAC [23] based approach. We randomly
pick a light source direction and then determine the sign
for each surface normal which produces the lower shading
error. Using these signs, we compute the optimal light
source direction. We repeat until both the light source di-
rection and signs of the normals are converged. The signs
of the final light source direction [ps, qs,−1]T and surface
normals [pi, qi,−1]T corresponds to one of two global so-
lutions, with the other solution being [−ps,−qs,−1]T and
[−pi,−qi,−1]T∀i. In both cases, the light source and camera
are on the same side of the object. Our method enumerates
both these global solutions. Without loss of generality, we
pick one of the light source directions and proceed to
estimate its corresponding shape.

5.3 Estimating Shape Given Source Direction

In this section, we estimate the surface normals across the
entire object given an estimated source direction ŝ and a
few initial normals at selected pixels, while enforcing both
shading and Laplacian constraints. Rather than optimizing
over the full 3D space of normals, we reduce the search
space by restricting normals to lie within a shading cone—the
set of unit vectors consistent with the observed shading η
and source direction ŝ.

Fig. 5. Left: Plot of the objective function in Eq. 19 vs ti for an unknown
vertex i when the other tj , j ∈ N (i) values are known. Right: Objective
function shown as heatmap for two unknown t when other t values
are known. These typical plots show that there exists a single global
minimum that satisfies the cotangent weight constraints. Note that t
represents an angle that wraps around along the boundary.

We reparametrize each normal as a point on this cone
using a 1D polar angle t ∈ (0, 2π]:

n(t) = η ŝ+
√
1− η2 R(̂s)

cos t
sin t
0

 (18)

In this formulation, ηŝ is the component of the normal
aligned with the light source direction, while the perpen-
dicular component (scaled by

√
1− η2) lies in the plane

orthogonal to ŝ. The rotation matrix R(̂s) maps vectors
from the standard xy-plane to this perpendicular plane,
and the vector [cos t sin t 0] sweeps out the circle of possi-
ble directions. This reparametrization ensures that shading
constraints are inherently satisfied, reducing the problem
to selecting the correct t values that match the Laplacian
constraint.

To estimate the surface shape, we define an objective
over a subset of vertices S for which Laplacian weights are
to be matched. The optimization problem becomes:

t∗ = argmin
t

∑
i∈S

∑
k∈N (i)

∥wik − ŵik(t)∥2 (19)

Here, t∗ = {ti | i ∈ S} represents the optimal polar angles
for the selected vertices. The set N (i) contains neighboring
vertices of i in the mesh, wik are the known cotangent
weights, and ŵik(t) are the weights derived from the cur-
rent normal estimates.

To make the optimization tractable, we adopt an expand-
ing frontier strategy—estimating normals for a subset of
regions at a time. We begin with a coarse multi-dimensional
grid search over t ∈

∏
i∈S(0, 2π] to find a promising

initialization, then refine the estimate via gradient descent.
The resulting t∗ provides accurate normal estimates that
satisfy both shading and Laplacian constraints. The next
subsection details how this localized estimation integrates
into our global shape reconstruction pipeline.

5.4 Overall Framework

Algorithm 1 outlines the pseudo-code of our complete
Shape from Laplacian and Shading (SFLS) method. We fol-
low a three-stage approach that systematically reconstructs
surface normals and light source direction while ensuring
consistency with both Laplacian weights and shading ob-
servations.
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In the first stage, we identify near-planar patches F on
the surface as shown in Fig. 4 and compute their initial
normal estimates nF using the method described in Section
5.1. These planar regions provide reliable starting points
for our reconstruction since their geometric properties are
well-captured by the distinctive patterns in their Laplacian
weights.

The second stage involves an alternating optimization
between lighting estimation and normal refinement. Using
the initial normals from planar patches, we estimate the
light source direction ŝ through the reverse photometric
stereo approach detailed in Section 5.2. With this lighting
estimate, we then refine the normals nF to better satisfy
both shading constraints (consistency with observed inten-
sities ηF ) and Laplacian constraints (consistency with mesh
geometry). This alternating process continues until change
in both the lighting direction and normal estimates converge
within thresholds ϵs and ϵn, respectively.

