
Walkin’ Robin: Walk on Stars with Robin Boundary Conditions
BAILEY MILLER∗, Carnegie Mellon University, USA
ROHAN SAWHNEY∗, NVIDIA, USA
KEENAN CRANE†, Carnegie Mellon University, USA
IOANNIS GKIOULEKAS†, Carnegie Mellon University, USA

solution

°K
min max

Robin coe�icients

min max

preview

radiant flux density

Wm-2 min max

position

xyz

boundary mesh

Figure 1. Thermal analysis of NASA’s Curiosity Mars rover, mocked up on an artist-generated model not meant for simulation (top left). Keeping temperatures
within specified thermal limits is critical to mission success—but thermal modeling is historically difficult to integrate into the design phase, due to intricate
geometry not easily captured via finite element models (Figure 4). A grid-free Monte Carlo solver that supports Robin boundary conditions enables us to
compute realistic temperature estimates quickly and progressively even for extremely complex geometry, without needing to volumetrically mesh the domain.
Here a “deferred shading” approach provides output-sensitive evaluation, computing temperature values only at the points visible in screen space (top right).
We can hence analyze temperature in local regions of interest, without computing a global solution (bottom row).

Numerous scientific and engineering applications require solutions to bound-

ary value problems (BVPs) involving elliptic partial differential equations,

such as the Laplace or Poisson equations, on geometrically intricate domains.

We develop a Monte Carlo method for solving such BVPs with arbitrary

first-order linear boundary conditions—Dirichlet, Neumann, and Robin. Our

method directly generalizes the walk on stars (WoSt) algorithm, which previ-

ously tackled only the first two types of boundary conditions, with a few

simple modifications. Unlike conventional numerical methods, WoSt does

∗
and

†
indicate equal contribution.

Authors’ addresses: Bailey Miller, bmmiller@andrew.cmu.edu, Carnegie Mellon Uni-

versity, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA; Rohan Sawhney, rsawhney@

nvidia.com, NVIDIA, 2788 San Tomas Expy, Santa Clara, CA, 95051, USA; Keenan

Crane, kmcrane@cs.cmu.edu, Carnegie Mellon University, USA; Ioannis Gkioulekas,

igkioule@cs.cmu.edu, Carnegie Mellon University, USA.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 0730-0301/2024/7-ART41

https://doi.org/10.1145/3658153

not need finite element meshing or global solves. Similar to Monte Carlo

rendering, it instead computes pointwise solution estimates by simulating

random walks along star-shaped regions inside the BVP domain, using

efficient ray-intersection and distance queries. To ensure WoSt produces

bounded-variance estimates in the presence of Robin boundary conditions,

we show that it is sufficient to modify how WoSt selects the size of these

star-shaped regions. Our generalized WoSt algorithm reduces estimation

error by orders of magnitude relative to alternative grid-free methods such as

the walk on boundary algorithm. We also develop bidirectional and boundary
value caching strategies to further reduce estimation error. Our algorithm is

trivial to parallelize, scales sublinearly with increasing geometric detail, and

enables progressive and view-dependent evaluation.

CCS Concepts: • Mathematics of computing → Partial differential
equations; Integral equations; Probabilistic algorithms.

Additional Key Words and Phrases: Partial differential equations, Monte

Carlo methods, walk on spheres

ACM Reference Format:
Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2024.

Walkin’ Robin: Walk on Stars with Robin Boundary Conditions. ACM Trans.
Graph. 43, 4, Article 41 (July 2024), 18 pages. https://doi.org/10.1145/3658153

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

HTTPS://ORCID.ORG/0009-0009-0881-0351
HTTPS://ORCID.ORG/0000-0002-3661-1554
HTTPS://ORCID.ORG/0000-0003-2772-7034
HTTPS://ORCID.ORG/0000-0001-6932-4642
https://orcid.org/0009-0009-0881-0351
https://orcid.org/0000-0002-3661-1554
https://orcid.org/0000-0003-2772-7034
https://orcid.org/0000-0003-2772-7034
https://orcid.org/0000-0001-6932-4642
https://doi.org/10.1145/3658153
https://doi.org/10.1145/3658153

41:2 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

1 INTRODUCTION
With the rapid increase in the complexity of geometric models, grid-

free Monte Carlo methods for boundary value problems (BVPs),

such as walk on spheres (WoS) [Muller 1956], have received renewed

interest from the scientific computing and computer graphics com-

munities [Mascagni and Simonov 2004; Juba et al. 2016; Sawhney

and Crane 2020]. WoS is attractive as it does not require a volumetric

mesh of the problem domain, nor a high-quality mesh of its bound-

ary. Similar to Monte Carlo rendering, WoS is also output-sensitive,

parallelizes easily, and scales well with model complexity without

the need for any geometric preprocessing. These computational

features have encouraged researchers to use WoS in recent years to

solve a broad set of steady-state, time-dependent and even weakly

non-linear partial differential equations (PDEs) [Bossy et al. 2010;

Kyprianou et al. 2017; Nabizadeh et al. 2021; Sawhney et al. 2022;

Rioux-Lavoie et al. 2022; Bati et al. 2023; De Lambilly et al. 2023]. Yet,

despite handling complex boundary shapes, WoS does not support

boundary conditions beyond simple Dirichlet ones.

Boundary conditions control the BVP solution by imposing func-

tional constraints on its values at boundary points—these constraints

correspond to application-dependent constraints on physical sys-

tems, controlling their temperature, voltage, force, velocity, and

so on. The walk on stars (WoSt) algorithm [Sawhney et al. 2023]

recently generalized WoS to support BVPs with mixed Dirichlet and
Neumann conditions, which constrain the solution and its deriva-

tives (resp.) on the boundary. As Figure 2 (top row) shows, WoSt

solves such BVPs by simulating random walks along star-shaped
regions inside the problem domain—these walks model Brownian
motion, which is absorbed into Dirichlet boundaries and reflected

off Neumann boundaries [Øksendal 2003; Grebenkov 2006, 2007].

Our goal in this paper is to further extend the types of bound-

ary conditions WoSt supports, by also handling Robin conditions—

corresponding, from the Brownian motion viewpoint, to boundaries

that are both reflecting and absorbing (Figure 3). Robin conditions

provide greater physical realism than Dirichlet or Neumann con-

ditions when modeling real-world thermal, electromagnetic, elas-

tic, and fluidic materials: most real materials are both absorbing

and reflecting, rather than purely absorbing (e.g., a black body)

or purely reflecting (e.g., a perfect insulator). Additionally, Monte

Carlo estimators are typically more efficient in Robin-dominated

than Neumann-dominated problems (Section 4): random walks sim-

ulating partially reflecting Brownian motion can be absorbed on 𝜕ΩR

[Grebenkov 2006], whereas reflecting Neumann walks must take

many steps to reach 𝜕ΩD, resulting in high computation time.

In particular, we generalize WoSt to solve BVPs of the form:

Δ𝑢 (𝑥) = 𝑓 (𝑥) on Ω,

𝑢 (𝑥) = 𝑔(𝑥) on 𝜕ΩD,
𝜕𝑢 (𝑥)
𝜕𝑛𝑥

− 𝜇 (𝑥)𝑢 (𝑥) = ℎ(𝑥) on 𝜕ΩR,

(1)

where the boundary of the domain Ω ⊂ R𝑁 is partitioned into a

Dirichlet part 𝜕ΩD and a Robin part 𝜕ΩR with prescribed values

𝑔 and ℎ (resp.). Here Δ is the negative-semidefinite Laplacian, 𝑓 is

a given source term, 𝑛𝑥 is the unit outward normal to 𝜕ΩR at 𝑥 ,

and 𝜇 ∈ R≥0 is a non-negative Robin coefficient that can vary over

𝜕ΩR (negative 𝜇 values model emissive boundaries, which we do not

`

∂ΩD

∂ΩN

Ω
x0

x1x2
x3

x4

`

∂ΩD

∂ΩR

Ω
x0

x1

∂ΩD

Ω
x0

x1x2x3

Dirichlet (absorbing)
Neumann (reflecting)
Robin (partially reflecting)

-shellε

reflected walk point
terminated walk point

interior walk point

Figure 2. We solve BVPs with arbitrary first-order linear boundary con-
ditions (Dirichlet, Neumann, Robin) using walk on stars. Top left: With
a purely absorbing Dirichlet boundary 𝜕ΩD, WoSt is equivalent to WoS,
which repeatedly jumps to a random point on the largest sphere around the
current walk location, and terminates when the walk enters an 𝜀-shell 𝜕Ω

𝜀
D

around the boundary. Top right: With a reflecting Neumann boundary 𝜕ΩN,
WoSt replaces spheres with star-shaped regions—formed using spheres that
can contain a subset of 𝜕ΩN—and selects the next walk location by inter-
secting a random ray direction with the current star-shaped region. Bottom:
With a partially-reflecting Robin boundary 𝜕ΩR, WoSt still uses star-shaped
regions, but can additionally terminate walks on the Robin boundary.

consider in this paper). We recover Neumann conditions when 𝜇 = 0,

and Dirichlet conditions as 𝜇 →∞. For algorithmic convenience we

treat pure Dirichlet conditions (i.e., 𝑢 = 𝑔) as separate from Robin,

and focus on 𝑁 = 2 and 3 in this paper.

