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Figure 1. Real physical systems, such as biomembranes, have extraordinarily complex geometry, often managed by homogenizing particulate substances
that mediate physical interactions. For example, in the setup we show, a homogenized PDE is commonly used to model electrostatic screening due to ions in
solution. In reality, however, homogenization can be highly inaccurate, as particles often exhibit a scale similar to geometric features. We develop Monte Carlo
methods that directly account for both particle and boundary geometry, maintaining efficiency without any limiting assumptions or geometric simplification.

We consider the problem of solving partial differential equations (PDEs)

in domains with complex microparticle geometry that is impractical, or

intractable, to model explicitly. Drawing inspiration from volume rendering,

we propose tackling this problem by treating the domain as a participat-

ing medium that models microparticle geometry stochastically, through
aggregate statistical properties (e.g., particle density). We first introduce the

problem setting of PDE simulation in participating media. We then specialize

to exponential media and describe the properties that make them an attractive

model of microparticle geometry for PDE simulation problems. We use these

properties to develop two new algorithms, volumetric walk on spheres and
volumetric walk on stars, that generalize previous Monte Carlo algorithms

to enable efficient and discretization-free simulation of linear elliptic PDEs

(e.g., Laplace) in participating media. We demonstrate experimentally that

our algorithms can solve Laplace boundary value problems with complex

microparticle geometry more accurately and more efficiently than previous

approaches, such as ensemble averaging and homogenization.
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1 Introduction
How do we simulate the electrostatic potential due to ions around a

bilipid membrane (Figure 1)? Or the concentration of ozone form-

ing in clouds due to the photochemical effect (Figure 13)? These

are natural phenomena where we know how to model the under-

lying physical processes mathematically, using partial differential

equations (PDEs) with appropriate boundary conditions. Yet despite

continued advances—in computer graphics and other sciences—on

numerical PDE solvers, both phenomena remain challenging to

simulate accurately and efficiently. The root of the challenge is the
same in both phenomena: Even though the problem geometry at

the macroscopic level is relatively simple—we can accurately model

the outer shell of the cloud in Figure 13, or the lipids and proteins

in Figure 1, with good efficiency—at the microscopic level the geom-

etry becomes extremely complex—we need to specify the position

of every water droplet forming the cloud, or every ion around the

membrane, a daunting task. These are but two examples of a much

broader class of natural phenomena that involve similarly complex

microparticle geometry, and thus are likewise challenging to simulate.

This class includes liquid flow in porous or colloidal media, diffusive

processes across biology, or heat transfer in granular media.

Our goal in this paper is to develop numerical methods that en-

able accurate and efficient simulation of PDEs in the presence of

complex microparticle geometry, as in the above examples. Obvi-

ously, we are not the first to consider this problem. Perhaps most
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prominent among previous approaches are homogenization methods
[Marchenko and Khruslov 2008], which deal with complex micropar-

ticle geometry by modeling only the asymptotic behavior of the PDE
solution, for example, as particles become infinitesimally small and

infinitely dense. Such limiting cases effectively eliminate (“homoge-

nize”) the microparticle geometry, and are thus tractable to simulate.

Unfortunately, the resulting PDE solutions are not always good

approximations of the true behavior: Real problem settings never

exactly match the homogenization assumptions, and the degree of

deviation from these assumptions can vary drastically across the

domain of each individual problem, making it difficult to provide

accuracy guarantees or means to control the approximation error.

The need to develop numerical methods that can deal with com-

plex microparticle geometry also arises in other areas of computer

graphics. For example, in rendering, such methods are needed to

simulate photorealistic images of scenes that include materials such

as clouds, smoke, fog, and biological tissue. Accurate simulation of

light transport in such scenes requires accounting for the multiple

interactions of light with the microparticle geometry of these ma-

terials, thus posing the same computational challenge as in PDE

simulation. To overcome this challenge, the predominant approach

in rendering has been to represent materials with complex micropar-

ticle geometry as participating media: Rather than enumerate ex-

plicit configurations of microscopic particles, such media model the

microparticle geometry stochastically, through bulk statistical prop-

erties such as the average particle density at different parts of the

material. Combining this representation with Monte Carlo render-

ing methods—such as path tracing—has led to the development of

volume rendering algorithms [Novák et al. 2018]—such as volumetric

path tracing—as a highly successful methodology for the simulation

of light transport in materials with complex microparticle geometry.

In particular, volume rendering algorithms compute the average

(in the sense of statistical expectation) light transport behavior in-

side such materials, without requiring the limiting assumptions of

homogenization methods. This computational capability has facili-

tated applications in areas well beyond computer graphics, including

remote sensing, chemistry, material science, and medicine.

In this paper, we set out to bring the same computational ca-

pability to PDE simulation in problem settings with complex mi-

croparticle geometry. To achieve this goal, we focus on Monte Carlo
algorithms for simulation of linear elliptic PDEs [Sawhney and Crane
2020]—for example walk on spheres and walk on stars—to leverage

their striking similarity to Monte Carlo rendering algorithms, as

well as other advantages they provide over alternative grid-based

simulation methods. We first formally introduce the problem of

PDE simulation in participating media (Section 3), then specialize to

so-called exponential media—the most common type of participating

media, assuming independent particles described statistically by the

Poisson Boolean model for stochastic geometry (Section 4).

We then develop two new algorithms, volumetric walk on spheres
(Section 5) and volumetric walk on stars (Section 6), which general-

ize their non-volumetric namesakes to support simulation of linear

elliptic PDEs in participating media. Our development mimics that

of volume rendering algorithms for exponential media, taking ad-

vantage of the close similarities between Monte Carlo algorithms

for simulation and rendering (Appendix B). We demonstrate the ac-

curacy and efficiency of our algorithms (Section 7) through compar-

isons with homogenization and other baseline approaches (ensemble

averaging). Lastly, we show example applications of our algorithms

through simulations of natural phenomena with complex micropar-

ticle geometry (Section 8)—in particular the two phenomena at the

start of this section, the electrostatic potential of bilipid membranes

(Figure 1), and the photochemical effect in clouds (Figure 13). We

provide an open-source implementation on the project website.
1

2 Related work
Our work bridges ideas from PDE simulation, rendering, and sto-

chastic geometry. We review related literature across these areas.

Monte Carlo PDE simulation. Our work continues the develop-

ment of Monte Carlo algorithms for PDE simulation, generalizing

algorithms such as walk on spheres [Muller 1956] and walk on stars
[Sawhney et al. 2023; Miller et al. 2024b] to problems involving

participating media. Despite their long history in applied mathe-

matics and other areas [Sabelfeld and Simonov 2016], Monte Carlo

algorithms for PDE simulation were only recently introduced to

computer graphics [Sawhney and Crane 2020]. Since their intro-

duction, they have been gaining popularity as an alternative to

traditional grid-based methods (finite elements and boundary el-

ements [Hunter and Pullan 2001; Costabel 1987]), thanks to the

critical advantages they provide—output sensitivity, parallelism,

robustness to imperfect geometry, and compatibility with varied

geometric representations [Sawhney and Crane 2020, Section 1].

Graphics research in the past five years has seen the rapid develop-

ment of these algorithms to support much broader types of PDEs

[Rioux-Lavoie et al. 2022; Bati et al. 2023; De Lambilly et al. 2023;

Sugimoto et al. 2024; Sawhney et al. 2022] and boundary conditions

[Nabizadeh et al. 2021; Miller et al. 2024b; Sawhney et al. 2023; Sug-

imoto et al. 2023], as well as improve efficiency [Qi et al. 2022; Li

et al. 2024, 2023; Bakbouk and Peers 2023; Miller et al. 2023].

We aim to further extend the capabilities of Monte Carlo PDE sim-

ulation algorithms, to enable simulation of problems with extremely

complex microparticle geometry. Such problems arise in the model-

ing of natural phenomena such as flow effects in porous or colloidal

media [Kadivar et al. 2021], diffusive effects in biology [Rothschild

1992; Brydges and Federbush 1980] (Figure 1), and radiative-diffusive

photochemical effects in clouds [Faust 1994] (Figure 13). Simulat-

ing these phenomena has been a long-standing challenge also for

grid-based simulation methods, typically necessitating the use of

homogenization methods, as we review below. We introduce a funda-

mentally different approach to addressing this challenge, based on

representations of microparticle geometry as participating media.
Our approach is inspired by the similarity between Monte Carlo

algorithms for PDE simulation and rendering, as we elaborate next.

Participating media and volume rendering. Participating media

have a long history in computer graphics, and especially render-

ing [Drebin et al. 1988], as a methodology for tractably modeling

microparticle geometry. Rather than pin down an exact particle

configuration, they model stochastic configurations where particle

1
https://imaging.cs.cmu.edu/volumetric_walk_on_spheres
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properties (location, shape) are random variables determined by the

medium properties. Different statistical models give rise to different

types of media, including exponential mediawith independent spher-
ical or anisotropic particles [Jakob et al. 2010; Heitz et al. 2015], or

non-exponential media with correlated (e.g., repulsive or attractive)

particles [Bitterli et al. 2018; Jarabo et al. 2018; d’Eon 2018, 2019].

Participating media have enabled light transport simulation in

microparticle geometry of extreme complexity [Meng et al. 2015;

Müller et al. 2016; Moon et al. 2007], through tailored volume render-
ing algorithms (such as volumetric path tracing) [Novák et al. 2018].

These algorithms generalize Monte Carlo rendering algorithms for

deterministic geometry (such as path tracing) [Veach 1998], to ac-

count for geometry stochasticity inside participating media. This

generalization requires only replacing geometric queries used by

the deterministic algorithms (ray casting) with routines that instead

sample random query outcomes from distributions determined by

the medium properties (free-flight distance sampling). The devel-

opment of efficient and accurate such routines has been a fruitful

research area [Novák et al. 2014; Raab et al. 2006; Kutz et al. 2017;

Kettunen et al. 2021; Miller et al. 2019; Georgiev et al. 2019].

Volume rendering algorithms simulate expected light transport in

participating media, and are used well beyond computer graphics,

for example in remote sensing [Levis et al. 2017, 2015; Salesin et al.

2024a,b], chemistry [Berne and Pecora 2000; Weitz and Pine 1993],

and medical imaging [Alterman et al. 2021; Bar et al. 2019]. Recent

work has extended volume rendering algorithms to stochasticmacro-
scopic geometry [Miller et al. 2024a; Vicini et al. 2021; Seyb et al.

2024], for example arising due to acquisition noise or incomplete sur-

face information [Sellán and Jacobson 2022, 2023]. We aim to enable

similar capabilities in PDE simulation, by developing volumetric

Monte Carlo simulation algorithms. This development is aided by

the structural similarity between Monte Carlo algorithms for simu-

lation and rendering—as in rendering, all we need to do is replace

geometric queries in simulation algorithms (closest point queries)

with appropriate sampling routines (closest point sampling).

Homogenization of PDEs. Homogenization methods provide an

alternative methodology for analyzing and estimating solutions to

linear elliptic PDEs in domains perforated by microparticle geom-

etry. These methods consider the limit case as particles become

infinitesimally small and at the same time infinitely dense. At that

limit, the PDE solution asymptotically approaches the solution to a

PDE with additional screening in a domain without the micropar-

ticle geometry—Marchenko and Khruslov [2008] provide rigorous

statements. Starting with the work of Papanicolaou and Varadhan

[1980], this asymptotic behavior has been shown to hold for differ-

ent types of microparticle geometry, including periodic Cioranescu

and Murat [1982] (Cioranescu and Murat [1997] provides an English

translation) and stochastic with independent or correlated particles

[Caffarelli and Mellet 2009; Calvo-Jurado et al. 2015; Giunti et al.

2018]. Analogous asymptotic results also hold for more general

PDEs outside the scope of our paper, for example homogenizing

the Stokes flow equation into the Darcy-Brinkman equation [Giunti

and Höfer 2019; Whitaker 1986; Brinkman 1949].

Unfortunately, the solution to the homogenized PDE can be a

poor approximation to the true solution for problems that are far

microparticlesvolume

density

domain

Figure 2. We consider domains𝛺 ≔ 𝑉 \𝑂 equal to the difference between a
deterministic volume𝑉 and a random configuration of particles𝑂 contained
in the volume. The particle configuration follows the Poisson Boolean model
(PBM) whose density 𝜆 (𝑥 ) is defined over the volume.

from the homogenization limit, for example with particles of modest

size or small density. Additionally, the approximation error can vary

considerably at different parts of the PDE domain, for example near

detailed geometry versus far from the boundary. Our volumetric

method overcomes these issues by considering the expected, rather

than asymptotic, PDE solution, and remains accurate across particle

and density scales, and throughout the entire domain. We revisit

homogenization and show experimental comparisons in Section 7.2.

Lastly, homogenization methods have proven successful in graph-

ics for simulation problems involving microscopic and multi-scale

geometry beyond particle perforations [Yuan et al. 2024; Desbrun

et al. 2013; Sperl et al. 2020; Kharevych et al. 2009].

3 Background and problem statement
We first review boundary value problems (BVPs) with linear elliptic

PDEs and Dirichlet boundary conditions, and the walk on spheres

algorithm for solving such BVPs. We then introduce the problem of

solving BVPs in participating media—the focus of our paper.