In the final stage, we propagate normal estimates from
the confidently reconstructed regions to the entire surface
through an expanding frontier strategy. Starting with the set
of planar patchesM = F whose normals have been reliably
estimated, we iteratively expand to include neighboring
vertices N (∂M) along the boundary ∂M of the current
region. For each expansion step, we compute normals for
the expanded set K using the method described in Section
5.3, which ensures the new normals respect both the ob-
served shading and the geometric constraints imposed by
the Laplacian.

To geometrically interpret our normal propagation
method, consider the mesh connectivity illustrated in Fig. 2.
When estimating normals for vertices adjacent to those with
known normals, we solve for the optimal polar angles t∗ in
our cone parametrization. This typically involves a one- or
two-dimensional search over the parameter space. Figure 5
shows empirical plots of the objective function described in
Eq. 19 for vertices requiring either one- or two-dimensional
search of t∗ values, indicating a single local minimum as
theoretically described in Section 4.2.

Through this progressive expansion, normals are propa-
gated across the entire mesh while maintaining consistency
with both local geometry (encoded in the Laplacian) and
the global lighting model. The algorithm terminates when
all vertices in the mesh V have been assigned normals, re-
sulting in a complete surface reconstruction that accurately
captures both the fine geometric details and the overall
shape of the object.

5.5 Discussion on Limitations of Theory
In this section, we discuss the limitations of our theory.
Case 1: Our light source estimation using reverse photomet-
ric stereo requires at least three non-coplanar near-planar
patches. In the extreme case when the shape is simply a
plane, we cannot estimate the light source direction and con-
sequently cannot unambiguously estimate shape. However,
if the light source direction is provided, even a simple plane
can be unambiguously reconstructed.
Case 2: In the special case of fronto-parallel lighting, the
surface normals for both concave and convex shapes lie
within the shading cone at all points on the surface and
the ambiguities cannot be resolved.

Fig. 6. Left: Estimated light source directions for complex-shaped
objects, initialized using their near-planar surface patches and progres-
sively refined to converge toward the true source (indicated by a star).
Right: Convergence behavior of our refinement strategy starting from
extreme initial guesses. Here, colors blue, orange, purple and green
indicate droplet wave, wineglass, bunny and Igea objects respectively.

Case 3: For directional lighting, surface normals along the
line p = − qs

ps
q and their flipped counterparts produce the

same shading and Laplacian weights. In the extreme case
when the shape only contains normals along this line, we
cannot resolve the ambiguity. Also note that, if all normals in
a shape are collinear in the pq space, the light source can also
not be estimated as in Case 1. However, for general shapes,
a nearby pixel would have a normal outside the above line.
In this case, our propagation strategy allows picking the
correct sign for the normal based on the nearby pixel.

Outside these special cases, the combination of shading
and Laplacians provides a powerful way to resolve inherent
shape ambiguities in each modality. Recall that, for un-
known light source direction, a global binary ambiguity still
exists. However, our approach estimates both possible light
source direction and its corresponding shape.

We note that the regular six-neighbor mesh was chosen
for symmetry and computational convenience, and the de-
rived equations in Sec. 4.1 are not restricted to this configu-
ration – it can be extended to other mesh connectivities.

6 EXPERIMENTAL RESULTS

We evaluate the theory and effectiveness of our proposed
method through simulations on a variety of objects and
under varying levels of input noise. In Sec. 6.1, we analyze
our light source estimation algorithm. Next, in Sec. 6.2, we
compare our shape estimation algorithm against three base-
lines: (A) Shape from Laplacian, which optimizes (pi, qi) to
match the given Laplacian weights, (B) Shape from Shading,
which optimizes (pi, qi) to the match the given shading
assuming known source direction, and (C) Analysis-by-
synthesis, which optimizes for both (ps, qs) and (pi, qi)
using the sum of Laplacian error and Shading error as loss.
In Sec. 6.3, we analyze the robustness of our algorithm
to noise. Finally, in Sec. 6.4, we analyze the performance
of our algorithm in the presence of inter-reflections and
complex BRDFs. Our current Python implementation is not
optimized for computational time and the approach takes
several tens of minutes per scene.