We show that this generalization requires changing only how

WoSt selects the size of star-shaped regions (Figure 5), to ensure its

estimates have bounded variance. To this end, we define a reflectance
function (Equation 7), which depends on the Robin coefficient 𝜇

and serves as a multiplicative weight for boundary contributions

along each step of a random walk. Then, at each step, we select

the size of the star-shaped region so as to bound the reflectance

function between 0 and 1, and thus ensure that walk contributions

remain positive and do not grow uncontrollably with walk length.

Bounding the reflectance value also allows us to improve efficiency,

by enabling the use of Russian roulette [Pharr et al. 2016, Section 13.7]
to probabilistically terminate walks on 𝜕ΩR (Figures 2 and 3). The

resulting estimator has guaranteed Monte Carlo convergence with

increasing walk count for any combination of Dirichlet, Neumann

and Robin conditions (Figures 11 and 12). It also improves estimation

error by orders of magnitude compared to other grid-free techniques

for the BVP in Equation 1, such as the walk on boundary (WoB)
algorithm [Sabelfeld and Simonov 2013; Sugimoto et al. 2023].

From an implementation perspective, our approach requires only

small modifications (Algorithm 1) to the original WoSt algorithm

(Sawhney et al. [2023, Algorithm 1]), to account for the reflectance-

dependent size of star-shaped regions. In particular, we show how to

efficiently determine region size using the same spatialized normal
cone hierarchy (SNCH) [Johnson and Cohen 2001] as Sawhney et al.

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

Walkin’ Robin: Walk on Stars with Robin Boundary Conditions • 41:3

-1 1
Neumann

Dirichlet
Robin

reflecting partially reflecting absorbing

0

 9 332avg. steps / walk

0.15 1.5

w/ Russian Roule�e
108 710
108 80 15 9

on outer boundary

Figure 3. A non-negative Robin coefficient 𝜇 linearly interpolates between
absorbing Dirichlet (𝜇 = ∞) and reflecting Neumann (𝜇 = 0) conditions,
which prescribe boundary values and derivatives (resp.) to a PDE (here a
Laplace equation). As 𝜇 increases and the boundary becomes less reflecting,
we can apply Russian roulette to probabilistically terminate random walks
on the Robin boundary, and reduce the average number of steps per walk.

[2023], which visits only a small fraction of the primitives on the

boundary of the BVP domain.

Finally, we extend existing variance reduction techniques for

WoSt, such as bidirectional formulations [Qi et al. 2022] and bound-
ary value caching (BVC) [Miller et al. 2023], to Robin problems to

reduce the noise in solution estimates output by our generalized

WoSt algorithm (Figure 10). Overall, our algorithm significantly ex-

pands the scope of BVPs that can be tackled compared to the original

WoS algorithm by Muller [1956], while retaining its computational

benefits over conventional grid-based solvers, such as geometric

robustness and scalability, output sensitivity and trivial parallelism.

2 RELATED WORK
A large variety of numerical methods have been developed to solve

BVPs, given their central importance in science and engineering. We

discuss two broad categories: traditional grid-based deterministic

methods, and emerging grid-free Monte Carlo methods like ours.

We refer to Sawhney and Crane [2020, Section 7] and Sawhney et al.

[2022, Section 7] for a thorough evaluation of tradeoffs.

2.1 Grid-based PDE Solvers
Grid-based methods require spatial discretization of the domain

(meshing or sampling), and solving of globally coupled systems

of equations defined on such a discretization. These requirements

makes grid-based methods difficult to parallelize and prone to alias-

ing in the geometry, boundary conditions, source terms, and solution

[Sawhney and Crane 2020; Sawhney et al. 2022, 2023, Figures 27, 22

& 4]. The primary bottleneck with the finite element method (FEM)
is often not the solve itself, but rather the cost of robustly meshing

large, detailed, and imperfect geometry (e.g., with self-intersections)

that even state-of-the-art methods [Si 2015; Hu et al. 2020] strug-

gle with (e.g., Figure 4 and Sawhney et al. [2023, Figure 5]). In a

process akin to meshing, “meshless” FEM must sample the entire

Input

boundary mesh

Boundary of tetrahedral mesh

generated w/ fTetWild

30 min, (default)ε = 1e-3

Out of
memory

2 hours, ε = 2e-4 8 hours, ε = 1e-4

Figure 4. Generating tetrahedral meshes for accurate FEM simulation can
be challenging, as state-of-the-art meshing tools either fail to capture im-
portant detail in the input model, or routinely run out of memory at finer
tolerances. Here, we run fTetWild [Hu et al. 2020] on the Mars Rover from
Figure 1 using an AMD Ryzen Threadripper PRO with 64 GB RAM. TetGen
[Si 2015] cannot tetrahedralize this model as it contains self-intersections.

domain [Li and Liu 2007]—convergence can stagnate due to poor

sampling [Flyer et al. 2016], or completely fail without problem-

specific tuning of parameters [Sawhney et al. 2022, Figures 24 & 25].

The boundary element method (BEM) must discretize the domain

boundary, then solve a dense linear system that grows quadratically
with geometric detail. Consequently, BEM requires special matrix

approximation schemes to scale to large geometries [Hackbusch

2015], and must be coupled with FEM or finite differences (FD) to

handle volumetric inputs such as source terms and PDE coefficients

[Coleman et al. 1991; Partridge et al. 2012].

FD methods are attractive due to their simplicity of implemen-

tation, requiring only a regular grid or octree [Losasso et al. 2006].

However, they typically necessitate significant grid refinement to

avoid aliasing, resulting in compute and memory complexity that

scales cubicly with resolution. Additionally, as the grid cells are axis

aligned, such methods make enforcement of boundary conditions

difficult. Recent learning-based methods such as physics-informed
neural networks (PINNs) [Raissi et al. 2019] can sidestep cubic com-

plexity issues, by replacing grids with coordinate neural networks

that enable dense evaluation in a resolution-independent manner.

However, PINNs require expensive training over the entire domain

(analogous to a global solve), careful selection of training samples,

and cumbersome hyperparameter tuning. They also struggle with

accurately enforcing boundary conditions, especially in complex

geometric domains [Krishnapriyan et al. 2021].

In contrast, Monte Carlo methods such as WoSt [Sawhney et al.

2023] do not require global solves or training; they can instead

evaluate PDE solutions independently at points of interest in an

embarrassingly parallel manner. They do not require a background

grid to discretize problem inputs, and hence also avoid aliasing.

They instead query geometry using acceleration structures (e.g.,
an SNCH) derived from bounding volume hierarchies (BVH): such

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

41:4 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

structures use little memory, can be built in a fraction of the time

needed for meshing or training [Sawhney and Crane 2020, Figure

25], and preserve sharp edges, small details, and thin features in

the geometry exactly. The outputs of Monte Carlo methods, though

noisy, improve progressively (Figure 1) with more samples if walk
throughput is bounded, thus providing greater robustness compared

to the outputs of grid-based methods, which can be irreparably

corrupted because of a single bad discretization element.

2.2 Grid-free Monte Carlo Methods
Monte Carlo methods for BVPs simulate random walks modeling

continuous stochastic processes (such as Brownian motion) that in

aggregate solve a large class of elliptic and parabolic PDEs—we refer

to Sawhney et al. [2022, Section 2] and Øksendal [2003, Chapters 8 &

9] for key results and derivations. Unlike grid-based methods, Monte

Carlo methods do not require domain or boundary discretization,

and support independent pointwise solution evaluation.