3.1 Notation
We work in three dimensions and use the Euclidean norm for dis-

tances. Given any set 𝑄 ⊂ R3
and point 𝑥 ∈ R3

, we define the

functions closest(𝑥,𝑄) ≔ argmin𝑦∈𝑄 ∥𝑥 − 𝑦∥ and dist(𝑥,𝑄) ≔

∥𝑥 − closest(𝑄, 𝑥)∥ returning the closest point and shortest distance
(resp.) to 𝑥 among points in 𝑄 . We denote by B(𝑥, 𝑟 ) the ball with
center 𝑥 and radius 𝑟 . For any two points 𝑥,𝑦 ∈ R3

, we define

dir(𝑥,𝑦) ≔ 𝑦−𝑥/∥𝑦−𝑥 ∥ as the unit vector pointing from 𝑥 to 𝑦.

Throughout the paper, we use three sets: the domain 𝛺 , the

volume 𝑉 , and the microparticle geometry 𝑂 , with boundaries 𝜕𝛺 ,

𝜕𝑉 , and 𝜕𝑂 (resp.). We detail their roles and relationships in Sec-

tions 3.2 and 3.4. For any point 𝑥 ∈ R3
, we denote its closest

points on the boundary of these sets as 𝑦𝜕𝛺 (𝑥) ≔ closest(𝑥, 𝜕𝛺),
𝑦𝜕𝑉 (𝑥) ≔ closest(𝑥, 𝜕𝑉 ), and 𝑦𝜕𝑂 (𝑥) ≔ closest(𝑥, 𝜕𝑂); we also de-

note the corresponding shortest distances 𝑟 𝜕𝛺 (𝑥) ≔
𝑥 − 𝑦𝜕𝛺 (𝑥),

𝑟 𝜕𝑉 (𝑥) ≔
𝑥 − 𝑦𝜕𝑉 (𝑥), and 𝑟 𝜕𝑂 (𝑥) ≔

𝑥 − 𝑦𝜕𝑂 (𝑥). Given a

sequence of points 𝑥0, 𝑥1, . . . (e.g., a random walk), we use the short-

hand notation 𝑦𝜕𝛺
𝑘

≔ 𝑦𝜕𝛺 (𝑥𝑘 ) and 𝑟 𝜕𝛺𝑘 ≔ 𝑟 𝜕𝛺 (𝑥𝑘 ) whenever the
meaning is clear from context; we do likewise for closest points and

shortest distances relative to 𝜕𝑉 and 𝜕𝑂 , and other quantities that

depend on such sequences later in the paper.

We denote by Δ the Laplace operator on R3
, and by P : R≥0 → R

the rotationally symmetric Poisson kernel of the zero-Dirichlet

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Laplace equation on a ball [Sawhney et al. 2023, Appendix A], pa-

rameterized with a radius 𝑟 .

3.2 The Laplace equation
To simplify exposition, throughout Sections 3–5 we consider a proto-

typical BVP involving the Laplace equation with Dirichlet boundary
conditions. Our methods can extend to other linear elliptic PDEs

that can be simulated with walk on spheres (e.g., screened Poisson

equation). It is also possible to extend to other boundary conditions

(e.g., Neumann, Robin) that can be simulated using the walk on
stars algorithm [Sawhney et al. 2023; Miller et al. 2024b]. We delay

discussion of this case till Section 6, and for now focus on the BVP:

Δ𝑢 (𝑥) = 0 in 𝛺,

𝑢 (𝑥) = g(𝑥) on 𝜕𝛺.
(1)

Here, 𝛺 ⊂ R3
is the domain of the BVP, g : 𝜕𝛺 → R is the Dirichlet

boundary data, and 𝑢 : 𝛺 → R is the solution we want to estimate.

3.3 Walk on spheres
When the domain𝛺 is deterministic, the walk on spheres (WoS) algo-

rithm [Sawhney and Crane 2020; Muller 1956] computes stochastic

estimates to the solution 𝑢 of the BVP (1), through recursive single-

sample Monte Carlo integration. The starting point of the derivation

of WoS is to represent the solution 𝑢 (𝑥0) at a point 𝑥0 ∈ 𝛺 as an

integral of the solution over a sphere centered at 𝑥0. A single-sample

Monte Carlo estimate of this integral requires estimating the so-

lution 𝑢 (𝑥1) at a point 𝑥1 sampled on the sphere. WoS estimates

𝑢 (𝑥1) by iterating the same single-sample Monte Carlo estimation,

resulting in a recursive procedure that performs a random walk

𝑥0, 𝑥1, . . . . The walk terminates when it reaches a point 𝑥𝑘 within

a small distance 𝜀 > 0 from the domain boundary 𝜕𝛺 , where the

solution is approximated by the known Dirichlet boundary data g at

the boundary point closest to 𝑥𝑘—a so-called 𝜀-shell approximation.
Concretely, we can express the solution𝑢 to the BVP (1) at a point

𝑥 ∈ 𝛺 using the boundary integral equation (BIE) [Costabel 1987]:

𝑢 (𝑥) =
∫
𝜕B(𝑥,𝑟𝜕𝛺 (𝑥 ))

P(𝑟 𝜕𝛺 (𝑥))𝑢 (𝑦) d𝐴(𝑦), (2)

where d𝐴 is the surface area measure. Starting at a point 𝑥0, recur-

sive single-sample Monte Carlo estimation of this equation with the

𝜀-shell approximation results in the WoS estimator:

⟨𝑢 (𝑥𝑘 )⟩ ≔


g(𝑦𝜕𝛺
𝑘
), 𝑟 𝜕𝛺

𝑘
< 𝜀,

P(𝑟𝜕𝛺
𝑘
)

p(𝑟𝜕𝛺
𝑘
) ⟨𝑢 (𝑥𝑘+1)⟩, otherwise.

(3)

At each step, WoS performs a closest point query to determine the

boundary point 𝑦𝜕𝛺
𝑘
∈ 𝜕𝛺 closest to the current walk point 𝑥𝑘 , then

sets 𝑟 𝜕𝛺
𝑘

≔ ∥𝑥𝑘 −𝑦𝜕𝛺𝑘 ∥. The next walk point 𝑥𝑘+1 is sampled on the

sphere 𝜕B(𝑥𝑘 , 𝑟 𝜕𝛺𝑘 ) with uniform probability p(𝑟 𝜕𝛺
𝑘
) ≔ 1/4𝜋 (𝑟𝜕𝛺

𝑘
)2.

3.4 Boundary value problems in participating media
Our focus is instances of the BVP (1) where the domain 𝛺 is per-

forated by stochastic microparticle geometry, known only up to a

probabilistic model specified through the properties of a participat-
ing medium. The stochasticity acts as a convenient abstraction to

alleviate the complexity of exact modeling of microscopic geometry

density

…

mean solution

…
sample

average

VWoS solves
directly

solve

ensemble averaging

Figure 3. Ensemble averaging is a simple but expensive method to estimate
the mean solution of a PDE in a participating medium, by first sampling
many random particle configurations (top row), then solving the PDE on
each sampled domain (bottom row), and finally averaging the computed
solutions. Our volumetric walk on spheres algorithm directly estimates the
mean solution without expensive ensemble averaging.

(for example, in domains that comprise an intractably large number

of particles, such as tissue, clouds, colloidal suspensions, or porous

rock formations). Before we specialize the type of participating

medium in Section 4, we use this section to set up such BVPs and

explain the notion of solution we are interested in.

As we show in Figure 2, we consider the microparticle geometry

𝑂 ⊂ R3
to be the union of a configuration of particles. We assume

that all particles are inside a deterministic domain 𝑉 ⊂ R3
with

boundary 𝜕𝑉 ; following rendering, we term 𝑉 the participating
medium or volume. Then, the domain of the BVP (1) is equal to the

part of the volume not occupied by particles:

𝛺 ≔ 𝑉 \𝑂. (4)

Additionally, as now any point in 𝑉 may be on 𝜕𝛺 , we extend the

domain of the Dirichlet boundary data, g : 𝑉 → R.
The configuration of particles is random, with a distribution de-

termined by the medium properties (e.g., particle density, Section 4).

Thus, the BVP solution 𝑢 is a random variable, and we want to

compute its expected value, which we term the mean solution 𝑢:

𝑢 (𝑥) ≔ E𝑂 [𝑢 (𝑥)] =
∫
P(𝑉 )

p(𝑂)𝑢 (𝑥) d𝑂. (5)

Here, the probability p(𝑂) of a particle configuration𝑂 , the integra-

tion domain, and the integration measure depend on the stochastic

microparticle geometry model, as we detail in Section 4.

Ensemble averaging. We can estimate 𝑢 using ensemble averaging
(Figure 3), which involves: 1. sampling many particle configurations

𝑂𝑠 from p; 2. computing the solution 𝑢𝑂𝑠
for each 𝑂𝑠 using, e.g.,

WoS; 3. averaging the computed solutions. The resulting estimate:

⟨𝑢 (𝑥)⟩
EA

≔
1

𝑆

𝑆∑︁
𝑠=1

𝑢𝑂𝑠
(𝑥), (6)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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is consistent as 𝑆 →∞ and unbiased. Though simple to implement

and invaluable for validating correctness of alternative methods, en-

semble averaging is impractically expensive: It requires repeatedly

sampling large particle configurations𝑂𝑠 , and performing expensive

PDE solves in the resulting complex domains. The high computa-

tional cost of ensemble averaging is well documented in rendering

[Bar et al. 2019; Bitterli et al. 2018], where it has motivated the de-

velopment of volume rendering algorithms [Novák et al. 2018] that

simulate light transport in participating media without ensemble

averaging. These algorithms typically specialize to specific models

of stochastic microparticle geometry, most commonly the Poisson
Boolean model. Motivated by the success of volume rendering algo-

rithms, our work uses this model to develop simulation algorithms

for unbiased estimation of the mean solution 𝑢 that elide ensem-

ble averaging. We detail the Poisson Boolean model in Section 4,

then develop our algorithms in Section 5. We elaborate on the rela-

tive merits of our algorithms compared to ensemble averaging in

Section 7, where we also show experimental comparisons.

4 Poisson Boolean model and exponential media
To model the stochastic microparticle geometry in participating

media, we use the Poisson Boolean model (PBM), which is common-

place in scientific and engineering applications [Kadivar et al. 2021;

Speidel et al. 2018]. In computer graphics, this model underlies vol-

ume rendering algorithms for exponential media [Novák et al. 2018].

The widespread use of the PBM is for reasons of both modeling

accuracy—it is appropriate for phenomena involving independent
particles— and computational convenience—it is endowed with a

wealth of mathematical properties that facilitate simulation.

We first provide the definition of the PBM, then explain how to

use it to perform closest point sampling, the key sampling procedure

we will need in Section 5 to generalize WoS to participating media.

The results we present have close analogues in volume rendering,

as we detail in Appendix B. We focus on the simplest form of the

PBM, which assumes that the microparticle geometry comprises

spherical particles of a fixed radius. Our presentation follows Last

and Penrose [2017, Chapters 16–17] and Chiu et al. [2013, Chapters

2–3], and we refer to these textbooks for more detailed treatments,

including generalizations to other types of particles.

Definition 1: Poisson Boolean model

We consider a function 𝜆 : 𝑉 → R≥0 such that

∫
𝑉
𝜆(𝑥) d𝑥 < ∞,

and a scalar 𝑅 ∈ R≥0. A stochastic microparticle geometry

𝑂 ⊂ R3
follows the Poisson Boolean model with density 𝜆 and

size 𝑅 if it equals a union of balls 𝑂 ≔
⋃𝑁

𝑛=1
B(𝑐𝑛, 𝑅) such that

the set of centers 𝐶𝑂 ≔ {𝑐𝑛 ∈ 𝑉 }𝑁𝑛=1
is a Poisson point process

on 𝑉 with rate function 𝜆. Equivalently:

• the number of balls is a Poisson-distributed integer random

variable, 𝑁 ∼ Poisson

(∫
𝑉
𝜆(𝑥) d𝑥

)
;

• conditionally on 𝑁 , the centers are independent and dis-

tributed proportionally to the density
2 𝜆, p(𝑐𝑛 | 𝑁 ) ∝ 𝜆(𝑐𝑛).

2
The density 𝜆 is also known as the intensity function of the Poisson point process.

We often consider the special case of the homogeneous PBM with

constant density 𝜆(𝑥) h

= 𝜆, and refer to the general case as the het-
erogeneous model. We write𝑂 ∼ Φ(𝜆, 𝑅) for a particle configuration
that follows the PBM with rate 𝜆 and size 𝑅.

Figure 4. Computing the
closest point 𝑦𝜕𝑂(𝑥 ) from
the closest center 𝑐 (𝑥 ) .

Closest point distribution and sampling.
As WoS interacts with the domain through

closest point queries, using it in participat-

ingmedia requires reasoning about the ran-
dom closest point 𝑦𝜕𝑂 (𝑥) ∈ 𝜕𝑂 between a

point 𝑥 ∈ 𝑉 and the boundary 𝜕𝑂 of the

stochastic microparticle geometry 𝑂 . This

random point follows the so-called closest
point distribution, whose probability den-

sity function (PDF) p
cp

𝑥 is known analyti-

cally when 𝑂 follows the PBM [Last and

Penrose 2017, Section 16.3]. We discuss this

distribution in more detail in Appendix A;

here we focus instead on sampling from it, whichwe need to perform

WoS in participating media (Section 5).