6.1 Source Estimation Results
Table 1 presents the angular error between the estimated
and ground truth light source directions across various sim-
ulated objects. Initial estimates based on near-planar patch
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Fig. 7. Shape estimation results for a simulated object using shading and Laplacian as inputs. Figures (a) and (b) show the inputs cues: shading
and Lapalcian, respectively. The Laplacian is visualized as the magnitude of Gaussian curvature, which is an intrinsic geometric property of shape.
Figure (c) presents the rendering of the estimated lighting and reconstructed surface according to the algorithm described in Sec 5. Note that this
rendering is derived entirely from the unknown lighting and unknown shape. Figure (d) shows the depth map recovered from the reconstructed
surface, and it can be seen that it aligns with the ground truth in (e). The estimated shape and ground truth are both scaled, and the mean distance
between them was at most 1.58%. Detailed quantitative results are summarized in Table 2.

TABLE 1
Angular error (in degrees) between estimated and true lighting

direction, evaluated after a single iteration of our refinement strategy
and after convergence.

Droplet Wave Wineglass Bunny Igea

Initial Estimate 27.02 2.026 1.154 48.94
After Refinement 0.088 0.029 0.038 0.038

TABLE 2
Average percentage distance error with the ground truth for shapes
estimated using shape from Laplacian [8], shape from shading [11]
(Fig. 8), and proposed shape from Laplacian and shading (Fig. 7),

computed after scaling each shape to fit within a unit bounding box.

Droplet Wave Wineglass Bunny Igea

Shape from Laplacian 3.05% 3.16% 8.51% 6.60%
Shape from Shading 4.17% 2.75% 6.20% 8.60%

Analysis by Synthesis 3.01% 3.82% 5.94% 11.34%
SFLS 0.05% 0.23% 0.26% 1.58%

normals result in errors as high as 49◦ for some cases. How-
ever, by iteratively refining the estimates through alternat-
ing reverse photometric stereo and Laplacian-constrained

TABLE 3
Quantitative results for a droplet wave object with increasing Gaussian
noise applied to the inputs of both the shading and Laplacian weights.

Added Gaussian Noise σ = 0.01 σ = 0.1 σ = 0.2

Avg. distance error 5e−3 1e−2 5e−2

% Distance error 0.45% 1.29% 5.05%

TABLE 4
Quantitative results for a droplet wave object reconstructed from

simulated noisy thermal videos with Gaussian noise and Gaussian +
fixed pattern noise that is commonly seen in thermal cameras.

Gaussian Gaussian + Fixed Pattern

Avg. distance error 8.1e−3 1.2e−2

% Distance error 0.81% 1.20%

normal refinement, the angular error is reduced dramati-
cally to below 0.09◦ as visualized in Fig. 6. Additionally, Fig.
6 (right) demonstrates that our method remains effective
even when starting from extreme initial guesses, highlight-
ing the effectiveness of our iterative strategy.
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Fig. 8. Shape estimation results using only Laplacian or shading cues,
and joint optimization over lighting and shape using an analysis-by-
synthesis approach. Due to the non-convex nature of the underlying
optimization, the results exhibit ambiguities—specifically, locally binary
ambiguities from Laplacian constraints and conic ambiguities from shad-
ing cues—reflecting the presence of multiple global minima. The light
source estimation errors with the analysis-by-synthesis approach were
96.12◦, 25.68◦, 17.70◦, and 15.20◦ from left to right object, compared to
our approach shown in Table 1.

Fig. 9. Shape estimation with varying levels of additive gaussian noise.
(a) and (b) are the input shading and Laplacian, (c) the rendered
shading image estimated from lighting and shape, and (d) the estimated
depth-map. From the top to bottom, results are shown for no noise, and
for Gaussian noise with standard derivations σ = 0.01, σ = 0.1, and
σ = 0.2, respectively. Although greater noise levels introduce more local
distortion in the reconstructed shape, our proposed method still yields
a reasonable estimation overall. Table 3 presents the corresponding
quantitative numbers.

Fig. 10. We simulated and reconstructed shape from the noisy thermal
videos with Gaussian noise (a,b) and the Gaussian + fixed pattern
noises (c,d). We used the algorithm from [8] to estimate Shape Lapla-
cian and we apply median filtering and total variation denoising before
using them as input to our shape estimation.

TABLE 5
Quantitative results for a droplet wave for two cases (1) interreflections
on a diffuse surface and (2) interreflections on a surface with complex

BRDF, with roughness parameter α = 0.4.