2.2.1 Discretized Random Walks. Classical Monte Carlo methods

simulate random walks with time stepping, similar to ray marching

in rendering. These methods correspond to integration schemes

for stochastic differential equations [Morillon 1997; Higham 2001],

and are generally not well-suited to solving BVPs with complex

domains, as time discretization requires trading off between slow

runtimes due to many small steps in a walk, and high bias due to

inaccurate large steps [Sawhney et al. 2022, 2023, Figures 28 & 16].

2.2.2 Continuous RandomWalks. Discretization-freemethods, start-

ing with WoS [Muller 1956; Sawhney and Crane 2020], use closed-

form distributions to exactlymodel large steps of a Brownianmotion,

and incur only a small bias on the boundary due to approximate walk

termination (Figures 6 and 11). Hence, they generally have a much

more favorable runtime-to-bias tradeoff compared to discretization-

based or hybrid methods [Zhou and Cai 2016; Simonov 2017]. Meth-

ods that build on WoS have also improved significantly in recent

years, through optimized implementations [Krayer and Müller 2021;

Mossberg 2021], variance reduction techniques [Nabizadeh et al.

2021; Qi et al. 2022; Miller et al. 2023; Bakbouk and Peers 2023; Li

et al. 2023], and extensions to more general BVPs [Sawhney et al.

2022; Rioux-Lavoie et al. 2022; Yılmazer et al. 2022; Sawhney et al.

2023; Bati et al. 2023; De Lambilly et al. 2023]. We continue this

trend by extending the WoSt algorithm, along with some of these

variance reduction techniques, to BVPs with Robin boundary condi-

tions. Crucially, our WoSt algorithm maintains the advantages of

WoS over grid-based methods by exactly modeling large steps of a

partially reflecting Brownian motion.

Lastly, the walk on boundary (WoB) algorithm [Sabelfeld and

Simonov 2013; Sugimoto et al. 2023] is an alternative discretization-

free method. It solves BVPs by using random walks that jump be-

tween different locations on the domain boundary, to recursively

evaluate single and double layer potentials at those locations. As we

show in Figure 12, WoB currently suffers from very high variance

and bias in any non-convex domain with Dirichlet or Neumann

conditions, with Robin conditions further exacerbating these issues.

Fundamentally, these issues stem from the fact that in non-convex

domains, walk contributions in WoB grow uncontrollably with walk

length, resulting in solution estimates that have unbounded vari-

ance. This problem necessitates artificially truncating walk length

to curtail variance, but unfortunately this approach results in severe

estimation bias—Section 7.2 provides further details. In contrast,

our WoSt algorithm provides estimates with bounded variance that

decreases at the standard Monte Carlo rate of convergence in all

domains. Furthermore, unlike WoB, it allows for unbiased and low-

variance early walk termination by applying Russian roulette on

reflectance values (Section 4.3).

3 BACKGROUND
We review two topics that serve as the basis of our method: formu-

lating the solution to BVPs such as Equation 1 as a boundary integral
equation (BIE) (Section 3.1), and using WoSt to recursively evaluate

BIEs through Monte Carlo integration (Section 3.2). Sawhney et al.

[2023, Sections 3 & 4] provide a detailed discussion of these topics.

3.1 Boundary Integral Equation
We assume Ω is a watertight domain with smooth boundary 𝜕Ω,

and A and C are arbitrary subsets of Ω and R𝑁 (resp.). Then for any

point 𝑥 ∈ R𝑁 , the solution to a Poisson equation satisfies [Costabel

1987; Hunter and Pullan 2001]

𝛼 (𝑥) 𝑢 (𝑥) =
∫
𝜕A

𝑃C (𝑥, 𝑧) 𝑢 (𝑧) − 𝐺C (𝑥, 𝑧) 𝜕𝑢 (𝑧)
𝜕𝑛𝑧

d𝑧

+
∫

A

𝐺C (𝑥,𝑦) 𝑓 (𝑦) d𝑦, (2)

where 𝛼 (𝑥) = 1 if 𝑥 ∈ A, 1/2 if 𝑥 ∈ 𝜕A, and 0 otherwise. The Green’s
function𝐺𝐶

and Poisson kernel 𝑃𝐶 B 𝜕𝐺𝐶/𝜕𝑛 for a Poisson equation

are typically not known in closed form for arbitrary C, but explicit

expressions are available for important special cases, e.g., free space
(𝐶 = R𝑁) and the ball (𝐶 = B) [Sawhney et al. 2023, Appendix A.1].

∂ΩD

∂ΩR

∂ΩN

∂AA

C

To use Equation 2, we must deter-

mine solution values 𝑢 (𝑧) and their nor-

mal derivatives 𝜕𝑢/𝜕𝑛𝑧 (𝑧) on the bound-

ary 𝜕A (inset). The only information we

have available about these functions is

through the various boundary conditions

on disjoint parts of 𝜕Ω: Dirichlet condi-

tions prescribe solution values 𝑢 = 𝑔 on 𝜕ΩD, Neumann conditions

prescribe derivatives 𝜕𝑢/𝜕𝑛 = ℎ on 𝜕ΩN, and Robin conditions pre-

scribe a linear combination of the two, 𝜕𝑢/𝜕𝑛 − 𝜇 𝑢 = ℎ, on 𝜕ΩR;

the source term 𝑓 is specified everywhere inside Ω (and hence A).

In general though, 𝑢 and 𝜕𝑢/𝜕𝑛 are not known on 𝜕A, so we must

estimate them using a numerical method such as WoSt (Section 3.2).

Though we focus on the Poisson equation for simplicity, the BIE

extends directly to the screened Poisson equation Δ𝑢 − 𝜎𝑢 = 𝑓 with

absorption coefficient 𝜎 ∈ R≥0: the only modification to Equation 2

is to replace the Green’s function and Poisson kernel with their

screened counterparts [Sawhney et al. 2023, Appendix A.2]. The

BIE also applies, in principle, to a much broader class of linear ellip-

tic PDEs with variable diffusion, drift, and absorption coefficients

[Sawhney et al. 2022]—Section 8 provides further discussion. Lastly,

Sawhney et al. [2023, Appendix B] describe how to generalize the

BIE to open domains and double-sided boundary conditions; no spe-

cial treatment is needed to extend Robin conditions to this setting.

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

Walkin’ Robin: Walk on Stars with Robin Boundary Conditions • 41:5

∂ΩN ∂ΩN
∂ΩD

distance to
closest pt on
R =

∂ΩD
distance to

closest silhoue e pt on
R =

∂ΩN

x

x

R

R
St(x , R) ∂StN

∂StB

∂StB

∂StN

St(x , R)

Figure 5. WoSt defines a random walk on star-shaped regions St(𝑥, 𝑅) ,
formed by intersecting a ball B(𝑥, 𝑅) with the domain Ω. The radius 𝑅 is the
minimum of the distances to the closest point on the Dirichlet boundary
𝜕ΩD (left) and the closest silhouette point on the Neumann boundary 𝜕ΩN

(right). We use 𝜕StN and 𝜕StB to denote visible parts of 𝜕ΩN and 𝜕B (inside
Ω) from 𝑥 (resp.). For a Robin boundary 𝜕ΩR, we use 𝜕StR in place of 𝜕StN.

3.2 Walk on Stars for Dirichlet-Neumann Conditions
We describe the originalWoSt algorithm by Sawhney et al. [2023] for

BVPs with mixed Dirichlet and Neumann conditions, i.e., Equation 1

with 𝜇 = 0. The pseudocode in Algorithm 1, annotated with com-

ments in gray, corresponds to this version of WoSt. We extend WoSt

to Robin boundary conditions in Section 4, and label the resulting

modifications in Algorithm 1 in green.

3.2.1 Star-Shaped Regions. While the original walk on spheres al-

gorithm [Muller 1956] for pure Dirichlet problems performs random

walks using balls wholly contained in Ω (top left, Figure 2), WoSt

instead performs walks that use star-shaped regions relative to a

point 𝑥 ∈ Ω, i.e., regions whose boundary is visible from 𝑥 . WoSt

forms such regions St(𝑥, 𝑅) by intersecting the domain Ω with a

ball B(𝑥, 𝑅) centered at 𝑥 ; the ball’s radius 𝑅 equals the minimum

of the distances from 𝑥 to the closest point on 𝜕ΩD, and the closest
silhouette point on 𝜕ΩN (right, Figure 5). Thus, B can contain parts of

𝜕ΩN visible from 𝑥 , but not 𝜕ΩD. We denote by 𝜕StN B 𝜕ΩN ∩ 𝜕St

the Neumann part of the boundary of St, which has prescribed de-

rivative values 𝜕𝑢/𝜕𝑛 = ℎ from the boundary condition in Equation 1

(with 𝜇 = 0). We use 𝜕StB B 𝜕B ∩ 𝜕St for the spherical part of 𝜕St.