As 𝑂 is a union of spherical particles, we perform closest point

sampling by first sampling the closest particle center 𝑐 (𝑥) ∈ 𝐶𝑂 to

𝑥 . We then determine the closest point 𝑦𝜕𝑂 (𝑥) to 𝑥 , and associated

shortest distance 𝑟 𝜕𝑂 (𝑥), from 𝑐 (𝑥) as (Figure 4):

𝑟 𝜕𝑂 (𝑥) = ∥𝑥 − 𝑐 (𝑥)∥ − 𝑅, 𝑦𝜕𝑂 (𝑥) = 𝑥 + 𝑟 𝜕𝑂 (𝑥) dir(𝑥, 𝑐 (𝑥)) . (7)
To sample 𝑐 (𝑥), we use the polar representation of the Poisson point

process describing 𝐶𝑂 [Last and Penrose 2017, Section 7.4].

Proposition 1: Polar representation of

Poisson point processes

Weassume that the set of centers𝐶𝑂 ≔ {𝑐𝑛 ∈ 𝑉 }𝑁𝑛=1
is a Poisson

point process on 𝑉 with rate function 𝜆. For any point 𝑥 ∈ 𝑉 ,
we let 𝑐 (𝑥) ∈ 𝐶𝑂 be its random closest center, and 𝑟𝑐 (𝑥) ≔
∥𝑥 − 𝑐 (𝑥)∥ the random shortest distance-to-center. Then:

1. The shortest distance-to-center 𝑟𝑐 (𝑥) has PDF:

p
dc

𝑥 (𝑟 ) ≔ exp(−Λ(𝑥, 𝑟 ))
∫
𝜕B(𝑥,𝑟 )

𝜆(𝑦) d𝐴(𝑦), (8)

where we define:

Λ(𝑥, 𝑟 ) ≔
∫

B(𝑥,𝑟 )
𝜆(𝑦) d𝑦. (9)

2. The closest center 𝑐 (𝑥) has conditional PDF given 𝑟𝑐 (𝑥) = 𝑟 :

p
cc

𝑥 (𝑦 | 𝑟 ) ≔
𝜆(𝑦)∫

𝜕B(𝑥,𝑟 ) 𝜆(𝑦) d𝐴(𝑦)
, (10)

for 𝑦 ∈ 𝜕B(𝑥, 𝑟 ), and zero everywhere else.
3

In the homogeneous case, Equations (8) and (10) simplify to:

p
dc

𝑥 (𝑟 )
h

= exp

(
−4/3𝜋 (𝑟 )3𝜆

)
4𝜋 (𝑟 )2𝜆, (11)

p
cc

𝑥 (𝑦 | 𝑟 )
h

=
1

4𝜋𝑟2
. (12)

3
More precisely, the PDF is a Dirac delta on 𝜕B(𝑥, 𝑟 ) with respect to the area measure.
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homogeneous case heterogeneous case

real density
fictitious density

sampled particle
rejected particle

exponential samples

contact distribution contact distribution

Figure 5. The Poisson Boolean model enables efficient closest point
sampling—or equivalently closest particle center sampling (Figure 4). In
a homogeneous medium (left), we first sample an exponential random vari-
able to determine the (cubed) distance to the closest center, then uniformly
sample the center itself on a sphere of appropriate radius. In a heteroge-
neous medium (right), we use thinning to first sample multiple centers—in
order of increasing distance—from a medium homogenized through the
addition of fictitious density, randomly accept or reject the sampled centers,
then use the first accepted one as the sampled closest center.

As we detail in Appendix B, the PDF p
dc

𝑥 is analogous to the free-
flight distribution in volume rendering of exponential media [Novák

et al. 2018; Bitterli et al. 2018].

Equation (8) (or (11) in the homogeneous case) implies that the

cubed distance (𝑟𝑐 (𝑥))3 from 𝑥 to 𝑐 (𝑥) is an exponential random vari-
able with rate Λ(B(𝑥, 𝑟 )). This property and Equation (10) (or (12)

in the homogeneous case) allow sampling 𝑐 (𝑥) by first sampling its

cubed distance from 𝑥 , then sampling a point on the corresponding

sphere around 𝑥 [Chiu et al. 2013, Section 2.5] (Figure 5):

• In the homogeneous case, we first sample an exponential random

variate 𝜉 ∼ Expo[4/3𝜋𝜆], equal to the cubed distance from 𝑥 to

𝑐 (𝑥). We then sample 𝑐 (𝑥) uniformly on 𝜕B(𝑥, 3

√︁
𝜉).

• In the heterogeneous case, we use the thinning method for sam-

pling heterogeneous Poisson processes [Lewis and Shedler 1979].

Given amajorant density ¯𝜆 ≥ 𝜆(𝑥), ∀𝑥 ∈ R3
, we sequentially sam-

ple exponential random variates 𝜉1, 𝜉2, · · · ∼ Expo

[
4/3𝜋 ¯𝜆

]
. For

each 𝜉𝑠 , we sample a point 𝑐𝑠 uniformly on 𝜕B(𝑥, 3

√︃∑𝑠
𝑡=1

𝜉𝑡 ), and
randomly accept or reject it with acceptance probability 𝜆 (𝑐𝑠 )/¯𝜆.

Then, we set 𝑐 (𝑥) as the first accepted point 𝑐𝑠 .

After sampling 𝑐 (𝑥), we set 𝑟 𝜕𝑂 (𝑥) and 𝑦𝜕𝑂 (𝑥) using Equation (7).

This procedure can return 𝑟 𝜕𝑂 (𝑥) < 0, corresponding to a case

where 𝑥 is inside a particle, 𝑥 ∈ 𝑂—it will be convenient for the

algorithm we develop in Section 5.1 to distinguish this case by

setting 𝑦𝜕𝑂 (𝑥) ≔ 𝑥 . We summarize the sampling procedure for the

heterogeneous case in Algorithm 1, which reduces to that for the

homogeneous case when 𝜆 is constant and we use
¯𝜆 ≔ 𝜆.

Intuitively, we can interpret Algorithm 1 as follows: We fill the

volume 𝑉 with fictitious density until the sum of real and fictitious

density equals
¯𝜆 everywhere. We then sample particles from the

resulting homogeneous medium using exponential sampling, in

order of increasing distance from 𝑥 . We reject particles due to the

fictitious density until we find the first particle due to the real density.

Algorithm 1 Closest point sampling in the Poisson Boolean model.

Input: A query point 𝑥 , a majorant density ¯𝜆, a struct implementing
the PBM density 𝜆, the PBM particle size 𝑅.

Output: Closest point 𝑦𝜕𝑂 .
1: function SampleClosestPoint(𝑥, ¯𝜆, 𝜆, 𝑅)

2: ⊲ Initialize cubed radius
3: 𝑏 ← 0

4: while true do
5: ⊲ Sample exponential variate
6: 𝜉 ← SampleExponential(4/3𝜋 ¯𝜆)
7: ⊲ Increment cubed radius
8: 𝑏 += 𝜉

9: ⊲ Uniformly sample a point on the unit sphere
10: 𝑣 ← SampleUnitSphere()

11: ⊲ Compute particle center
12: 𝑐 ← 𝑥 + 3

√
𝑏 𝑣

13: ⊲ Compute acceptance probability
14: 𝛼 ← 𝜆.Evaluate(𝑐) / ¯𝜆

15: ⊲ Accept or reject the particle center
16: if 𝛼 > SampleUniform(0, 1) then break
17: ⊲ Compute distance to closest point
18: 𝑟 𝜕𝑂 ← ∥𝑥 − 𝑐 ∥ − 𝑅
19: ⊲ Check if 𝑥 is inside the sampled particle
20: if 𝑟 𝜕𝑂 < 0 then return 𝑥

21: ⊲ Compute sampled closest point
22: 𝑦𝜕𝑂 ← 𝑥 + 𝑟 𝜕𝑂 dir(𝑥, 𝑐)
23: return 𝑦𝜕𝑂

24: end function

As we detail in Appendix B, Algorithm 1 is analogous to the delta
tracking algorithm in volume rendering for sampling free-flight

distances in heterogeneous exponential media [Coleman 1968; Raab

et al. 2006], which has a similar intuitive interpretation in terms of

fictitious density [Miller et al. 2019; Novák et al. 2014].

Conditional closest point sampling. Our derivation in Section 5

additionally requires sampling the closest point 𝑦𝜕𝑂 (𝑥) ∈ 𝜕𝑂 condi-
tionally on events of the form𝑄 ∩𝑂 = ∅ for various sets𝑄 ⊂ 𝑉—i.e.,

knowing that no point of the microparticle geometry is in ∅. We

prove in Appendix A that we can do so using Algorithm 1, after

replacing 𝜆 with the conditional density 𝜆(· |𝑄) : 𝑉 → R≥0:

𝜆(𝑥 |𝑄) ≔
{

0, 𝑥 ∈ 𝑄⊕𝑅,
𝜆(𝑥), otherwise,

(13)

where 𝑄⊕𝑅 ≔
{
𝑥 ∈ R3

: dist(𝑥,𝑄) ≤ 𝑅
}
is the dilation of 𝑄 by a

ball of radius 𝑅. Intuitively, zeroing out the density inside 𝑄⊕𝑅

ensures that centers sampled closer to 𝑄 than 𝑅 will be rejected,

thus guaranteeing 𝑄 ∩𝑂 = ∅.

5 Volumetric walk on spheres
We now derive a recursive Monte Carlo estimator for the mean

solution 𝑢 of the BVP (1) in exponential participating media. Our

estimator generalizes the standard WoS estimator (3), by leveraging
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WoS volumetric WoS

sampled closest pointdeterministic closest point
microparticle geometry

Figure 6. (Left) Walk on spheres jumps along spheres whose radius it de-
termines through closest point queries with respect to the deterministic
domain boundary. It terminates when it reaches the 𝜀-shell of the boundary.
(Right) Volumetric walk on spheres also jumps along spheres, but determines
their radius through closest point sampling with respect to both stochastic
microparticle geometry and the deterministic domain. It terminates when
it reaches the 𝜀-shell of either the microparticle geometry or the domain.

one of its critical properties [Sawhney and Crane 2020, Section 1]:

WoS interacts with the BVP domain 𝛺 only through closest point

queries to determine, at each point 𝑥 , its closest point 𝑦𝜕𝛺 on 𝜕𝛺 .

Thus, when𝛺 includes stochastic microparticle geometry, it suffices

to replace these closest point queries with closest point sampling

from appropriate distributions (Figure 6). The resulting volumetric
walk on spheres (VWoS) estimator (Equation (19) and Algorithm 2)

enables direct simulation of the mean solution without ensemble

averaging, while remaining structurally very close to WoS.

5.1 Derivation
At a high level, our derivation of VWoS mimics that of WoS: We first

derive an integral equation (Equation (18)) for the mean solution

𝑢—an analogue of the BIE Equation (2)—then apply recursive single-

sample Monte Carlo estimation. There is, however, an important

difference with WoS: As we recurse, the integral equation changes,

to condition on the history accumulated during previous steps. To

build intuition about this conditioning, it is convenient to separately

derive the initial and subsequent steps of the VWoS recursion.

Initial step. To evaluate the mean solution 𝑢 at an initial point

𝑥0 ∈ 𝑉 , we use expectation on both sides of the BIE (2):

𝑢 (𝑥0) = E𝑂

[∫
𝜕B(𝑥0,𝑟

𝜕𝛺
0
)

P(𝑟 𝜕𝛺
0
)𝑢 (𝑥1) d𝐴(𝑥1)

]
. (14)

Besides 𝑢, the only random quantity in the right-hand-side integral

is the distance 𝑟 𝜕𝛺
0

≔
𝑥0 − 𝑦𝜕𝛺

0


between 𝑥0 and 𝑦𝜕𝛺

0
, the random

point on 𝜕𝛺 closest to 𝑥0. We use the shorthand p
cp

0
≔ p

cp

𝑥0
for the

PDF of 𝑦𝜕𝛺
0

—the closest point distribution in Section 4 modified to

account for the deterministic medium boundary 𝜕𝑉 . Using the law

of total expectation, we rewrite Equation (14) as:

𝑢 (𝑥0) =
∫
𝑉

p
cp

0
(𝑦0)

∫
𝜕B(𝑥0,𝑟0 )

P(𝑟0)𝑢 (𝑥1 |𝑦𝜕𝛺0
= 𝑦0) d𝐴(𝑥1) d𝑦0, (15)

where 𝑟0 ≔ ∥𝑥0 − 𝑦0∥ and · | · is probabilistic conditioning.
To derive an estimator for𝑢 (𝑥0), we first use single-sample Monte

Carlo for both integrals in Equation (15).

1. We sample a point 𝑦0 ∼ p
cp

0
by: using Algorithm 1 to sample

a closest point 𝑦𝜕𝑂
0

on the stochastic 𝜕𝑂 ; using a closest point

query to determine the closest point 𝑦𝜕𝑉
0

on the deterministic

𝜕𝑉 ; then setting 𝑦0 ≔ closest(𝑥0, {𝑦𝜕𝑂
0

, 𝑦𝜕𝑉
0
}).