θ = 30 θ = 50 θ = 70

Interreflections 0.06% 0.31% 1.23%
BRDF with interreflections 0.84% 0.74% 0.81%

6.2 Shape Estimation Results

Figure 8 shows the qualitative results of shape estimation
using the three baselines. Shape from Laplacian estimates
the correct local curvature while the overall shape is in-
correct due to local concave/convex ambiguities. On the
other hand, Shape from Shading estimates shapes that often
have lower curvature than the true shape. The analysis-
by-synthesis approach, i.e. joint optimization over lighting
and shape, is simple in principle but gets stuck in local
minima. Note that for every source direction, there exist
many corresponding shapes that exactly satisfies the shad-
ing equation. Thus, fixing the source direction is crucial
for converging to the correct solution. Unlike the shading
equation, the Shape Laplacians at near-planar pixels can
be solved in closed form, which we then use to estimate
source. Also, joint optimization requires a hyperparameter
to balance photometric error and Laplacian error, while
our proposed t formation satisfies the shading equation by
construction. The corresponding results from our proposed
method is shown in Fig. 7 along with the ground truth
shape. By combining the correct curvature information from
Shape Laplacians and the correct direction information from
Shading, our algorithm faithfully recovers the 3D shapes
even for complex geometries.

To quantitatively evaluate the performance, we compare
the estimated meshes against ground truth meshes using
MeshLab after global registration. Table 2 reports the aver-
age percentage distance errors. Our proposed Shape-from-
Laplacian-and-Shading (SFLS) method achieves high recon-

TABLE 6
Quantitative results for a droplet wave object reconstructed from

simulated BRDFs with interreflections. The lighting was set at θ = 30.

α = 0.4 α = 0.3 α = 0.2

BRDFs with interreflections 0.84% 1.42% 1.77%
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Fig. 11. Shape estimation results for a simulated object under known lighting conditions, using Laplacian and shading as inputs for two cases: (1)
shading includes interreflections with the Lambertian BRDF and (2) shading includes interreflections with a non-lambertian BRDF with roughness
parameter α = 0.4. Figures (a), (b) and (c) show pairs of the input shading image rendered using Mitsuba and the estimated shape. Similarly,
Figures (d), (e) and (f) show the corresponding results for the non-lambertian BRDF case. Below the visual results, we also show the corresponding
depth profiles comparing the estimated shapes with the ground truth along the vertical center line of the image. The mean distance between them
was at most 1.23%. Detailed quantitative results are in Table 5.

struction accuracy, with errors as low as 1.6% for complex
geometries such as the Igea object.

6.3 Robustness to Noise
The inputs to our algorithm are the Shading image and
Shape Laplacian weights. To evaluate robustness, we added
Gaussian noise to both these inputs. Table 3 shows the
percentage distance errors for the reconstructed droplet
shape under increasing noise levels. Despite significant in-
put degradation, our method maintains errors below 1.3%,
demonstrating good resilience. Visual results in Fig. 9 con-
firm the robustness of the proposed pipeline.

While additive gaussian noise is a reasonable noise
model for Shading images, the noise model for Shape
Laplacians could be more complex as they are estimated
from thermal videos which suffer from both gaussian and
fixed pattern noises. Therefore, we performed additional
experiments by simulating thermal videos and estimating
Shape Laplacians using the method in [8]. We additionally
use median filtering and total variation denoising on the
estimated Shape Laplacians as pre-processing steps. Fig. 10
shows the reconstructed shapes from thermal video with

added Gaussian noise, and Gaussian and fixed pattern
noise. Table 4 shows the distance errors for each case.
The errors are within 1.2% even under noise conditions
commonly observed in real-world thermal imaging.

6.4 Interreflections, shadows and complex BRDFs
In this section, we analyze our algorithm in the presence
of complex light transport effects such as shadows, inter-
reflections and non-Lambertian BRDFs. Our light source
estimation algorithm based on reverse photometric stereo
fails in most of these cases with errors above 40◦. Therefore,
we restrict our analysis to the case of known lighting.

The behavior of our algorithm varies depending on the
amount of interreflection present in the scene. In regions
where the direct component (for Lambertian surfaces, this is
the cosine shading) dominates interreflections, our approach
performs reasonably even if it produces slightly shallower
shapes (as noted in classical works [24]). But when inter-
reflections dominate, using just the cosine shading model
can result in larger errors. In particular, in shadow regions
where there are only interreflections, the surface patches
may be estimated to be facing away from the source when
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Fig. 12. Shape estimation results using shading images with interreflec-
tions under different roughness parameters as input. As the surface
becomes smoother (i.e., as α decreases), the specular highlights in the
shading introduces rapid changes in surface normals. The depth profiles
comparing the estimated shapes with the ground truth along the vertical
center line of the image. Quantitative results are summarized in Table 6.

they are actually oriented towards the source. Thus, in such
cases, the binary ambiguities in Shape Laplacian will not be
resolved correctly using our simple shading model.