With A = St and C = B, the integral in Equation 2 becomes

𝛼 (𝑥) 𝑢 (𝑥) =
∫
𝜕St(𝑥,𝑅)

𝑃B (𝑥, 𝑧) 𝑢 (𝑧) d𝑧

−
∫
𝜕StN (𝑥,𝑅)

𝐺B (𝑥, 𝑧) ℎ(𝑧) d𝑧

+
∫

St(𝑥,𝑅)
𝐺B (𝑥,𝑦) 𝑓 (𝑦) d𝑦. (3)

The critical simplification compared to Equation 2 is that 𝑢 (𝑧) is the
only unknown in this equation: the derivative 𝜕𝑢/𝜕𝑛𝑧 (𝑧) is known
on 𝜕StN, and is not needed on 𝜕StB where 𝐺B (𝑥, 𝑧) = 0. From Equa-

tion 3, Sawhney et al. [2023] proceed to use recursive Monte Carlo

estimation to develop the WoSt algorithm for BVPs with Dirichlet

and Neumann conditions (Section 3.2.2). In Section 4, we likewise

first derive an analogue of Equation 3 for Robin problems that also

uses star-shaped regions, but we change the radius 𝑅 to account for

ε

xk

xk+1
xk+1

v

∂ΩD
∂ΩεD

epsilon shell ε
visible from (sampled) xk
hidden from (not sampled) xk

ε

xk+1v

∂ΩεN xk
∂ΩN

Figure 6. WoSt uses an 𝜀-shell to terminate walks on a Dirichlet boundary
and to prevent walks from stopping on a concave Neumann boundary. Left:
Inside 𝜕Ω

𝜀
D
, WoSt uses the known Dirichlet data𝑔 from the closest projected

point on 𝜕ΩD before terminating a walk. Right: Inside 𝜕Ω
𝜀
N
, WoSt uses balls

with minimum radius 𝜀 if the distance to the closest silhouette point is
zero—only parts of 𝜕ΩN directly visible to 𝑥𝑘 are sampled inside any ball
B(𝑥𝑘 , 𝜀) , which implicitly assumes that the BVP solution is zero elsewhere.

Robin conditions. We then use recursive Monte Carlo estimation

on the resulting BIE to extend WoSt to BVPs with Robin conditions.

3.2.2 Monte Carlo Estimator. The Monte Carlo method approxi-

mates an integral 𝐼 B
∫
𝐴
𝜙 (𝑥) d𝑥 using the sum

𝐼̂ B
1

𝑁

𝑁∑︁
𝑛=1

𝜙 (𝑥𝑛)
𝑝A (𝑥𝑛)

, 𝑥𝑛 ∼ 𝑝A, (4)

where 𝑥𝑛 are independent random samples from a probability den-

sity 𝑝A
that is non-zero on the support of 𝜙 . Using single-sample

Monte Carlo (i.e., 𝑁 = 1) results in theWoSt estimator for any 𝑘 ≥ 0.

Walk on Stars With Dirichlet-Neumann conditions

𝑢 (𝑥𝑘) =
𝑃B (𝑥𝑘 , 𝑥𝑘+1) 𝑢 (𝑥𝑘+1)
𝛼 (𝑥𝑘) 𝑝𝜕St(𝑥𝑘 ,𝑅) (𝑥𝑘+1)

− 𝐺B (𝑥𝑘 , 𝑧𝑘+1) ℎ(𝑧𝑘+1)
𝛼 (𝑥𝑘) 𝑝𝜕StN (𝑥𝑘 ,𝑅) (𝑧𝑘+1)

+ 𝐺B (𝑥𝑘 , 𝑦𝑘+1) 𝑓 (𝑦𝑘+1)
𝛼 (𝑥𝑘) 𝑝St(𝑥𝑘 ,𝑅) (𝑦𝑘+1)

. (5)

This estimator is recursive as𝑢 appears on both sides of Equation 5.

Recursion leads to a random walk from one star-shaped region to

another—hence the namewalk on stars. At each step𝑘 , WoSt samples

points 𝑥𝑘+1 ∈ 𝜕St, 𝑧𝑘+1 ∈ 𝜕StN and 𝑦𝑘+1 ∈ St from densities 𝑝𝜕St
,

𝑝𝜕StN
and 𝑝St

(resp.). We discuss sampling 𝑥𝑘+1 below, and refer to

Sawhney et al. [2023, Sections 4.5 & 4.6] for details on sampling

𝑧𝑘+1 and 𝑦𝑘+1 to accumulate (non-recursive) contributions from

the known Neumann data ℎ and source 𝑓 . For problems with a

Dirichlet boundary 𝜕ΩD, WoSt terminates a walk when it enters

the 𝜀-shell 𝜕Ω
𝜀
D
B {𝑥 ∈ Ω : min𝑦∈𝜕ΩD

∥𝑥 − 𝑦∥ ≤ 𝜀}, and uses the

Dirichlet data 𝑔 at the closest point 𝑥𝑘 ∈ 𝜕ΩD to set 𝑢 (𝑥𝑘) B 𝑔(𝑥𝑘)
(left, Figure 6). For pure Neumann problems, WoSt uses Tikhonov
regularization [Sawhney et al. 2023, Section 3.4.3] to terminate walks

at the expense of some bias. No such regularization is needed for

pure Robin problems as walks can terminate on 𝜕ΩR (Section 4.3).

3.2.3 Sampling Star-Shaped Regions. WoSt selects the next walk lo-

cation 𝑥𝑘+1 by importance sampling the Poisson kernel 𝑃B (𝑥𝑘 , 𝑥𝑘+1)
in the recursive (first) term of Equation 5. Because the Poisson ker-

nel equals the signed solid angle subtended by 𝜕St at 𝑥𝑘 [Sawhney

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

41:6 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

et al. 2023, Equation 25], WoSt can use direction sampling to select

𝑥𝑘+1 easily, i.e., similar to Monte Carlo ray tracing, we cast a ray

from 𝑥𝑘 ∈ Ω in a direction uniformly sampled on the unit sphere,

and set 𝑥𝑘+1 equal to the first intersection with 𝜕St. If 𝑥𝑘 lies on

𝜕ΩN, WoSt instead uses hemispherical direction sampling to ensure

𝑥𝑘+1 ∈ Ω (right, Figure 6), which also prevents the estimate 𝑢 (𝑥𝑘+1)
from picking up a multiplicative factor of 2 each time a walk reaches

𝜕ΩN. This is because the 1/2 factor from sampling a hemisphere

(instead of a sphere) cancels 𝛼 (𝑥𝑘) = 1/2 in the denominator of

Equation 5. Together, these sampling decisions guarantee that walk

throughput (i.e., an accrued multiplicative factor for 𝑢 (𝑥𝑘+1) over 𝑘
steps) is always 1, as 𝑝𝜕St = 𝑃B (𝑥𝑘 ,𝑥𝑘+1)/𝛼 (𝑥𝑘) at each step 𝑘 .

3.2.4 Epsilon Clamp. WoSt limits the radius 𝑅 of St(𝑥𝑘 , 𝑅) to be

greater than a user-defined 𝜀. Doing so ensures that walks do not

stall near concave parts of a Neumann boundary, where the distance

to the closest silhouette point on 𝜕ΩN shrinks to zero [Sawhney et al.

2023, Figure 9]. Akin to the 𝜀-shell 𝜕Ω
𝜀
D
, this scheme introduces a

performance-bias tradeoff: bias stems from St(𝑥𝑘 , 𝜀) not necessarily
being star-shaped, which means that the solution 𝑢 is effectively

zero at points 𝑥𝑘+1 ∈ 𝜕St not visible from 𝑥𝑘 (right, Figure 6). For
Robin problems, we will also apply an 𝜀-clamp to each St, and use

direction sampling to determine the next walk location 𝑥𝑘+1.