2. We sample a point 𝑥1 uniformly on the sphere 𝜕B(𝑥0, 𝑟0).
How we proceed depends on the sampled distance 𝑟0. If 𝑟0 is smaller

than a threshold 𝜀, we use an 𝜀-shell approximation to set𝑢 (𝑥0) equal
to the Dirichlet boundary data g(𝑥0), and terminate.

4
Importantly,

this approximation also covers the case where 𝑟0 = 0, which means

that Algorithm 1 determined that 𝑥0 is inside a particle (Section 4).

Otherwise, we need to recursively estimate 𝑢 (𝑥1 |𝑦𝜕𝛺
0

= 𝑦0), as we
explain below. Thus, we arrive at the estimator:

⟨𝑢 (𝑥0)⟩ ≔
{

g(𝑥0), 𝑟0 < 𝜀,
P(𝑟0 )
p(𝑟0 ) ⟨𝑢 (𝑥1 |𝑦𝜕𝛺

0
= 𝑦0)⟩, otherwise.

(16)

Subsequent steps. We now consider the 𝑘-th step of the VWoS

recursion. After consecutive applications of the law of total expecta-

tion and single-sample Monte Carlo—analogously to Equations (14)

and (16) (resp.)—we must condition on closest points on the domain

boundary sampled in all previous steps. Intuitively, each sampled

closest point pins down part of the stochastic microparticle geome-

try that subsequent closest point sampling procedures must remem-

ber and continue to respect. To simplify notation, we define the

walk memory M𝑘 accumulated at step 𝑘 as the logical conjunction

of closest point sampling outcomes in previous steps:

M𝑘 ≔ 𝑦𝜕𝛺
0

= 𝑦0 ∧ · · · ∧ 𝑦𝜕𝛺𝑘−1
= 𝑦𝑘−1

, M0 ≔ ∅. (17)

We elaborate on the interpretation of M𝑘 , and how to use it for

conditional closest point sampling, in Section 5.2.

Then, at the 𝑘-th step of the VWoS recursion, we must estimate

the conditional mean solution 𝑢 (𝑥𝑘 |M𝑘 ). Exactly analogously to

the case 𝑘 = 0 and Equation (15), we use the BIE (2) and the law

of total expectation to derive an integral equation for 𝑢 (𝑥𝑘 |M𝑘 ),
which we term the boundary integral equation in participating media.

Boundary integral eqation in participating media

At the 𝑘-step of a random walk with memory M𝑘 as in Equa-

tion (17), the conditional mean solution𝑢 to the Laplace equation

of (1) in a participating medium 𝑉 satisfies:

𝑢 (𝑥𝑘 |M𝑘 ) =
∫
𝑉

p
cp

𝑘
(𝑦𝑘 |M𝑘 )

·
∫
𝜕B(𝑥𝑘 ,𝑟𝑘 )

P(𝑟𝑘 )𝑢 (𝑥𝑘+1 |M𝑘+1) d𝐴(𝑥𝑘+1) d𝑦𝑘 , (18)

where 𝑟𝑘 ≔ ∥𝑥𝑘 − 𝑦𝑘 ∥.

Exactly analogously to the derivation of the estimator (16) for

Equation (15), we use single-sample Monte Carlo and the 𝜀-shell

approximation to derive an estimator for Equation (18), which we

term the volumetric walk on spheres (VWoS) estimator.

4
This 𝜀-shell approximation differs from that in WoS (Equation (3)): It evaluates g

directly at 𝑥0 , which is possible due to the extension of g to all of𝑉 . In practice, for

small particle sizes 𝑅, the two approximations behave very similarly.
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Volumetric walk on spheres estimator

A recursive single-sample Monte Carlo estimator for Equa-

tion (18) is given by:

⟨𝑢 (𝑥𝑘 |M𝑘 )⟩ ≔
{

g(𝑥𝑘 ), 𝑟𝑘 < 𝜀,
P(𝑟𝑘 )
p(𝑟𝑘 ) ⟨𝑢 (𝑥𝑘+1 |M𝑘+1)⟩, otherwise,

(19)

where: the memories M𝑘 and M𝑘+1 are defined in Equation (17);

𝑟𝑘 ≔ ∥𝑥𝑘 − 𝑦𝑘 ∥ with 𝑦𝑘 sampled from p
cp

𝑘
(· |M𝑘 ); and the next

point 𝑥𝑘+1 is sampled uniformly on 𝜕B(𝑥𝑘 , 𝑟𝑘 ).

Using the definition ofM0 in Equation (17), Equations (18) and (19)

subsume Equations (15) and (16) (resp.) by setting 𝑘 ≔ 0.

Algorithm 2 summarizes an implementation of VWoS, highlight-

ing differences from WoS (Equation (3)). The two estimators are

structurally near-identical, with only two differences:

• Whereas WoS determines sphere radii using deterministic clos-

est point queries, VWoS does so using conditional closest point

sampling (Algorithm 2, line 8).
• WhereasWoS ismemoryless—each step is independent of previous
steps—VWoS has full memory—each step depends on all previous

steps (Algorithm 2, lines 14 and 20).
Thanks to its close similarity to WoS, VWoS maintains the advan-

tages of WoS [Sawhney and Crane 2020, Section 1], and is easy to

implement within existing WoS libraries [Sawhney and Miller 2024],

requiring only an implementation of memory (including associated

sampling and updating procedures), which we discuss next.

5.2 Closest point sampling with memory
Intuitively, closest point sampling with memory M𝑘 requires re-

specting empty space (inside walk spheres) and sampled particles

accumulated during previous walk steps. We first formalize this intu-

ition about conditioning onM𝑘 , then present procedures formemory

updating and closest point sampling with memory in VWoS.

Understanding conditioning on memory. As M𝑘 is a conjunction

of multiple closest point events (Equation (17)), we first consider

each individual such event. Conditioning on 𝑦𝜕𝛺
𝑙

= 𝑦𝑙 , for any

𝑙 = 0, . . . , 𝑘 − 1, has two implications (Figure 7(b, c)):

C1. No point of the microparticle geometry 𝑂 is closer to walk

point 𝑥𝑙 than 𝑟𝑙 = ∥𝑥𝑙 − 𝑦𝑙 ∥, i.e., the ball B(𝑥𝑙 , 𝑟𝑙 ) is empty.

C2. If 𝑦𝑙 is not on the medium boundary 𝜕𝑉 , then it is on the

stochastic boundary 𝜕𝑂 , i.e., the microparticle geometry 𝑂

includes a particle B(𝑐𝑙 , 𝑅) centered at 𝑐𝑙 ≔ 𝑦𝑙 + 𝑅 dir(𝑥𝑙 , 𝑦𝑙 ).
Formally, from C1–C2, the closest point event𝑦𝜕𝛺

𝑙
= 𝑦𝑙 is equivalent

to the event B(𝑥𝑙 , 𝑟𝑙 ) ∩𝑂 = ∅ ∧ 𝑐𝑙 ∈ 𝐶𝑂 .
Next we consider the full memoryM𝑘 . It is convenient to associate

with M𝑘 two sets summarizing the information from all closest point

events it includes. We define the empty-ball memory 𝐸 (M𝑘 ) and
sampled-particle memory 𝐶 (M𝑘 ) as the unions of the empty balls

(C1) and sampled particles (C2) (resp.) for all eligible events in M𝑘 :

𝐸 (M𝑘 ) ≔
⋃𝑘−1

𝑙=0

B(𝑥𝑙 , 𝑟𝑙 ), 𝐶 (M𝑘 ) ≔
⋃

𝑙 :𝑦𝑙∉𝜕𝑉
B(𝑐𝑙 , 𝑅). (20)

𝐶 (M𝑘 ) will typically include fewer than 𝑘 (and maybe even zero)

particles, as only steps where the sampled closest point is not on

Algorithm 2 The volumetric walk on spheres estimator.

Note: Comments in orange highlight changes to walk on spheres.

Input: A query point 𝑥 , a parameter 𝜀, a majorant density ¯𝜆, a struct
implementing the PBM density 𝜆, the PBM particle size 𝑅.

Output: A single-sample estimate of the mean solution 𝑢 (𝑥).
1: function InitializeEstimation(𝑥, 𝜀, ¯𝜆, 𝜆, 𝑅)

2: ⊲ Initialize empty memory
3: M← Memory.Initialize()
4: return VolumetricWalkOnSpheres(𝑥, 𝜀, ¯𝜆, 𝜆, 𝑅,M)
5: end function
6: function VolumetricWalkOnSpheres(𝑥, 𝜀, ¯𝜆, 𝜆, 𝑅,M)

7: ⊲ Sample closest point conditionally on current memory
8: 𝑦 ← SampleClosestPointWithMemory(𝑥, ¯𝜆, 𝜆, 𝑅,M)
9: ⊲ Compute radius of next walk sphere
10: 𝑟 ← ∥𝑥 − 𝑦∥
11: ⊲ Check for 𝜀-shell approximation
12: if 𝑟 < 𝜀 then return g(𝑥)
13: ⊲ Update memory:
14: M.Update(𝑥,𝑦)
15: ⊲ Uniformly sample a point on the unit sphere
16: 𝑣 ← SampleUnitSphere()

17: ⊲ Compute next walk point
18: 𝑥 ← 𝑥 + 𝑟𝑣
19: ⊲ Continue from next walk point with updated memory
20: return VolumetricWalkOnSpheres(𝑥, 𝜀, ¯𝜆, 𝜆, 𝑅,M)
21: end function

𝜕𝑉 contribute a particle (C2). Additionally, 𝐶 (M𝑘 ) may include the

same particle multiple times: at each step 𝑙 ∈ {1, 𝑘}, the closest point
𝑦𝑙 may be on the boundary of a particle sampled at a prior step 𝑙 ′ < 𝑙 ,

and fixed as deterministic geometry for subsequent steps.

Using 𝐸 (M𝑘 ) and 𝐶 (M𝑘 ), we can express the implications of

conditioning on M𝑘 as direct generalizations of C1–C2 (Figure 7(a)):

M1. The space 𝐸 (M𝑘 ) is empty.

M2. The microparticle geometry 𝑂 includes 𝐶 (M𝑘 ).
Formally, from M1–M2, the memory M𝑘 is equivalent to the event

𝐸 (M𝑘 ) ∩𝑂 = ∅ ∧ {𝑐𝑙 : 𝑦𝑙 ∉ 𝜕𝑉 } ⊂ 𝐶𝑂 .

In practice, we implement memory as in Algorithm 3:
5
We use

two list data structures that contain the center-radius pairs (𝑥𝑙 , 𝑟𝑙 )
and particle centers 𝑐𝑙 in Equation (20), along with procedures for

memory updates at each walk step (Algorithm 3, line 17), contain-
ment queries on 𝐸 (M𝑘 ) (Algorithm 3, line 25), and closest point

queries on 𝜕𝐶 (M𝑘 ) (Algorithm 3, line 31)—we use the two queries

for closest point sampling with memory, as we discuss next.

Sampling procedure. From the above discussion, sampling a clos-

est point 𝑦𝑘 conditionally on M𝑘 requires that we do not sample in

the empty space 𝐸 (M𝑘 ) (M1), and that we consider the boundary of

previously sampled particles𝐶 (M𝑘 ) as deterministic (M2). Realizing

both requirements algorithmically is straightforward. First, we use

thinning on the density of the medium to remove the empty space,

5
For efficiency, this implementation does not allow duplicate particles in𝐶 (M𝑘 ) .
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Figure 7. (a) To sample the closest point 𝑦𝜕𝛺 at 𝑥 conditionally on the
memory M accumulated during a walk, we determine two points: First,
we sample the random closest point 𝑦𝜕𝑂 on the stochastic microparticle
geometry, but with the PBM density zeroed out inside the spheres formed
during thewalk. Second, we query the closest point 𝑦𝜕𝑉 on the deterministic
boundary of the medium and previously sampled particles. Then, we select
the closest of these two points to 𝑥 , 𝑦𝜕𝛺 ≔ closest(𝑥, {𝑦𝜕𝑂 , 𝑦𝜕𝑉 }) . After
sampling, we add to M a new empty sphere (b), and a new particle if 𝑦𝜕𝛺

was not on the boundary of the medium or previously sampled particles (c).

and augment its geometry to include the sampled particles:

𝜆𝑘 (𝑥) ≔ 𝜆(𝑥 | 𝐸 (M𝑘 )), 𝜕𝑉𝑘 ≔ 𝜕(𝑉 \𝐶 (M𝑘 )). (21)

Second, we sample 𝑦𝑘 ∼ p
cp

𝑘
(· |M𝑘 ) by: using Algorithm 1 with 𝜆𝑘

to sample a closest point 𝑦𝜕𝑂
𝑘

on the stochastic boundary 𝜕𝑂 ; using

a closest point query to determine the closest point𝑦𝜕𝑉
𝑘

on the deter-

ministic boundary 𝜕𝑉𝑘 ; then setting 𝑦𝑘 ≔ closest(𝑥𝑘 , {𝑦𝜕𝑂𝑘 , 𝑦𝜕𝑉
𝑘
}).

Algorithm 4 summarizes this procedure. Used with empty memory

(M ≔ ∅), this procedure is equivalent to how we sample 𝑦0 ∼ p
cp

0
(·)

at the initial step of VWoS (Equation (16)).