To experimentally confirm these observations, we simu-
late the Droplet Wave shape under three different lighting
conditions with interreflections rendered using Mitsuba. We
further analyze the same scenes with a non-Lambertian
BRDF by varying the roughness (α) parameter. Fig. 11
shows the corresponding shape estimation results. When
the lighting is close to fronto-parallel, most regions have
a dominant direct component and our shape estimation
resolves the concave / convex ambiguity. As lighting goes
toward lower polar angles, more regions are shadowed
and the shape estimation progressively degrades for both
Lambertian and non-Lambertian BRDFs. Table 5 reports
the corresponding quantitative errors for these experiments.
Fig. 12 compares the shape estimation results with varying
roughness parameters. As shown in Table 6, the errors
increase with lower roughness (more specular). The profile
plots in the bottom row show that the specular regions in
the shading introduces rapid changes in surface normals
near specular highlights.

7 CONCLUSION

Heat conduction has recently emerged as a novel way to
determine the Shape Laplace-Beltrami operator [8], which
is an intrinsic representation of shape, under unknown
lighting and even for non-Lambertian surfaces. However,
recovering the explicit shape suffers from a local binary con-
vex/concave ambiguity. In contrast, estimating the shape
from a single shading image is a well-known ill-posed
problem even for a Lambertian scene with uniform albedo
and known source direction. At each pixel, there is a cone of
possible normals around the source direction that produce
the same shading image. In this paper, we have shown

that, outside special cases, only one of the convex/concave
solutions to the Shape Laplacians lies on the Shading cone.

Our key insight is that the Laplacian weights can be
directly computed from the vertex normals that is used
in the shading equation, thus enabling a seamless inte-
gration of two complimentary cues. Unlike Shape-from-
Shading algorithms that use an arbitrary smoothness term,
the shape Laplacian encodes the true curvature of the shape.
As a result, combining shading and Laplacian constraints
naturally produces a smooth optimization landscape with
only one global minimum. Interestingly, for homogeneous
albedo, shading is directly proportional to the absorbed
light [9]. This enables consistent integration of shading with
the Laplacian cues only using heat conduction without
requiring a separate shading image. Extending our theory
to more complex light transport (near-source lighting, inter-
reflections, complex BRDFs) and perspective cameras is an
interesting avenue for future work.
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APPENDIX

Laplacian weights from vertex normals: Here, we provide
the detailed equations for the Laplacian weights in Fig. 2 for
all six edges of a vertex.

wia =
1

2

(
p2b + pbqa + 1√
1 + q2a + p2b

+
p2i + piqa + 1√
1 + q2a + p2i

)

wij =
1

2

(
qapi + q2a + 1√
1 + q2a + p2i

+
qjpi + q2j + 1√
1 + q2j + p2i

)

wik =
1

2

(
−qjpi√

1 + q2j + p2i

− plqi√
1 + p2l + q2i

)

wil =
1

2

(
plqi + p2l + 1√
1 + p2l + q2i

+
pcqi + p2c + 1√
1 + p2c + q2i

)

wic =
1

2

(
q2i + qipc + 1√
1 + p2c + q2i

+
qbpc + q2b + 1√
1 + p2c + q2b

)

wib =
1

2

(
−pcqb√

1 + p2c + q2b

− pbqa√
1 + q2a + p2b

)
(20)

Near-planar patch solutions: Let D = w1 + w2 + 2w3. The
two solutions to Eq. 15 are

x =
D ±

√
D2 − 4

2
. (21)

As the solutions need to be real, D2 − 4 ≥ 0. From Eq. 14,
D > 0 as all the terms on the left are positive. The above
two inequalities imply D ≥ 2. We can then write

(D − 2)2 < (D − 2)(D + 2)

D − 2 <
√
D2 − 4

D −
√
D2 − 4 < 2

D −
√
D2 − 4

2
< 1 (22)

Since D > 2, it is trivial to verify that

x =
D

2
+

√
D2 − 4

2
≥ 1. (23)

When D = 2, both solutions are identical (x = 1).