4 WALK ON STARS FOR ROBIN CONDITIONS
To add support for BVPs with Robin boundary conditions to WoSt,

our main modification is to change how we select the radius 𝑅 of the

balls B(·, 𝑅) we use to form star-shaped regions St, leaving the rest of

the algorithm largely unchanged. As we show in Figure 3, the Robin

coefficient 𝜇 linearly interpolates between Neumann conditions

(𝜇 = 0) and Dirichlet conditions (𝜇 = ∞), which means that as 𝜇

increases, a Robin boundary 𝜕ΩR becomes less reflecting and more

absorbing. Intuitively, we expect 𝜇 to have a similar interpolatory

impact on 𝑅: in Figure 7, we show that 𝑅 achieves its maximal value

𝑅0 on a fixed boundary when 𝜇 = 0 (i.e., 𝜕ΩR ≡ 𝜕ΩN), with B(·, 𝑅)
expanding freely through 𝜕ΩN until it encounters a silhouette point.

On the other hand, 𝑅 equals its minimal value 𝑅∞ when 𝜇 = ∞
(i.e., 𝜕ΩR ≡ 𝜕ΩD), as B(·, 𝑅) cannot cross through 𝜕ΩD. Otherwise,

𝑅 transitions smoothly from 𝑅0 to 𝑅∞ as 𝜇 increases, with 𝜕ΩR

becoming less “permeable” as B(·, 𝑅) expands.
In the rest of this section, we formalize this intuition for the ball

size in three steps: in Section 4.1, we introduce a reflectance function

𝜌𝜇 , which adds support for Robin conditions to the BIE we use to

derive our subsequent WoSt estimator. In Section 4.2, we explain

why the introduction of 𝜌𝜇 necessitates selecting a radius 𝑅 smaller

than the one used with Neumann conditions, and how to use 𝜌𝜇
to facilitate this selection. Finally in Section 4.3, we show how 𝜌𝜇
allows terminating random walks early through Russian roulette

[Pharr et al. 2016, Section 13.7] to improve efficiency. We highlight

these changes in Algorithm 1 in green.

4.1 Modified BIE and MC Estimator
To derive a boundary integral that accounts for Robin conditions,

we follow largely the same derivation as that of Equation 3 [Sawh-

ney et al. 2023, Section 4.2]. The main difference is that we use

the Brakhage-Werner trick from potential theory [Nédélec 2001] to

∂ΩD

xk+1
xk R∞

distance to
closest silhoue e pt
R0 = distance

to closest pt
R∞ = increasing → μ →

R0 ≥ Rμ ≥ R∞

∂ΩR

xk
xk+1Rμ

∂ΩR

xk
xk+1Rμ

∂ΩN

xk
xk+1R0

Figure 7. By increasing 𝜇, the radius of our star-shaped region for a Robin
boundary reduces continuously from the distance to the closest silhouette
point (left: Neumann case with 𝜇 = 0) to the distance to the closest point
on the boundary (right: Dirichlet case with 𝜇 = ∞).

substitute 𝜕𝑢/𝜕𝑛 = 𝜇 ·𝑢 +ℎ (from the Robin condition in Equation 1)

on 𝜕StR B 𝜕ΩR ∩ 𝜕St. Rearranging terms then yields:

𝛼 (𝑥) 𝑢 (𝑥) =
∫
𝜕St(𝑥,𝑅)

𝜌𝜇 (𝑥, 𝑧) 𝑃B (𝑥, 𝑧) 𝑢 (𝑧) d𝑧

−
∫
𝜕StR (𝑥,𝑅)

𝐺B (𝑥, 𝑧) ℎ(𝑧) d𝑧

+
∫

St(𝑥,𝑅)
𝐺B (𝑥,𝑦) 𝑓 (𝑦) d𝑦, (6)

where we define the spatially-varying function 𝜌𝜇 as:

𝜌𝜇 (𝑥, 𝑧) B
{

1 − 𝜇 (𝑧) 𝐺
B (𝑥,𝑧)

𝑃B (𝑥,𝑧) , on 𝜕StR,

1, on 𝜕StB .
(7)

Equation 6 is nearly identical to Equation 3 for BVPs with Neu-

mann conditions, and even reduces to it when 𝜇 = 0. Importantly, as

before, 𝑢 is the only (recursively-defined) unknown in Equation 6.

Similar to Section 3.2.2, we can therefore use single-sample Monte

Carlo to derive a recursive WoSt estimator with Robin conditions.

Walk on Stars With Robin conditions

𝑢 (𝑥𝑘) =
𝜌𝜇 (𝑥𝑘 , 𝑥𝑘+1) 𝑃B (𝑥𝑘 , 𝑥𝑘+1) 𝑢 (𝑥𝑘+1)

𝛼 (𝑥𝑘) 𝑝𝜕St(𝑥𝑘 ,𝑅) (𝑥𝑘+1)

− 𝐺B (𝑥𝑘 , 𝑧𝑘+1) ℎ(𝑧𝑘+1)
𝛼 (𝑥𝑘) 𝑝𝜕StR (𝑥𝑘 ,𝑅) (𝑧𝑘+1)

+ 𝐺B (𝑥𝑘 , 𝑦𝑘+1) 𝑓 (𝑦𝑘+1)
𝛼 (𝑥𝑘) 𝑝St(𝑥𝑘 ,𝑅) (𝑦𝑘+1)

. (8)

Given how similar the integrands are in Equations 3 and 6, we can

sample the points 𝑥𝑘+1 ∈ 𝜕St, 𝑧𝑘+1 ∈ 𝜕StR, 𝑦𝑘+1 ∈ St using the same

densities 𝑝𝜕St
, 𝑝𝜕StR

, 𝑝St
(resp.) as in Sections 3.2.2–3.2.3. Apart from

the introduction of 𝜌𝜇 , the WoSt estimator for Robin conditions is

unchanged from the estimator for Dirichlet-Neumann conditions.

Next, we show how to select the radius 𝑅 for each star-shaped region

St(𝑥𝑘 , 𝑅), and how to terminate random walks on 𝜕ΩR—these are

the only two places our estimator deviates from Equation 5.

4.2 Using Reflectance to Select Ball Radius
As a first attempt, we could choose 𝑅 to equal the distance 𝑑

silhouette

to the closest silhouette point on 𝜕ΩR from 𝑥 , i.e., the radius 𝑅0

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

Walkin’ Robin: Walk on Stars with Robin Boundary Conditions • 41:7

ALGORITHM 1: WalkOnStars(𝑥, 𝑛𝑥 , 𝜀)
Note: Code annotated with comments in green indicates our modifications to the WalkOnStars algorithm by Sawhney et al. [2023].

Input: Starting position 𝑥 ∈ Ω of random walk, normal 𝑛𝑥 at 𝑥 (undefined if 𝑥 ∉ 𝜕ΩR), 𝜀-shell parameter.

Output: Single-sample Monte Carlo estimate 𝑢 (𝑥) for Equation 1.

1: 𝑑, 𝑥 ← DistanceAbsorbingBoundary(𝑥) ⊲Compute distance to absorbing boundary 𝜕ΩD with Dirichlet conditions (∞ if 𝜕ΩD = ∅)
2: if 𝑑 < 𝜀 then return 𝑔 (𝑥) ⊲Return boundary value 𝑔 at closest pt 𝑥 if 𝑥 ∈ 𝜕Ω

𝜀
D

3: 𝑅 ← StarRadiusReflectingBoundary(𝑥, 𝑑) ⊲Compute radius of star region St(𝑥, 𝑅) containing reflecting boundary 𝜕ΩR, such that 𝑅 ≤ 𝑑 (Alg. 2)
4: 𝑅 ← max(𝜀, 𝑅) ⊲Also ensure 𝑅 ≥ 𝜀