6 Volumetric walk on stars
We now turn our attention to a generalization of the BVP (1) that

prescribes mixed Dirichlet and Neumann boundary conditions. Our

discussion is brief, as most of the concepts we introduced in Sec-

tions 3 and 5 for the Dirichlet-only case extend to this case.

6.1 Boundary value problem
We focus on estimating solutions to the BVP:

Δ𝑢 (𝑥) = 0 in 𝛺,

𝑢 (𝑥) = g(𝑥) on 𝜕𝛺Dir,
𝜕𝑢
𝜕𝑛 (𝑥) = 0 on 𝜕𝛺Neu .

(22)

Compared to Equation (1), here we partition 𝜕𝛺 into a subset 𝜕𝛺Dir

where the solution has prescribed values 𝑢 (Dirichlet boundary

conditions), and a subset 𝜕𝛺Neu
where the solution has prescribed

normal derivatives 𝜕𝑢/𝜕𝑛 (Neumann boundary conditions).

6.2 Walk on stars
When the domain 𝛺 is deterministic, the walk on stars (WoSt) algo-

rithm [Sawhney et al. 2023; Miller et al. 2024b] estimates the BVP

solution 𝑢 in a manner analogous to WoS—recursive single-sample

Monte Carlo estimation of an appropriate BIE. In particular, instead

Algorithm 3 Implementation of memory.

1: structMemory

2: attribute E ⊲List of center-radius pairs for empty balls
3: attribute C ⊲List of centers of sampled particles
4: ⊲ Initialize empty memory
5: function Initialize()

6: E, C ← ∅
7: end function
8: ⊲ Add an empty ball of center 𝑥 and radius 𝑟
9: function AddEmptySphere(𝑥, 𝑟 )

10: E ← E ∪ {(𝑥, 𝑟 )}
11: end function
12: ⊲ Add a sampled particle of center 𝑐
13: function AddSampledParticle(𝑐)

14: if 𝑐′ in C then return ⊲Skip if 𝑐 already in list
15: C ← C ∪ {(𝑐)}
16: end function
17: ⊲ Update memory given walk point 𝑥 and its closest point 𝑦
18: function Update(𝑥,𝑦)

19: ⊲ Add walk step to list of empty balls
20: AddEmptySphere(𝑥, ∥𝑥 − 𝑦∥)
21: ⊲ Add sampled particle if 𝑦 is not on medium boundary
22: if 𝑦 ∉ 𝜕𝑉 then AddSampledParticle(𝑦 + 𝑅 dir(𝑥,𝑦))
23: end function
24: ⊲ Perform a containment query on dilated empty space
25: function IsInsideDilatedEmptySpheres(𝑥, 𝑅)

26: for (𝑥 ′, 𝑟 ) in E do
27: if ∥𝑥 − 𝑥 ′∥ < 𝑟 + 𝑅 then return true

28: return false

29: end function
30: ⊲ Perform a closest point query on sampled particle boundary
31: function GetClosestPoint(𝑥 )

32: ⊲ Query closest particle center
33: 𝑐nn ← NearestNeighbor(𝑥, C)
34: ⊲ Return corresponding closest point on particle boundary
35: return 𝑐nn − 𝑅 dir(𝑥, 𝑐nn)
36: end function

of Equation (2) for the Dirichlet-only problem, WoSt starts from the

following BIE for the mixed Dirichlet-Neumann problem (22):

𝑢 (𝑥) =
∫
𝜕St(𝑥,𝑟 St (𝑥 ))

P(𝑟St (𝑥))𝑢 (𝑦) d𝐴(𝑦) . (23)

The integration domain is the boundary of a star-shaped region
St(𝑥, 𝑟St (𝑥)) defined as follows [Sawhney et al. 2023, Section 4]:

For any point 𝑥 ∈ 𝛺 , we denote by 𝑦Dir (𝑥) ≔ closest(𝑥, 𝜕𝛺Dir)
its closest point on 𝜕𝛺Dir

, and by 𝑦sil (𝑥) its closest point on the

visibility silhouette of 𝜕𝛺Neu
. We denote by 𝑟Dir (𝑥) ≔ ∥𝑥−𝑦Dir (𝑥)∥,

𝑟 sil (𝑥) ≔ ∥𝑥−𝑦sil (𝑥)∥ the distances to these points, and by 𝑟St (𝑥) ≔
min{𝑟Dir (𝑥), 𝑟 sil (𝑥)} their minimum. Then, the star-shaped region

equals St(𝑥, 𝑟St (𝑥)) ≔ B(𝑥, 𝑟St (𝑥)) ∩𝛺 . Importantly, 𝜕St(𝑥, 𝑟St (𝑥))
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Algorithm 4 Closest point sampling with memory.

1: ⊲ Implementation of conditional density in Equation (21)

2: struct ConditionalDensity
3: attributes 𝜆, 𝑅,M ⊲PBM parameters and memory
4: function Initialize(𝜆′, 𝑅′,M′) ⊲Initialize attributes
5: 𝜆 ← 𝜆′, 𝑅 ← 𝑅′, M← M

′

6: end function
7: ⊲ Evaluate conditional density at query point 𝑥
8: function Evaluate(𝑥 )

9: if M.IsInsideDilatedEmptySpheres(𝑥, 𝑅) then
10: return 0 ⊲𝑥 is inside empty space
11: else return 𝜆.Evaluate(𝑥)
12: end function
13: ⊲ Implementation of updated medium geometry in Equation (21)

14: struct UpdatedMediumGeometry

15: attributes 𝜕𝑉 ,M ⊲Medium geometry and memory
16: function Initialize(𝜕𝑉 ′,M′) ⊲Initialize attributes
17: 𝜕𝑉 ← 𝜕𝑉 ′, M← M

′

18: end function
19: ⊲ Perform a closest point query on updated medium boundary
20: function GetClosestPoint(𝑥 )

21: ⊲ Query closest points on medium and particle boundaries
22: 𝑦 ← 𝜕𝑉 .GetClosestPoint(𝑥)
23: 𝑦′ ← M.GetClosestPoint(𝑥)
24: return closest(𝑥, {𝑦,𝑦′}) ⊲Return closest of two points
25: end function
Input: A query point 𝑥 , a majorant density ¯𝜆, a struct implementing

the PBM density 𝜆, the PBM particle size 𝑅, a struct implementing
memory M.

Output: Closest point 𝑦.
26: function SampleClosestPointWithMemory(𝑥, ¯𝜆, 𝜆, 𝑅,M)

27: ⊲ Create conditional density
28: 𝜆

cond
← ConditionalDensity.Initialize(𝜆, 𝑅,M)

29: ⊲ Create updated medium geometry
30: 𝜕𝑉

cond
← UpdatedMediumGeometry.Initialize(𝜕𝑉 ,M)

31: ⊲ Sample a closest point conditioning on empty balls
32: 𝑦𝜕𝑂 ← SampleClosestPoint(𝑥, ¯𝜆, 𝜆

cond
, 𝑅)

33: ⊲ Query closest point on updated deterministic boundary
𝑦𝜕𝑉 ← 𝜕𝑉

cond
.GetClosestPoint(𝑥)

34: ⊲ Return the closest of sampled and deterministic closest points
35: 𝑦 ← closest(𝑥, {𝑦𝜕𝑂 , 𝑦𝜕𝑉 })
36: return 𝑦

37: end function

can include parts of 𝜕𝛺Neu
but not 𝜕𝛺Dir

—except, potentially, for

the closest point 𝑦Dir (𝑥) when 𝑟St (𝑥) = 𝑟Dir (𝑥).
Using recursive single-sample Monte Carlo estimation on Equa-

tion (23), WoSt performs a random walk 𝑥0, 𝑥1, . . . that terminates

using the same 𝜀-shell approximation as in WoS. At each walk point

𝑥𝑘 , the expression for the WoSt estimator is the same as in Equa-

tion (3), except replacing 𝑟 𝜕𝛺
𝑘

with 𝑟St

𝑘
≔ 𝑟St (𝑥𝑘 ). At each walk step,

WoSt performs a closest point query to determine 𝑦Dir

𝑘
≔ 𝑦Dir (𝑥𝑘 ),

a closest silhouette point query to determine 𝑦sil

𝑘
≔ 𝑦sil (𝑥𝑘 ), and

directional sampling to determine the next walk point 𝑥𝑘+1.

6.3 Participating media
We next consider the mixed Dirichlet-Neumann BVP (22) when the

domain 𝛺 includes stochastic microparticle geometry. We follow

the setup of Section 3.4, defining 𝛺 as in Equation (4), and assume

that𝑂 ∼ Φ(𝜆, 𝑅). We further assume that the Dirichlet boundary co-

incides with the deterministic medium boundary, and the Neumann

boundary comprises the boundary of the particles; that is:

𝜕𝛺Dir ≔ 𝜕𝑉 and 𝜕𝛺Neu ≔ 𝜕𝑂. (24)

We choose this problem specification to simplify exposition, but we

can extend our method to the case where 𝜕𝛺Dir
and 𝜕𝛺Neu

each

include both deterministic and stochastic boundaries.

Given the close similarity between Equations (2) and (23), and

between WoS and WoSt, we can adapt the derivation in Section 5.1

exactly analogously to the mixed Dirichlet-Neumann BVP. The

result is a volumetric walk on stars (VWoSt) estimator that has the

same form as the VWoS estimator (19), but with 𝑟𝑘 being the radius

used to form the star-shaped region St(𝑥𝑘 , 𝑟𝑘 ). As explained in

Section 6.2, 𝑟𝑘 equals the minimum of ∥𝑥𝑘 − 𝑦Dir

𝑘
∥ and ∥𝑥𝑘 − 𝑦sil

𝑘
∥.

From Equation (24), 𝑦Dir

𝑘
is the deterministic closest point 𝑦𝜕𝑉

𝑘
on

𝜕𝑉 , and 𝑦sil

𝑘
is the random closest silhouette point on 𝜕𝑂 . VWoSt

determines 𝑦sil

𝑘
through closest silhouette point sampling, conditional

on the memory M𝑘 of all such points sampled in previous steps.

6.4 Closest silhouette point sampling with memory
As the microparticle geometry 𝑂 comprises spherical particles of

the same radius 𝑅, the closest silhouette point on 𝜕𝑂 will lie on

the same particle as the closest point on 𝜕𝑂 (Figure 8). Thus, we

perform closest point sampling with memory as in Section 5.2 to

determine the closest point 𝑦𝜕𝑂
𝑘

, then compute from it 𝑦sil

𝑘
and 𝑟 sil

𝑘
analytically. From these values, we compute the radius 𝑟𝑘 for the

star-shaped region St(𝑥𝑘 , 𝑟𝑘 ) = B(𝑥𝑘 , 𝑟𝑘 ) ∩𝑂 .

Figure 8. Sampling to
form a star-shaped region.

Because 𝑟𝑘 can be greater than the short-

est distance 𝑟 𝜕𝑂
𝑘

= ∥𝑥𝑘 −𝑦𝜕𝑂𝑘 ∥ to 𝜕𝑂 , form-

ing the star-shaped region St(𝑥𝑘 , 𝑟𝑘 ) re-
quires also determining any additional par-

ticles that are closer to 𝑥𝑘 than 𝑟𝑘 . We do

so by using Algorithm 1 with conditional

density 𝜆(· | 𝐸 (M𝑘 )) (Equation (21)) to con-

tinue sampling particles beyond the closest

one, in order of increasing distance from𝑥𝑘 ,

until we exceed the distance 𝑟𝑘 . As these

particles become fixed geometry for subse-

quent steps, we include them in the memory M𝑘—and in particular,

in the sampled-particle memory 𝐶 (M𝑘 ) (Equation (20)).

7 Experimental evaluation
Our experimental evaluation includes: 1. comparisons of VWoS and

VWoSt with ensemble averaging to both validate unbiasedness and

assess performance (Section 7.2); 2. comparisons with homogeniza-

tion methods (Section 7.2); and 3. analysis of the impact of memory

(Section 7.3). Our experiments demonstrate that VWoS and VWoSt
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provide performance and accuracy benefits over both ensemble aver-

aging and homogenization, though the magnitude of these benefits

depends on the experimental setup.

Implementation details. We implement VWoS and VWoSt in Zom-

bie [Sawhney and Miller 2024], making only minor modifications

to its WoS and WoSt routines. Our implementation supports mixed

boundary conditions on the medium boundary 𝜕𝑉 , and both Dirich-

let and Neumann conditions on the microparticle geometry bound-

ary 𝜕𝑂 . We represent density as either an analytic function or a

dense grid. When using analytic functions, we compute a majorant

for the largest deterministic empty ball at each point; when using a

grid, we compute a global majorant. We set the 𝜀-shell parameter to

be at least one order of magnitude smaller than the particle radius.

Tables 1 and 2 provide details (e.g., medium properties, boundary

conditions, algorithmic parameters) for each experiment.

We implement ensemble averaging also in Zombie, with the fol-

lowing optimizations: 1. We share sampled particle configurations

across evaluation points, to amortize sampling costs. 2. We construct

an, also shared, bounding value hierarchy (BVH) for each configura-

tion, to accelerate closest point queries. For the BVH, we use FCPW

[Sawhney 2021] and extend it to support spherical primitives.

