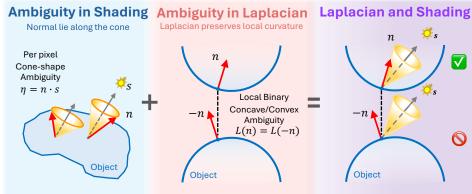
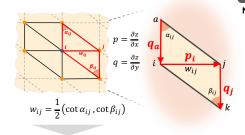

Resolving Shape Ambiguities using **Heat Conduction and Shading**



Akihiko Oharazawa, Sriram Narayanan, Mani Ramanagopal, Srinivas G. Narasimhan

Intersecting Shading and Laplacian Constraints



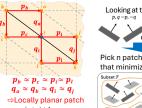
From Laplacian to Normal

Overview: We derived cotangent weight w_{ij} in p, q form to compute Laplacian.

Regular grid six-neighboring edges

$$w_{ij} = \frac{1}{2} \left(\frac{1 + p_i q_a + q_a^2}{\sqrt{p_i^2 + q_a^2 + 1_j}} + \frac{1 + p_i q_j + q_j^2}{\sqrt{p_i^2 + q_j^2 + 1_j}} \right)$$

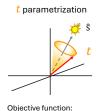
Estimating Lighting and Shape


Our approach: We use locally planar-patches to estimate lighting, and then estimate full shape.

Lighting from Laplacian and Shading

 \tilde{q}_1

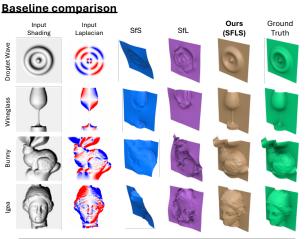
 \tilde{a}_N



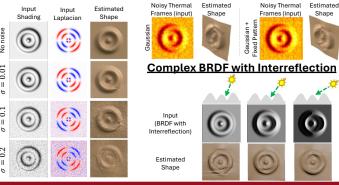
 $\sqrt{p^2 + q^2 + 1}$ q(p+q)+1 $\frac{-pq}{\sqrt{p^2+q^2+1}} = \mathbf{W_3}$ $|p| = \sqrt{(\mathsf{w}_1 + \mathsf{w}_3)x - 1}$

 $|q| = \sqrt{(w_2 + w_3)x - 1}$

Looking at the sign w₃, then Pick n patches and find sign that minimizes η with RANSAC


Estimated Unknown Known Solution: Least Square Estimation $\widehat{S} = (\widehat{N}^T \widehat{N})^{-1} \widehat{N}^T \eta$

Objective function: Laplacian


No data driven or smootheness prior

Results

	Droplet Wave	Wineglass	Bunny	Igea
Shape from Shading	4.17 %	2.75 %	6.20 %	8.60 %
Shape from Laplacian	3.05 %	3.16 %	8.51 %	6.60 %
Ours (SFLS)	0.05 %	0.23 %	0.26 %	1.58 %

Gaussian Noise Noisy Thermal Frames Estimated Noisy Thermal

Conclusion

- Both Laplacian and shading suffer from shape ambiguity.
- Combining Laplacian and shading resolves shape ambiguity and enables shape reconstruction without priors.
- Lighting can be estimated from Laplacian and shading.

[1] Ikeuchi and Horn, Numerical Shape from Shading and Occluding Boundaries, Artificial Intelligence, 1981, [2] Barron and Malik. Shape illumination, and reflectance from shading, IEEE PAMI, 2014. [3] Narayanan et al., Shape from heat conduction, ECCV, 2024.