5: 𝑣 ← SampleUnitSphere() ⊲Sample a direction 𝑣 uniformly on the unit sphere
6: if 𝑥 ∈ 𝜕ΩR and 𝑛𝑥 · 𝑣 > 0 then 𝑣 ← −𝑣 ⊲If 𝑥 lies on 𝜕ΩR, ensure 𝑣 is sampled on hemisphere with axis −𝑛𝑥
7: hit, 𝑝, 𝑛𝑝 ← IntersectReflectingBoundary(𝑥, 𝑣, 𝑅) ⊲Intersect 𝜕StR (boundary inside star region) with ray 𝑥 + 𝑅𝑣, and get first hit
8: if not hit then 𝑝 ← 𝑥 + 𝑅 𝑣 ⊲If there is no hit with 𝜕StR, intersect 𝜕StB (spherical portion of star region) instead
9: 𝐼̂ℎ ← ReflectingBoundaryEstimate(𝑥, 𝑅) ⊲Estimate contribution from boundary term ℎ on 𝜕StR [Sawhney et al. 2023, Alg. 1, lines 18-22]
10: 𝐼̂𝑓 ← SourceEstimate(𝑥, 𝑝, 𝑣, 𝑅) ⊲Estimate contribution from source term 𝑓 in St [Sawhney et al. 2023, Alg. 1, lines 24-26]
11: 𝜌𝜇 ← Clamp(1 − 𝜇 (𝑝)𝐺B(𝑥,𝑅) (𝑥, 𝑝)/𝑃B(𝑥,𝑅) (𝑥, 𝑝), 0, 1) ⊲Compute reflectance (Eq. 7) and clamp it to [0, 1]
12: if 𝜌𝜇 < SampleUniform(0, 1) then return − 𝐼̂ℎ + 𝐼̂𝑓 ⊲Attempt to terminate walk using Russian roulette

13: return WalkOnStars(𝑝, 𝑛𝑝 , 𝜀) − 𝐼̂ℎ + 𝐼̂𝑓 ⊲Repeat procedure from updated walk position (𝑛𝑝 is undefined if 𝑥 ∉ 𝜕ΩR)

we use for Neumann problems (middle, Figure 8). To understand

why this is a bad choice for 𝑅, we must consider the values 𝜌𝜇 (𝑥, 𝑧)
(Equation 7) assumes on different parts of 𝜕St(𝑥, 𝑅). In particular,

irrespective of the value of 𝜇, 𝜌𝜇 (𝑥, 𝑧) = 1 at points 𝑧 ∈ 𝜕StB, as

𝐺B (𝑥, 𝑧) = 0. When 𝜇 = 0, 𝜌𝜇 (𝑥, 𝑧) likewise simplifies to 1 at points

𝑧 ∈ 𝜕StR, recovering the original setup for Neumann problems.

However, when 𝜇 > 0, 𝜌𝜇 in general varies between −∞ and 1 if

we use 𝑅 = 𝑅0 ≡ 𝑑
silhouette

(𝑥). This choice of radius leads to ex-

tremely high variance in the recursive estimator in Equation 8 for

two reasons: (1) The solution estimate 𝑢 accumulates a throughput1∏
𝑘 𝜌𝜇 (𝑥𝑘−1

, 𝑥𝑘) that becomes unbounded in magnitude as walk

length 𝑘 increases. (2) The function 𝜌𝜇 , and thus the throughput,

can change sign along a walk, resulting in unstable estimates due to

cancellations [Kalos and Whitlock 2009, Chapter 4]. In Appendix A,

we provide an operator-theoretic analysis of boundary integral equa-

tions to more formally explain the issues with a naïve estimation of

Equation 6 and our solution to it, which we discuss below.

4.2.1 Shrinking the radius. To ensure that throughput remains pos-

itive and bounded regardless of walk length, we choose a radius

𝑅 ≤ 𝑅0 such that 𝜌𝜇 ∈ [0, 1]. To achieve this, we substitute ex-

pressions for the 3D Green’s function and Poisson kernel of a ball

B(𝑥, 𝑅) [Sawhney et al. 2023, Equations 25 & 26] into Equation 7.

For any point 𝑧 ∈ 𝜕StR, we have

𝜌𝜇 (𝑥, 𝑧) = 1 − 𝜇 (𝑧) 𝑟
cos𝜃

(
1 − 𝑟

𝑅

)
, (9)

where 𝑟 = ∥𝑧 − 𝑥 ∥, cos𝜃 = (𝑛𝑧 · (𝑧−𝑥))/𝑟 . The terms 1− 𝑟/𝑅 and cos𝜃

are both positive, as 𝑟 ≤ 𝑅 and 𝜕StR is front-facing by construction

(as St is star-shaped). To restrict 𝜌𝜇 ∈ [0, 1], we therefore require

𝜇 (𝑧) 𝑟
cos𝜃

(
1 − 𝑟

𝑅

)
≤ 1. (10)

1
We use this term in analogy with the throughput of a light path in Monte Carlo

rendering [Pharr et al. 2016]. In our setting, the throughput of a walk equals the

probability with which Brownian motion is reflected off (and not absorbed on) 𝜕ΩR .

Rearranging terms then gives us an upper bound on the radius 𝑅,

𝑅 ≤ 𝑟

1 − cos𝜃
𝜇 (𝑧) 𝑟

when 𝑟 >
cos𝜃

𝜇 (𝑧) , (11)

which must hold at all points 𝑧 ∈ 𝜕StR (right, Figure 8). When

𝑟 ≤ cos𝜃/𝜇 (𝑧), 𝜌𝜇 ∈ [0, 1] for any 𝑟 < 𝑅; in this case we set 𝑅 equal

to the distance 𝑑
Dirichlet

(𝑥) to 𝜕ΩD, or∞ when 𝜕ΩD = ∅.
As 𝜇 increases from 0 to ∞ on 𝜕ΩR, the bound in Equation 11

reduces continuously from 𝑅0 ≡ 𝑑silhouette
(𝑥) to 𝑅∞ ≡ 𝑑Dirichlet

(𝑥).
It asymptotically recovers the radii 𝑅0 and 𝑅∞ WoSt uses for pure

Neumann and Dirichlet conditions as 𝜇 approaches 0 and∞ (resp.).
With this bound for the star-shaped region radius 𝑅, we term 𝜌𝜇
the reflectance for the Robin boundary inside St(𝑥, 𝑅), as it encodes
the probability with which a random walk is reflected off 𝜕StR. In

Section 5.2, we describe how to compute 𝑅 efficiently on triangle

ρμ ∈ [0,1] ρμ ∉ [0,1]

∂Ω
D

∂Ω
R

xk

R

∂Ω
D

∂Ω
R

xk

B(xk , R)

R ∂Ω
R

xk

R

∂Ω
D

Naïve estimator
dist. to

(multiple intersections)
R = ∂ΩD

WoSt for Neumann
dist. to silhoue e

(single intersection)
R =

WoSt for Robin ()
 chosen s.t.

μ > 0
R ρμ ∈ [0,1]

Figure 8. We use reflectance values 𝜌𝜇 on the Robin boundary 𝜕ΩR to
determine the radius 𝑅 of a star-shaped region St(𝑥𝑘 , 𝑅) . Left: For a ball
B(𝑥𝑘 , 𝑅) where 𝑅 is the distance to the Dirichlet boundary 𝜕ΩD, the BVP
solution must be estimated at all ray intersections sampled proportionally to
signed solid angle. Middle: WoSt with Neumann conditions avoids multiple
intersections by restricting B ∩ Ω to be star-shaped relative to 𝑥𝑘 , and
estimating the solution at a single intersection point 𝑥𝑘+1 ∈ 𝜕St. Right: For
Robin conditions with 𝜇 > 0, 𝑅 is restricted further to ensure 𝜌𝜇 ∈ [0, 1].

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

41:8 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

meshes, with only small modifications to how 𝑑
silhouette

is com-

puted for 𝜕ΩN [Sawhney et al. 2023, Section 5.1]. Appendix B gives

corresponding expressions for 2D domains.

4.2.2 Epsilon Clamp. Irrespective of the value of 𝜇, the radius 𝑅
of a star-shaped region St(𝑥𝑘 , 𝑅) shrinks to zero as 𝑥𝑘 approaches

concave parts of 𝜕ΩR. As in Section 3.2.4, we therefore clamp 𝑅 ≥ 𝜀

to prevent walks from stalling near 𝜕ΩR. As St(𝑥𝑘 , 𝜀) may no longer

be star-shaped, we also clamp 𝜌𝜇 to [0, 1] to ensure that throughput
remains bounded (line 11, Algorithm 1). This clamping is justified

by the fact that as we make 𝜀 (and thus St) smaller, the value of 𝜌𝜇
automatically approaches 1. In Figure 11, we use different 𝜀 values

to study the impact clamping has on bias and performance.