7.1 Comparison to ensemble averaging
We compare our VWoS and VWoSt algorithms against ensemble av-

eraging, in BVPs involving various volume geometries and medium

parameters. These comparisons aim to both validate the consis-

tency and unbiasedness of our algorithms—by ensuring that their

mean solution estimates match those from ensemble averaging—and

quantify the performance improvements they provide.

Volumetric walk on spheres. Figure 9 shows comparisons between

VWoS and ensemble averaging, in BVPs with Dirichlet-only bound-

ary conditions. In the mushroom domain of Figure 9(a–c), we vary

particle size and density across nearly two orders of magnitude. In

the ginseng root domain of Figure 9(d–f), we evaluate the solution

near geometric features whose scale varies by a factor of 4.

In all experiments, VWoS estimates match the mean solution

estimates from ensemble averaging. Moreover, VWoS is more than

3× faster than ensemble averaging in terms of the time it takes

to perform the same number of walks—and thus reach the same

variance—when accounting for both particle configuration sampling

and solve time in ensemble averaging. This performance difference

becomes more stark in experiments requiring sparse evaluation

points or dense media; we revisit this point in Section 8.1 where,

depending on the density of evaluation points, VWoS is one-to-

several orders of magnitude faster than ensemble averaging. The

slow performance of ensemble averaging is because of three reasons:

1. Ensemble averaging has poor output sensitivity, as it must

sample entire particle configurations even to compute the

solution at only one point. Thus, ensemble averaging wastes

considerable compute sampling particles in large parts of the

volume that have little to no impact to its output.

2. Ensemble averaging has poor sample amortization, as it must

sample a new particle configuration for each walk, or at least

batch ofwalks. Sharing sampled particle configurations across

evaluation points mitigates this issue only partially.

3. Ensemble averaging has poor geometric query performance,

as it must perform closest point queries against entire parti-

cle configurations. Even with logarithmic-complexity query

implementations (e.g., with a BVH), large particle numbers in

dense media introduce considerable computational overhead.

By contrast, in VWoS, each walk samples few particles, on demand,

and only in its locality; the result is good output sensitivity, no sam-

plewaste, and no overhead in geometric queries. Thus, VWoS greatly

improves performance relative to ensemble averaging, analogous

to the performance improvements volume rendering algorithms

provide over ensemble averaging for light transport simulation.

Volumetric walk on stars. Figure 10 shows comparisons between

VWoSt and ensemble averaging, in BVPs with mixed Dirichlet-

Neumann boundary conditions. We perform experiments on the

same scene using two densities, which are Gaussian-shaped along

one dimension and constant along the other two.

In both cases, VWoSt matches the estimates of ensemble averag-

ing and improves performance (measured as in the VWoS exper-

iments above). In Figure 10(a), the concentrated density impacts

both methods: it reduces configuration sampling efficiency in en-

semble averaging, and requires large majorants for closest silhouette

point sampling in VWoSt. In Figure 10(b), where density is less con-

centrated, sampling configurations in ensemble averaging is much

cheaper. However, walks are more expensive in ensemble averag-

ing than in VWoSt, because they perform closest silhouette point

queries against entire configurations.

7.2 Comparison to homogenization
Homogenization methods [Giunti et al. 2018] transform a BVP with

stochastic microparticle geometry into a homogenized BVP that

involves a modified PDE in deterministic geometry. The solution 𝑢
h

of the homogenized BVP converges to the mean solution 𝑢 of the

original BVP only asymptotically at the limit of infinitesimally small

and infinitely dense particles (𝑅 → 0, 𝜆 → ∞, while 𝜆𝑅 remains

constant). For the BVP (1), the homogenized BVP is:
6

Δ𝑢
h
(𝑥) − 4𝜋𝜆𝑅𝑢

h
(𝑥) = 0 in 𝑉 ,

𝑢
h
(𝑥) = g(𝑥) on 𝜕𝑉 .

(25)

The homogenized BVP can then be solved efficiently using standard

WoS. However, for any finite values of 𝑅 and 𝜆, homogenization

provides biased estimates of the mean solution, with bias increasing

as 𝑅 or 𝜆 deviate more from the asymptotic case. Bias can also

vary at different domain points, e.g., near geometrically thin versus

thick parts. By contrast, VWoS is unbiased and provides accurate

estimates robustly across particle properties and domain points.

We demonstrate these advantages experimentally in Figure 9. In

the mushroom domain Figure 9(a–c), increasing the particle size

leads to noticeable bias in the homogenization solution. In the gin-

seng root domain Figure 9(d–f), for a fixed particle radius, bias is

higher at thin parts of the root (where the particle radius is compara-

ble to the domain size) than at thick parts (where the particle radius

6
This homogenization procedure is distinct from using a homogeneous participating

medium to perform closest point sampling (Algorithm 1).
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Figure 9. We compare the outputs of VWoS (fourth row) and homogenization (third row) to the reference mean solution (second row) computed with ensemble
averaging, in BVPs with Dirichlet-only boundary conditions. Across a range of medium parameters and boundaries, VWoS reliably produces unbiased mean
solution estimates, whereas homogenization introduces noticeable bias as the particle size increases (a, b), or at geometrically thin parts of the volume (d, e).
For each experiment, we visualize (first row) a representative sampled configuration of the microparticle geometry.

is much smaller than the domain size). Additionally, bias is higher

near the medium boundary than away from it. Thus, even though

homogenization is 2−−20× faster than VWoS in these experiments,

the solution estimates it produces have considerable bias that is

hard to control across problem settings and complex domains.

7.3 Analysis of impact from memory
Walk memory M is a consequence of the law of total expectation in

the derivation of the volumetric BIE Equation (18). Memory arises

likewise in the derivation of the volume rendering equation (Ap-

pendix B); however, a memoryless approximation is commonplace

in volume rendering algorithms [Bitterli et al. 2018], especially for

exponential media. Motivated by this precedent, we experimented

with a memoryless variant of VWoS (i.e., always performing uncon-

ditional closest point sampling). We found that this approximation

leads to highly inaccurate solution estimates and much worse run-

time performance: Walks rarely terminate inside the volume while

still sampling step sizes that decrease super-exponentially with

medium density; hence average walk length increases dramatically.

Thus, memory appears to be more important for our algorithms

than for rendering ones—we expand on this point in Appendix B.

To help assess the performance impact of memory, we first visu-

alize in Figure 11 statistics relating walk length to the sizes (num-

bers of balls) 𝑁𝐸
𝑘
of the empty-ball memory 𝐸 (M𝑘 ), and 𝑁𝐶

𝑘
of the

sampled-particle memory𝐶 (M𝑘 ), for the experiments in Section 7.1.

𝑁𝐸
𝑘
always equals the walk length 𝑘—each walk step adds a new

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Solving partial differential equations in participating media • 13

VWoStensemble averaging

solution -1 1

geometry Neumann particle

error

more concentrated less concentrated

(a)
(b)

(a)

(b)

solution
w/out particles

7 min

46 min

26 min
+9 min

3 min
+303 min

-5x10-2error  5x10-2

Figure 10. We compare the output of VWoSt (second column) to the reference
mean solution (first column) computed with ensemble averaging, in BVPs
with Neumann boundary conditions on the microparticle geometry. We
also report the runtimes of VWoSt and ensemble averaging (the + numbers
are the time to sample particle configurations for ensemble averaging). We
experiment with more concentrated (second row) and less concentrated
(third row) particle densities. The error images (third column) show that
VWoSt correctly estimates themean solution nearly 5× faster than ensemble
averaging. For each experiment, we visualize (first row) a representative
sampled configuration of the microparticle geometry.

empty ball. By contrast, the growth of 𝑁𝐶
𝑘
with walk length depends

on the density and type of boundary conditions on the particles: For

Dirichlet boundary conditions, eachwalk step adds at most one—and

often zero—new particle during a closest point query (Section 5.2).

For Neumann boundary conditions, each walk step may add several

particles during a closest silhouette point query (Section 6.4). In

both cases, higher particle density leads to faster growth of 𝑁𝐶
𝑘
.

Inspired by Seyb et al. [2024], we also experiment with a variant of

VWoS that uses finite memory—only storing the most recent empty

ball and sampled particle—to mitigate the overhead of conditional

sampling as memory grows. Figure 12 compares this variant with

standard VWoS that uses full memory. Using finite memory intro-

duces significant bias and provides marginal to no performance im-

provements, suggesting that finite memory of any size does not offer

a favorable bias-performance trade-off—larger sizes of finitememory

will provide only smaller performance improvements. Performance

empty-ball memoryem
pt

y-
 ba

ll m
em
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y

nth step of walk
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y 
si
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nth step of walk
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m
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y 
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ze

number of steps
Dirichlet sampled-particles memory Neumann sampled-particles memory

Neumann particles walk length dist.

Figure 11. Statistics for walk length (first row) and memory size (second
row) for the mushroom (Figure 9(a–c), Dirichlet boundary conditions) and
connector (Figure 10(a–b), Neumann boundary conditions) domains. Though
the size of the empty-ball memory always equals walk length, the size of the
sampled-particle memory can grow slower (in the Dirichlet case) or faster
(in the Neumann case) than walk length. In both cases, increased density
leads to longer walks and faster growth of sampled-particle memory.

does not improve more significantly because computational cost

is dominated by geometric queries against the medium boundary,

which are repeated at each walk step even if step size is very small.

The overhead from these repeated queries becomes worse as particle

density, and therefore walk length, increases (Figure 11, top row).
However, if this overhead is reduced—for example, by leveraging the

spatial coherence of steps in volumetric walks—then it may become

useful to reconsider the use of finite memory. Additionally, finite

memory could help improve parallelism on memory-constrained

GPU devices, due to improved memory management. We defer

further exploration of finite memory to future work.

8 Simulation of natural phenomena
To showcase the ability of our algorithms to deal with a variety of

simulation settings with complex microparticle geometry, we use

them for simulation of two model natural phenomena.

8.1 Electrostatics near biological membranes
In Figure 1, we use VWoS to model electrostatic potentials in sys-

tems with complex cellular geometries. Simulating such potentials

and their effect on biomolecules is common in biochemistry [Davis
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error w/finite memoryensemble averaging

-5x10-2error solution min max

error w/ full memory
168 min

+8min
47 min57 min

7 min
+253 min

6 min 6 min

26 min
+9 min

7 min 2 min

(a)

(b)

(c)

 5x10-2

Figure 12. We compare the bias-performance trade-off of finite memory of
size one (third column) versus full memory (second column) using ensemble
averaging (first column) for reference. We show error images and report
runtimes for each method (the + numbers are the time to sample particle
configurations for ensemble averaging). Using finite memory improves run-
time only marginally (a, c) or not at all (b), yet always introduces significant
bias in solution estimates. These results suggest that memory is crucial
for estimation accuracy, and finite memory does not offer a favorable bias-
performance trade-off for either VWoS (a, b) or VWoSt (c).

and McCammon 1990; Gilson et al. 1988]. However, accurately ac-

counting for the complex molecular geometry involved in these

simulations poses significant computational challenges. To manage

this complexity, homogenization approaches abstract away the fine

details of molecular geometry using simplified models based on

asymptotic cases. One such model, the Debye-Hückel framework

[Andelman 1995], is commonly used to describe the screening of

electrostatic potentials by ions. Though effective in some scenarios,

these models often lead to inaccurate predictions, especially near

membrane surfaces where the size of ions relative to the geometry

becomes critical [Davis and McCammon 1990].

The setup in Figure 1 assumes constant particle density (ex-

pected 1.9 million particles per configuration). The concentrations of

sodium (Na
+
) and chloride (Cl

−
) ions depend on the distance to the

nearest charged surface: Cl
−
ions are more concentrated near posi-

tively charged surfaces, and Na
+
ions are more concentrated near

negatively charged surfaces. The boundary conditions ensure neu-

trality (zero charge) away from the surface, and the charge reaches

a maximum value of ±0.25 V on the surface. Compared to running

WoS in this setup with the participating medium removed, VWoS

increases runtime by only 15%. In return for this slight overhead,

VWoS produces solutions that greatly improve modeling accuracy

of electrostatic potentials due to particle-membrane interactions.

This experiment highlights the advantages of VWoS over en-

semble averaging, and in particular its ability to simulate complex

microparticle geometry without the need to repeatedly sample en-

tire particle configurations. For example, in Figure 1, computing the

electrostatic potential on a 256 × 256 slice plane takes 11 sec with

ensemble averaging, and only 1 sec with VWoS—a speedup of more

than an order of magnitude. The performance improvement is even

greater when solution estimates are needed only along a line (e.g.,

to compute the screening plots in the insets), in which case VWoS

is more than 10, 000× faster than ensemble averaging.

8.2 Photochemical effect in clouds
As we discuss in Section 4 and Appendix B, the PBM we use to de-

rive VWoS and VWoSt also underlies volume rendering algorithms

such as volumetric path tracing (VPT) [Novák et al. 2018]. These

algorithms are commonplace in scientific applications that model

light transport inside participating media such as clouds or tissue.

Combining VWoS and VWoSt with volume rendering creates oppor-

tunities for coupled simulation of light transport and other physical

phenomena (e.g., diffusive effects) in these media. Such a combina-

tion continues recent work on coupled Monte Carlo simulation in

deterministic geometry—e.g., combining WoS and path tracing to

simulate multimodal heat transfer [Bati et al. 2023].

As an example of such an opportunity, in Figure 13, we couple

VWoS and VPT to simulate a simplified atmospheric photochemical

system. In such systems, sunlight drives the production of pollutants

such as ozone, which then diffuse in the atmosphere [Madronich

and Flocke 1999; Seinfeld and Pandis 2016]. Clouds in particular play

a prominent role in atmospheric photochemistry [Hall et al. 2018;

Bianco et al. 2020], but simulation of the photochemical effect in

them is challenging, due to their incredibly complex microparticle

geometry (billions of water droplets [Gryspeerdt et al. 2022]).

Coupled volumetric rendering and PDE simulation can help over-

come this challenge. As a proof-of-concept demonstration, we use a

cloudmodel from pbrt-v3 [Pharr et al. 2018] to set up a photochemical-

effect simulation problem. We use VPT to model sunlight (light

transport), and VWoS to model ozone concentration as a Dirich-

let Laplace BVP (1)—an approximation to more accurate models of

ozone diffusion [Hanna et al. 1982]. At each point in the cloud, we

set the Dirichlet boundary data equal to the mean incident fluence
𝐻 i (W m

−2
) due to a directional light source modeling the Sun.

Altogether, we can estimate ozone concentration inside the cloud

by running VWoS walks that, upon termination, switch to VPT

light paths to estimate incident fluence. Importantly, when tracing

these paths, we must account for memory about the medium accu-

mulated during the walk: as light transport and diffusion occur in

the same medium, the fluence estimation must be conditioned on

the same information as the ozone concentration estimation, i.e.,

𝑢 (𝑥𝑘 |M𝑘 ) = 𝐻 i (𝑥𝑘 |M𝑘 ). We handle this conditional evaluation by

thinning the medium density with respect to previously sampled

empty balls, and occluding rays hitting previously sampled parti-

cles. As Figure 13 shows, accounting for memory when coupling
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Figure 13. We couple VWoS and VPT to model diffusion and light transport (resp.) in a proof-of-concept atmospheric photochemical system: a cloud [Pharr
et al. 2018] inside which fluence due to multiply scattered sunlight generates ozone, which then diffuses throughout the cloud (first and second column). We
estimate ozone concentration (fourth and fifth column) by performing VWoS walks that, upon termination, use VPT paths to estimate a Dirichlet boundary
condition equal to fluence (third column). As both the VWoS walk and VPT path interact with the same microparticle geometry, the memory accumulated
from the walk must carry over to the path. Correctly coupling with memory has a non-trivial impact on the estimated ozone concentration (fifth column).

VWoS and VPT captures shadowing effects that drastically impact

the mean solution. Additionally, if we scale the heterogeneous cloud

density, the ozone concentration changes in a manner resembling

light transport variation in optically dense versus thin media.

9 Limitations and future work
We introduced the problem of PDE simulation in participating media
as a framework for computationally modeling natural phenomena

involving complex microparticle geometry. We described how to

rigorously model such geometry stochastically using the Poisson
Boolean model, which enabled us to develop sampling procedures

that serve as stochastic counterparts of common geometric queries.

We additionally developed the volumetric walk on spheres (VWoS)

and volumetric walk on stars (VWoSt) algorithms that use these

sampling procedures for Monte Carlo estimation of the solution to

this simulation problem. Our algorithms directly generalizes the

standard walk on spheres and walk on stars algorithms, maintaining

their structure and sharing their attractive features.

Clearly, these contributions are just first steps, aimed to set the

groundwork for exploring the interaction between PDEs and partic-

ipating media. By bridging ideas from rendering, PDE simulation,

and stochastic geometry, the problem settingwe introduced presents

opportunities for future research in several exciting directions.

Sampling algorithms. A core component of our VWoS algorithm

is closest point sampling with the thinning procedure of Algorithm 1.

This procedure often becomes the performance bottleneck of our

algorithm, for example in volumes with highly concentrated density.

A similar bottleneck behavior occurs in volume rendering, where an

analogous algorithm, delta tracking, is used for free-flight distance

sampling [Coleman 1968; Raab et al. 2006]—we elaborate on this

analogy in Appendix B. These performance issues have motivated

extensive rendering research on improved sampling algorithms (as

well as algorithms for the closely related problem of transmittance

estimation [Georgiev et al. 2019; Kettunen et al. 2021; Kutz et al.

2017]), for example by making better use of intermediate sampled

points [Novák et al. 2014] or using multiple-importance sampling

[Miller et al. 2019]. Other approaches address performance issues by

using adaptive or progressive majorants [Misso et al. 2023] instead

of a global one. All these approaches can potentially be adapted to

VWoS, and help bring about similar performance improvements.

Microparticle geometry models. We focused on the simplest form

of a Boolean model that uses independent, spherical, and fixed-size

particles. However, many phenomena involve participating media

with particles that violate these assumptions: they can have non-

spherical particles (biological materials such as seeds and pollen,

soil and other sediment); particles of wideband size distributions

(powders, sand grains); or non-independent particles that form reg-

ular structures (crystals), or can repel and attract each other (ions,

colloids). Extending our methods to these more varied participating

media requires using more general Boolean models for microparticle

geometry. Poisson Boolean models with non-spherical particles or

particles of random sizes share many of the same properties we used

in Section 4 [Last and Penrose 2017, Chapter 17]. Thus, we expect

that simulating these models should require only modest modifica-

tions to VWoS. Other Boolean models sample correlated particle

centers from non-Poisson point processes Chiu et al. [2013, Chapter

5] (for example, Matérn [Stoyan and Stoyan 1985] or Gibbs [Sabatini

and Villa 2024]). Simulation of such models is more challenging, due

to the lack of efficient closest point sampling procedures. Efforts to

generalize VWoS to more general Boolean models can benefit from

insights from volume rendering, where there already exist variants

of VPT for participating media with multi-sized [Frisvad et al. 2007],
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anisotropic [Jakob et al. 2010; Heitz et al. 2015], or correlated [Jarabo

et al. 2018; Bitterli et al. 2018; d’Eon 2018, 2019] particles.

Other stochastic geometrymodels. Recent work in computer graph-

ics has shown it can be beneficial to model macroscopic object-level

geometry stochastically, for example to account for uncertainty in

3D acquisition or facilitate shape optimization [Vicini et al. 2021;

Miller et al. 2024a]. Particularly appealing in this context are stochas-

tic implicit surface representations based on Gaussian processes,

thanks to their rich mathematical properties [Sheffield 2007] and

relationship to mature geometry processing algorithms [Sellán and

Jacobson 2022, 2023]. Algorithms for rendering such representa-

tions have emerged recently [Seyb et al. 2024], and can help inform

research on analogous algorithms for PDE simulation.

More general PDEs. Our volumetric WoS and WoSt algorithms

can solve the same types of PDEs as their counterparts for deter-

ministic geometry—we focused on the Laplace equation, but our

algorithms are straightforward to apply to Poisson and screened

Poisson equations. However, many phenomena suitable for mod-

eling using participating media involve PDEs out of scope for our

algorithms, such as linear elasticity [James and Pai 1999], heat con-

duction and convection [Hahn and Özisik 2012], Stokes flow [Du

et al. 2020], and Navier-Stokes flow [Stam 1999]. Recent work has

introduced Monte Carlo simulation algorithms for some of these

PDEs [Rioux-Lavoie et al. 2022; Sugimoto et al. 2024; Bati et al. 2023],

often directly extending WoS or WoSt. Using our theory to develop

volumetric variants of these algorithms would greatly expand the

type of phenomena we can simulate using participating media.
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A Details on the Poisson Boolean model
We elaborate on the closest point distribution and the related spher-

ical contact distribution in the PBM. We also prove the correctness

of conditional closest point sampling using Algorithm 1 with the

conditional density of Equation (13). We use the following property

of the Poisson point process [Last and Penrose 2017, Definition 3.1].

Proposition 2: Properties of the Poisson point process

We assume that the point set 𝐶𝑂 ≔ {𝑐𝑛 ∈ 𝑉 }𝑁𝑛=1
is a sample of

a Poisson point process with rate function 𝜆. Then:

P1. For any set 𝑄 ⊂ 𝑉 ,

Pr{𝑄 ∩𝐶𝑂 = ∅} = exp

(
−
∫
𝑄

𝜆(𝑦) d𝑦
)
. (26)

P2. For any two sets 𝑄, 𝑆 ⊂ 𝑉 , if 𝑄 ∩ 𝑆 = ∅, then the events

𝑄 ∩𝐶𝑂 = ∅ and 𝑆 ∩𝐶𝑂 = ∅ are independent.

Properties P1 and P2 are analogues of the properties of exponen-

tial and independent (resp.) increments of the Poisson process on

the real line. P1 also explains the term exponential media for volumes

with stochastic microparticle geometry following the PBM.

Spherical contact and closest point distributions. We consider the

random closest point 𝑦𝜕𝑂 (𝑥) ∈ 𝜕𝑂 and random shortest distance

𝑟 𝜕𝑂 (𝑥) ≔
𝑥 − 𝑦𝜕𝑂 (𝑥) between a point 𝑥 ∈ 𝑉 and the boundary

𝜕𝑂 . The random variables 𝑟 𝜕𝑂 (𝑥) and 𝑦𝜕𝑂 (𝑥) follow the spherical
contact distribution and closest point distribution [Last and Penrose

2017, Section 16.3], whose PDFs we denote p
sc

𝑥 and p
cp

𝑥 (resp.).

We can derive p
sc

𝑥 from p
dc

𝑥 (Equation (8)), using the relationship

𝑟 𝜕𝑂 (𝑥) = 𝑟𝑐 (𝑥) − 𝑅 (Figure 4). Doing so requires conditioning on

𝑟𝑐 (𝑥) ≥ 𝑅 to ensure a positive value for 𝑟 𝜕𝑂 (𝑥). Requiring 𝑟𝑐 (𝑥) ≥ 𝑅

is equivalent to 𝑥 ∉ 𝑂 , or B(𝑥, 𝑅) ∩𝐶𝑂 = ∅. Then, from Equations (8)

and (26) and the definition of conditional probabilities:

p
sc

𝑥 (𝑟 ) ≔ p
dc

𝑥 (𝑟 + 𝑅 | B(𝑥, 𝑅) ∩𝐶𝑂 = ∅) (27)

= exp(−Λ(𝑥, 𝑟 + 𝑅) + Λ(𝑥, 𝑅))
∫
𝜕B(𝑥,𝑟+𝑅)

𝜆(𝑦) d𝐴(𝑦) . (28)

We can likewise derive p
cp

𝑥 from p
cc

𝑥 (Equation (10)), this time using

the relationship 𝑦𝜕𝑂 (𝑥) = 𝑐 (𝑥) − 𝑅 dir(𝑥, 𝑐 (𝑥)) (Figure 4). From

Equations (8) and (26) and conditioning on 𝑟 𝜕𝑂 (𝑥) = 𝑟 ,

p
cp

𝑥 (𝑦 | 𝑟 ) ≔
𝜆(𝑦 + 𝑅 dir(𝑥,𝑦))∫
𝜕B(𝑥,𝑟+𝑅) 𝜆(𝑦) d𝐴(𝑦)

(𝑟 + 𝑅)2

𝑟2
. (29)

In the homogeneous case, Equations (28) and (29) simplify to:

p
sc

𝑥 (𝑟 )
h

= exp

(
−4/3𝜋

(
(𝑟 + 𝑅)3 − 𝑅3

)
𝜆

)
4𝜋 (𝑟 + 𝑅)2𝜆, (30)

p
cp

𝑥 (𝑦 | 𝑟 )
h

=
1

4𝜋𝑟2
. (31)

Comparing Equations (28) and (29) with Equations (8) and (10)

(resp.), we note that the distributions for 𝑟 𝜕𝑂 (𝑥) and 𝑦𝜕𝑂 (𝑥) are
closely related to those of 𝑟𝑐 (𝑥) and 𝑐 (𝑥). However, the simpler

expressions for the center-based quantities, and in particular the

exponential property of (𝑟𝑐 (𝑥))3, greatly simplify sampling a closest

center relative to directly sampling a closest point (Section 4).

Proof of conditional sampling. The statement𝑄 ∩𝑂 = ∅ is equiva-
lent to𝑄⊕𝑅 ∩𝐶𝑂 = ∅. Using Properties P1 and P2 and the definition
of conditional probabilities, we can update Equation (8) as:

p
dc

𝑥

(
𝑟 |𝑄⊕𝑅 ∩𝐶𝑂 = ∅

)
= exp

(
−Λ(𝑥, 𝑟 ) +

∫
B(𝑥,𝑟 )∩𝑄⊕𝑅

𝜆(𝑦) d𝑦
)

·
(∫

𝜕B(𝑥,𝑟 )
𝜆(𝑦) d𝐴(𝑦) −

∫
𝜕 (B(𝑥,𝑟 )∩𝑄⊕𝑅 )

𝜆(𝑦) d𝐴(𝑦)
)
, (32)

which equals the unconditional p
dc

𝑥 of Equation (8) computed using

the conditional density 𝜆(· |𝑄) in Equation (13).