4.3 Using Russian Roulette to Terminate Walks
Using direction sampling (Section 3.2.3) to select the next walk

location 𝑥𝑘+1 perfectly importance samples (and hence cancels out)

the Poisson kernel 𝑃B (𝑥𝑘 , 𝑥𝑘+1) in Equation 8, but not the reflectance
𝜌𝜇 (𝑥𝑘 , 𝑥𝑘+1). As our choice of 𝑅 guarantees 𝜌𝜇 (𝑥𝑘 , 𝑥𝑘+1) ∈ [0, 1],
we can also cancel out this term using Russian roulette [Pharr et al.
2016, Section 13.7]: we terminate walks at step 𝑘 with probability

1 − 𝜌𝜇 (𝑥𝑘 , 𝑥𝑘+1), and cancel out the contribution 𝜌𝜇 (𝑥𝑘 , 𝑥𝑘+1) in
surviving walks (line 12, Algorithm 1). Using Russian roulette allows

us to maintain a constant throughput of 1 in our walks and terminate

them early, instead of waiting for walks to reach 𝜕Ω
𝜀
D
while their

throughput continues to shrink. This often leads to large efficiency

gains, as we show in Figure 3. We note that Russian roulette is not

possible with pure Neumann conditions, where reflectance always

equals 1. In this case, a walk must continue until it reaches 𝜕Ω
𝜀
D
.

Otherwise it never terminates when 𝜕ΩD = ∅, which necessitates

Sawhney et al. [2023, Section 3.4.3] to use Tikhonov regularization.

5 IMPLEMENTATION ON TRIANGLE MESHES
We require essentially the same geometric queries and acceleration

structures as Sawhney et al. [2023] to implement Algorithm 1 on

triangle meshes. The queries we need are:

(1) Closest point on 𝜕ΩD (line 1)
(2) Radius of star-shaped region for 𝜕ΩR (line 3)
(3) Ray intersection against 𝜕ΩR (line 7)
(4) Point sampling of known Robin data ℎ on 𝜕ΩR (line 9)

Queries 1, 3, and 4 remain unchanged from Sawhney et al. [2023],

and are supported by the FCPW library [Sawhney 2021]: ray inter-

sections and closest point queries (CPQs) are standard in computer

graphics and can be accelerated using a BVH; the point sampling

query in Sawhney et al. [2023, Section 5.2] was designed to sam-

ple known Neumann data ℎ on a reflecting boundary, but applies

out-of-the-box to Robin data—it too is implemented using a BVH.

Here we discuss how to implement the radius query for 𝜕ΩR,

which functions as a closest silhouette point query (CSPQ) [Sawhney

et al. 2023, Section 5.1] when 𝜇 = 0, and as a CPQ when 𝜇 = ∞.
For intermediate coefficient values, it has additional aspects unique

to Robin conditions, which we annotate in green in Algorithms

2, 3 and 4. Like Sawhney et al. [2023], we use an SNCH [Johnson

and Cohen 2001] for acceleration, which adds information about

boundary normals and Robin coefficients to a BVH (Figure 9).

query
point

θvc
θnc

view cone

normal cone

∂ΩR

SNCH
node

Figure 9. Like Sawhney et al. [2023], we employ a spatialized normal cone
hierarchy to accelerate our star-shaped region query for a Robin boundary
𝜕ΩR. We use the spatial and angular bounds for the geometry inside an
SNCH node (via each node’s bounding box and normal cone) to compute a
conservative radius for the star-shaped region, which determines whether
a node can be skipped as we traverse the hierarchy.

In practice, we use a BVH to find closest points on 𝜕ΩD, and an

SNCH for all other queries on 𝜕ΩR (though only the radius query

accesses information about normals and coefficients). We imple-

ment our method on triangle meshes in the open-source Zombie
library [Sawhney and Miller 2023], but it works with any boundary

representation that supports Queries 1–4. The boundary can be

open or closed, and may contain self-intersections, cracks or holes.

5.1 Computing Radius Bounds for Triangles
The naïve approach for computing the radius of a star-shaped region

on 𝜕ΩR is to first perform a CSPQ on the mesh relative to a query

point 𝑥 , and then: loop over all triangles within the radius returned

by the CSPQ, estimate the upper-bound on the radius for each trian-

gle 𝑡 (Equation 11), and take the minimum of these bounds. Before

we describe how to accelerate this computation using an SNCH, we

observe that the radius bound does not have to be approximated

numerically for any 𝑡 . We instead compute a tight bound using the

maximum coefficient value
2 𝜇max B max(𝜇 (𝑧)) for all points 𝑧 ∈ 𝑡 ,

and a distance ℎ from 𝑥 to the plane 𝑡 lies on. In particular, letting

𝑟 = ℎ/cos𝜃 in Equation 11, we have:

𝑅 ≤ 𝜇max ℎ2

𝜇max ℎ cos𝜃 − cos
3 𝜃

when cos𝜃 ≤
√︁
𝜇max ℎ. (12)

We now minimize this equation by taking its derivative with respect

to cos𝜃 , and setting it to zero. This gives us an analytical expres-

sion

√︁
𝜇maxℎ/3 for the cosine. We clamp this expression between the

minimum and maximum cosine values achieved at the closest and

farthest (resp.) points on 𝑡 , and plug it back into Equation 12 to

compute the radius bound for 𝑡 . Algorithm 3 provides pseudocode.

5.2 Accelerating Star-Shaped Region Queries
Not every triangle in a mesh needs to be visited to compute the

radius of a star-shaped region. In fact, as we search for the minimum

upper-bound on the radius over all triangles, we can skip over large

parts of 𝜕ΩR where the geometry is entirely front- or back-facing

2
Using 𝜇max

to compute the radius bound for a triangle does not alter the original

problem description in any way—our estimator still treats 𝜇 (𝑧) as spatially varying

over the triangle when computing reflectance in line 11, Algorithm 1.

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

Walkin’ Robin: Walk on Stars with Robin Boundary Conditions • 41:9

relative to the query point 𝑥 (akin to a CSPQ). We therefore con-

struct a hierarchical acceleration structure that stores the following

information about the triangles in each node:

(1) An axis-aligned bounding box for spatial extents.

(2) A normal cone for angular extents.
(3) Minimum and maximum Robin coefficients.

We compute the cone axis by averaging all triangle normals in a

node, and set the cone half angle equal to the maximum deviation of

any triangle normal from the axis. We use the surface area heuristic

[Wald 2007] to construct this SNCH; the normal cones and Robin

coefficients for each node are assembled during construction.

Query Traversal. Similar to Section 5.1, we compute conservative
radius bounds for the nodes we visit during traversal, using the

spatial, angular, and coefficient information available in a node (lines
7 & 8, Algorithm 4). We also build a view cone rooted at 𝑥 to compute

the bounds, via Equation 11; the cone axis points towards the center

of a node, and its half angle bounds the node tightly (Figure 9). We

then decide whether to skip a node with only front- or back-facing

triangles, by checking if our minimum bound for the node is larger

than the current estimate of the radius for the star-shaped region

(line 1, Algorithm 2). We also use our maximum bound for the node

to shrink the radius estimate (lines 7 & 9, Algorithm 2). If instead

the node contains a geometric silhouette (line 4, Algorithm 4), we

must traverse the node just as with a CSPQ, as Equation 11 only

applies to star-shaped regions that can be no larger in size than the

distance returned by a CSPQ.

6 VARIANCE REDUCTION
We adapt two variance reduction techniques previously developed

for WoSt [Miller et al. 2023; Qi et al. 2022] to Robin problems to fur-

ther improve estimation quality (Figure 10). Adaptation is relatively

straightforward, as our method only makes minor modifications to

the original WoSt algorithm. We assume for simplicity that the do-

main boundary only has Robin conditions, and refer to the original

papers for details regarding Dirichlet and Neumann conditions.

6.1 Boundary Value Caching
WoSt does not exploit the spatial smoothness in the solution to an

elliptic PDE, as it estimates the solution independently at every

point in Ω. To reduce redundant computation and suppress noise,

boundary value caching (BVC) [Miller et al. 2023] instead first uses

WoSt to estimate solution values 𝑢 and derivatives 𝜕𝑢/𝜕𝑛 at random

points on 𝜕Ω. BVC then uses these cached boundary values to di-

rectly evaluate the BIE at interior points via Monte Carlo, setting

A = Ω and C = R𝑁 in Equation 2. BVC generates smoother re-

sults than WoSt for Dirichlet and Neumann problems [Miller et al.