B Volume rendering
It is instructive to compare and contrast VWoS with volume render-

ing algorithms for exponential media, and in particular its closest

analogue, volumetric path tracing (VPT). We first overview VPT,

then discuss analogies with VWoS. Our discussion of VPT and vol-

ume rendering is brief, and we refer to Novák et al. [2018] and Pharr

et al. [2023, Chapter 15] for more detailed treatments.
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VPT overview. In rendering, the domain 𝛺 plays the role of the

scene. When the scene geometry is deterministic, path tracing com-

putes the incident radiance 𝐿i at a point𝑥 and direction𝜔 recursively,

using the conservation law for radiance along a ray:

𝐿i (𝑥,𝜔) = 𝐿o (𝑦𝜕𝛺 (𝑥, 𝜔),−𝜔), (33)

where 𝐿o is outgoing radiance. The point 𝑦𝜕𝛺 (𝑥,𝜔) is the first

intersection with the scene boundary 𝜕𝛺 of a ray with origin 𝑥 and

direction 𝜔 . We term the distance 𝑡𝜕𝛺 (𝑥, 𝜔) ≔ ∥𝑥 −𝑦𝜕𝛺 (𝑥, 𝜔)∥ the
ray distance along the ray with origin 𝑥 and direction𝜔 . Noting that

𝑦𝜕𝛺 (𝑥,𝜔) = 𝑥 + 𝑡𝜕𝛺 (𝑥,𝜔)𝜔 , Equation (33) becomes:

𝐿i (𝑥,𝜔) = 𝐿o (𝑥 + 𝑡𝜕𝛺 (𝑥, 𝜔)𝜔,−𝜔) . (34)

When the scene geometry is deterministic, we can compute𝑦𝜕𝛺 (𝑥,𝜔)
and 𝑡𝜕𝛺 (𝑥,𝜔) by performing a ray casting query.

In a participating medium, the scene includes both deterministic

and stochastic geometry as in Equation (4). Volumetric path tracing

then computes the incident mean radiance 𝐿i, defined analogously

to the mean solution 𝑢 in Equation (5).
7
Taking the expectation of

Equation (34) and applying the law of total expectation gives us:

𝐿i (𝑥, 𝜔) =
∫ ∞

0

p
𝑡 (𝑡)𝐿o (𝑥 + 𝑡𝜔,−𝜔 | 𝑡𝜕𝛺 (𝑥, 𝜔) = 𝑡) d𝑡 . (35)

Here, we used the fact that in a participating medium the ray dis-

tance 𝑡𝜕𝛺 (𝑥, 𝜔) is a continuous random variable, indicating its PDF

as p
𝑡
. From Equation (4), it follows that:

𝑡𝜕𝛺 (𝑥,𝜔) = min{𝑡𝜕𝑂 (𝑥, 𝜔), 𝑡𝜕𝑉 (𝑥,𝜔)}, (36)

where: 1. 𝑡𝜕𝑂 (𝑥,𝜔) is the random ray distance to the boundary 𝜕𝑂

of the microparticle geometry; 2. 𝑡𝜕𝑂 (𝑥,𝜔) is the deterministic ray

distance to the boundary 𝜕𝑉 of the volume.

The random ray distance 𝑡𝜕𝑂 (𝑥,𝜔) follows the linear contact dis-
tribution [Last and Penrose 2017, Section 16.3] with associated PDF

p
ff

𝑥,𝜔 and tail distribution function T
ff

𝑥,𝜔 . The rendering literature

uses the terms free-flight distance for 𝑡𝜕𝑂 (𝑥,𝜔), free-flight distribu-
tion for p

ff

𝑥,𝜔 , and transmittance for T
ff

𝑥,𝜔 [Bitterli et al. 2018]. From

Equation (36), it follows that we can rewrite Equation (35) as:

𝐿i (𝑥, 𝜔) =
∫ 𝑡𝜕𝑉

0

p
ff

𝑥,𝜔 (𝑡)𝐿o (𝑥 + 𝑡𝜔,−𝜔 | 𝑡𝜕𝛺 = 𝑡) d𝑡

+ T
ff

𝑥,𝜔 (𝑡𝜕𝑉 )𝐿o (𝑥 + 𝑡𝜕𝑉𝜔,−𝜔 | 𝑡𝜕𝛺 = 𝑡𝜕𝑉 ), (37)

wherewe used the shorthands 𝑡𝜕𝛺 , 𝑡𝜕𝑂 , and 𝑡𝜕𝑉 to simplify notation.

Equation (37) is the volume rendering equation (VRE). To estimate

𝐿i, VPT first samples a free-flight distance 𝑡 ∼ p
ff

𝑥,𝜔 and then:

1. estimates 𝐿o (𝑥 + 𝑡𝜔,−𝜔 | 𝑡𝜕𝛺 = 𝑡) if 𝑡𝜕𝛺 < 𝑡𝜕𝑉 , effectively

applying single-sample Monte Carlo to the integral term;

2. estimates 𝐿o (𝑥 + 𝑡𝜕𝑉𝜔,−𝜔 | 𝑡𝜕𝑉 = 𝑡) if 𝑡𝜕𝛺 ≥ 𝑡𝜕𝑉 .

Estimation then proceeds recursively, albeit without memory: VPT
approximates 𝐿o (𝑥 + 𝑡𝜔,−𝜔 | 𝑡𝜕𝛺 = 𝑡) ≈ 𝐿o (𝑥 + 𝑡𝜔,−𝜔)—a so-

called renewal assumption [Seyb et al. 2024]—and continues to iterate
Equation (37) (after first using the in-scattering equation to convert

from outgoing to incident radiance).

7
Notably, the rendering literature typically does not distinguish between mean radiance

and radiance, treating the two quantities as interchangeable.

To make free-flight distance sampling tractable, classical VPT

algorithms assume exponential media, or equivalently, that the mi-

croparticle geometry follows the PBM Φ(𝜆, 𝑅). Using the PBM prop-

erties in Proposition 2 (analogously to the derivation of p
sc

𝑥 in Equa-

tion (28)), as well as an assumption that particle size 𝑅 is appropri-

ately small, the transmittance and free-flight distribution become

[Last and Penrose 2017, Section 16.3]:

T
ff

𝑥,𝜔 (𝑡) = exp(−
∫ 𝑡

0

4𝜋𝑅2𝜆(𝑥 + 𝑠𝜔) d𝑠), (38)

p
ff

𝑥,𝜔 (𝑡) = exp(−
∫ 𝑡

0

4𝜋𝑅2𝜆(𝑥 + 𝑠𝜔) d𝑠)4𝜋𝑅2𝜆(𝑥 + 𝑡𝜔), (39)

or in the homogeneous case, analogously to Equation (30):

T
ff

𝑥,𝜔 (𝑡)
h

= exp

(
−4𝜋𝑅2𝜆𝑡

)
, (40)

p
ff

𝑥,𝜔 (𝑡) = exp

(
−4𝜋𝑅2𝜆𝑡

)
4𝜋𝑅2𝜆. (41)

We note that the closest analogue of the free-flight distribution p
ff

𝑥,𝜔

in VWoS is the spherical contact distribution p
sc

𝑥 (Equation (28)).

However, under the small 𝑅 assumption, p
ff

𝑥,𝜔 is more similar to the

shortest distance-to-center distribution p
dc

𝑥 (Equation (8)).

It follows that, in the homogeneous case, sampling the free-flight

distance requires simply sampling an exponential random variate

with rate 4𝜋𝑅2𝜆𝑡 . In the heterogeneous case, sampling can be done

by thinning [Lewis and Shedler 1979], also known as delta tracking
in the rendering literature: We progressively increase the free-flight

distance by increments sampled assuming homogeneous density

¯𝜆 ≥ 𝜆, until we accept a value with probability 𝜆/¯𝜆.

Comparison with VWoS. The above discussion helps highlight the

many analogies between our VWoS algorithm for PDE simulation in

participating media, and VPT for rendering in participating media.

• Both algorithms are derived by first transforming a recursive

equation through the law of total expectation, then applying

single-sample Monte Carlo: the BIE (2) becomes the BIE in partic-

ipating media (18) for VWoS; and the radiance conservation law

(34) becomes the VRE (37) for VPT.

• Both algorithms replace deterministic geometric queries with

sampling operations: VWoS replaces closest point queries with

closest point sampling, and VPT replaces ray-casting queries with

free-flight distance sampling.

• These sampling operations require characterizing associated PDFs:

the shortest distace-to-center p
dc

𝑥 in VWoS, and the free-flight

distribution (or linear contact distribution) p
ff

𝑥,𝜔 in VPT.

• Both algorithms use the PBM to make these distributions easy to

sample: the cubed shortest distance in VWoS and the free-flight

distance in VPT become exponential random variables.

• Both algorithms use thinning for sampling under heterogeneous

densities: WoS uses Algorithm 1, and VPT uses delta tracking.

At the same time, there are important differences.

• Perhaps the most salient difference relates to memory: VWoS has

full memory by conditioning, during recursion, on the outcomes

of sampling operations at previous steps. VPT has no memory,

“forgetting” those previous outcomes. Ignoring memory is a rea-

sonable approximation in VPT because linear segments along a
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Table 1. Scene parameters for experiments in Sections 7 and 8. We report the maximum density and corresponding mean free ball radius (average shortest
distance to particle centers) of the participating media. We also report the maximum extent (maximum length across all dimensions) of the scenes.

scene 𝜀-shell width particle size 𝑅 maximum density 𝜆 mean free ball radius maximum scene extent

Figure 1, membrane 1 × 10
−4

1 × 10
−3

1 × 10
5

1.2 × 10
−2

4.0 × 10
0

Figure 9(a), mushroom 1 × 10
−4

5 × 10
−2

1 × 10
2

1.2 × 10
−1

2.3 × 10
0

Figure 9(b), mushroom 1 × 10
−4

1 × 10
−2

5 × 10
2

7.0 × 10
−2

2.3 × 10
0

Figure 9(c), mushroom 1 × 10
−4

1 × 10
−3

5 × 10
3

3.2 × 10
−2

2.3 × 10
0

Figure 9(d), ginseng 1 × 10
−4

2 × 10
−3

1 × 10
6

5.5 × 10
−3

4.0 × 10
−1

Figure 9(e), ginseng 1 × 10
−4

2 × 10
−3

1 × 10
6

5.5 × 10
−3

2.0 × 10
−1

Figure 9(f), ginseng 1 × 10
−4

2 × 10
−3

1 × 10
6

5.5 × 10
−3

1.0 × 10
−1

Figure 10(a), connector 1 × 10
−3

2 × 10
−2

5.5 × 10
5

6.8 × 10
−3

1.8 × 10
0

Figure 10(b), connector 1 × 10
−3

2 × 10
−2

2.5 × 10
7

1.9 × 10
−3

1.8 × 10
0

Figure 13, cloud 1 × 10
−4

5 × 10
−3

5 × 10
4

1.5 × 10
−2

2.0 × 10
0

Table 2. Dirichlet boundary data g on the medium boundary 𝜕𝑉 and particle boundary 𝜕𝑂 , for experiments in Sections 7 and 8. 𝑥𝑖 is the 𝑖-th coordinate of
the point 𝑥 ∈ R3. 𝑦𝜕𝑉 (𝑥 ) and 𝑟𝜕𝑉 (𝑥 ) are the closest point and shortest distance (resp.) between 𝑥 and 𝜕𝑉 .

scene medium boundary particle boundary

Figure 1, membrane texture(𝑥) −0.25texture(𝑦𝜕𝑉 (𝑥)) exp(−200𝑟 𝜕𝑉 (𝑥)2)
Figure 9, mushroom texture(𝑥) 0

Figure 9, ginseng 0.5(cos(2 exp(−2(𝑥2 − 1.75))𝑥0) cos(2 exp(−2(𝑥2 − 1.75))𝑥1) − 1.75) 0

Figure 10, connector if 𝑥0 < 0 then 0.5 cos(10𝑥2) + 0.5 else 0.5 cos(10𝑥2) − 0.5 0

Figure 13, cloud 0 fluence 𝐻 i (𝑥)

light path are unlikely to overlap, making it unnecessary for a seg-

ment to condition on the empty space carved by a previous one.

By contrast in VWoS, balls along a random walk are very likely to

overlap, requiring memory for accurate estimation (Section 7.3).

• A more subtle difference becomes evident when we compare the

BIE in participating media (18) with the VRE (37): The former

conditions on closest points, whereas the latter conditions on

shortest ray distances. This difference stems from the fact that

whereas conditioning on the shortest ray distance fixes a unique

closest intersection point, conditioning on the shortest distance

only fixes the closest point to lie on a sphere, requiring additional

area sampling on that sphere (Proposition 1 and Algorithm 1).

Reconciling these differences creates future research opportunities,

for example towards volume rendering algorithms that use memory

for improved estimation accuracy, or towards VWoS variants that

use only shortest distance sampling for improved efficiency.

Lastly, we note that volume rendering applications typically spec-

ify participating media through their extinction coefficient 𝜎𝑡 (𝑥) ≔
4𝜋𝑅2𝜆(𝑥) that appears in Equations (38)–(41), rather than their den-

sity 𝜆(𝑥). The closed-form relationship between the two allows us

to reuse abundant publicly available volume models for rendering

also in PDE simulation, as we do in Section 8.2.

C Scene parameters
We report scene parameters (Table 1) and boundary conditions

(Table 2) for all experiments in Sections 7 and 8.
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