2023, Figures 1, 5 & 7], and facilitates cheap and output-sensitive

evaluation of the PDE solution in Ω.

For BVPs with Robin conditions, we do not need to estimate

both 𝑢 and 𝜕𝑢/𝜕𝑛 on 𝜕ΩR to use BVC. Instead, we can substitute

Robin

WoSt

reference
solution

m
or

e
sa

m
pl

es
fe

w
 s

am
pl

es

equal time

Reverse WoSt BVC

min max

Figure 10. We extend bidirectional formulations for WoS [Qi et al. 2022]
(middle column) and boundary value caching for WoSt [Miller et al. 2023]
(right column) to BVPs with Robin conditions, and achieve smoother results
with less noise compared to the WoSt pointwise estimator (left column).

𝜕𝑢/𝜕𝑛 = 𝜇𝑢 + ℎ into the BIE used by Miller et al. [2023, Equation 2]:

𝛼 (𝑥) 𝑢 (𝑥) =
∫
𝜕ΩR

(
𝑃R

𝑁

(𝑥, 𝑧) − 𝜇 (𝑧)𝐺R
𝑁

(𝑥, 𝑧)
)
𝑢 (𝑧) d𝑧

−
∫
𝜕ΩR

𝐺R
𝑁

(𝑥, 𝑧)ℎ(𝑧) d𝑧 +
∫

Ω

𝐺R
𝑁

(𝑥,𝑦) 𝑓 (𝑦) d𝑦, (13)

As the only unknown on the right-hand side is the solution𝑢, we use

our WoSt algorithm (Algorithm 1) to estimate its values at random

points 𝑧 ∈ 𝜕ΩR. We then evaluate this BIE at interior points 𝑥 ∈ Ω

with Monte Carlo using the cached values for 𝑢 (𝑧). Miller et al.

[2023, Appendix A] provide explicit expressions for 𝐺R
𝑁
and 𝑃R

𝑁
.

We note that as an alternative to Equation 13, we could also

make the substitution 𝑢 = (𝜕𝑢/𝜕𝑛 − ℎ) /𝜇 when 𝜇 > 0, and instead

estimate (and cache) values of 𝜕𝑢/𝜕𝑛 on 𝜕ΩR: Sawhney and Crane

[2020, Section 3.1] and Miller et al. [2023, Section 3] discuss how

to compute normal derivatives with WoSt, and their estimators

work with Robin conditions as well. Empirically, we observe that

estimating 𝜕𝑢/𝜕𝑛 on 𝜕ΩR typically works better when 𝜇 is large. This

behavior is because BVC does not importance sample the 𝑃 − 𝜇𝐺

term in Equation 13 when generating cache samples on 𝜕ΩR, and

thus a large 𝜇 amplifies the noise in estimated values for 𝑢 on 𝜕ΩR.

6.2 Reverse Random Walks
In place of estimating 𝑢 or 𝜕𝑢/𝜕𝑛 on the boundary as with BVC,

Qi et al. [2022] derive a bidirectional formulation for WoS that

can simulate random walks in “reverse”. These reverse walks splat

known Dirichlet (and source) data into the interior of the domain Ω.

As with bidirectional algorithms for light transport [Lafortune and

Willems 1993; Veach and Guibas 1995], these walks can be more

efficient than “forward” walks to the boundary (such as those in

Sections 3–4), as a single reverse walk contributes to the solution

estimate at multiple points in Ω.

To derive a similar reverse walk algorithm for Robin (and Neu-

mann) problems, we substitute 𝜕𝑢/𝜕𝑛 = 𝜇𝑢 + ℎ into Equation 2 as

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

41:10 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

R
M

SE

convergence

time (s)

R
M

SE
R

M
SE

time (s)

time (s)

DirichletRobin

reference solution

(RGB valued solutions)

48 steps/walk 166 steps/walk17 steps/walk

74 steps/walk23 steps/walk10 steps/walk

10 steps/walk5 steps/walk2 steps/walk

Figure 11. WoSt uses a single 𝜀-shell parameter to control the tradeoff between bias in a solution estimate and the number of steps in a walk—in general, this
parameter requires little-to-no hand-tuning as bias drops predictably with decreasing 𝜀 values. Top two rows: For more reflecting Robin boundaries with
smaller coefficients 𝜇, bias manifests as a global darkening in the solution estimate for large 𝜀 , with runtime improvements typically outweighing the relative
increase in bias. Bottom row: For more absorbing Robin boundaries with larger coefficients 𝜇, a large 𝜀-shell produces a Voronoi-like solution that extends
prescribed boundary values further into the domain interior—a similar bias is observed with WoS for pure Dirichlet problems [Sawhney and Crane 2020, Fig.
14]. Bias quickly goes away as 𝜀 decreases, with only a small increase in the average number of steps per walk.

before, but use the sets A = Ω and C = Ω instead. This yields

𝛼 (𝑥) 𝑢 (𝑥) = −
∫
𝜕ΩR

𝐺Ω (𝑥, 𝑧) ℎ(𝑧) d𝑧 +
∫

Ω

𝐺Ω (𝑥,𝑦) 𝑓 (𝑦) d𝑦. (14)

The Green’s function 𝐺Ω
is the fundamental solution of the BVP

Δ𝐺Ω (𝑥,𝑦) = 𝛿𝑥 (𝑦) on Ω,
𝜕𝐺Ω (𝑥,𝑦)

𝜕𝑛𝑦
− 𝜇 (𝑦)𝐺Ω (𝑥,𝑦) = 0 on 𝜕ΩR .

(15)

Compared to Equation 6 or 13, there are no unknown solution values

𝑢 in the boundary integral in Equation 14, as the Robin conditions on

𝐺Ω
zero them out. However, to compute 𝑢 anywhere in the domain,

we must now estimate𝐺Ω
at points 𝑧 ∈ 𝜕ΩR and𝑦 ∈ Ω, which we do

usingWoSt—we refer to Appendix C for details. We use the resulting

reverse walks to improve solution estimates at multiple points 𝑥 ∈ Ω,

by splatting contributions from known Robin data ℎ (and source 𝑓).

As with BVC, reverse walks produce smoother results than WoSt,

albeit with more correlation artifacts at low sample counts (middle
column, Figure 10), and less control over evaluation points in Ω.

7 EVALUATION
In this section, we study various practical aspects of our Monte

Carlo algorithm, such as the impact of stopping tolerances on bias

and performance (Section 7.1), the reliability of solution estimates in

highly non-convex domains (Section 7.2), and robustness and scala-

bility with increasing geometric complexity (Section 7.3). We use

polygonal meshes to represent the boundary 𝜕Ω, and use callback

functions to encode 𝑓 , 𝑔, ℎ and 𝜇 in Equation 1. We prototype our

geometric queries using a CPU-based SNCH (Section 5.2), which

does not have a significant preprocessing cost even for large models

(often within 2× of the time needed to build a BVH [Wald 2007])—

in contrast, finite element generation can take minutes to hours

and can be very memory intensive (see Figure 4). We use a 12-core

i9-10920X Intel CPU for all experiments with our method except

Figure 1, for which we use a 64-core 3rd generation Intel worksta-

tion. We use the finite element libraryMFEM [Anderson et al. 2021]

to compute reference solutions for Figures 10, 11 and 12.

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

Walkin’ Robin: Walk on Stars with Robin Boundary Conditions • 41:11

7.1 Stopping Tolerances and Convergence
Our algorithm uses a single parameter to control the thickness of the

𝜀-shell 𝜕Ω
𝜀
, irrespective of the type of boundary condition on 𝜕Ω. As

we discuss in Sections 3.2 and 4.2, as 𝜀 increases, walks typically take

larger steps on 𝜕ΩN and 𝜕ΩR, and terminate faster on 𝜕ΩD. Figure 11

examines the impact of this parameter on a Laplace equation with

both more reflecting (𝜇 < 1) and more absorbing (𝜇 > 1) Robin

conditions. In both cases, runtime improvements from using larger

𝜀 outweigh the relative increase in bias—similar results have been

observed with Dirichlet and Neumann conditions [Sawhney and

Crane 2020; Sawhney et al. 2023, Figures 14 & 13]. We use 0.001×
the diagonal scene length as our default 𝜀 value.

WoSt exhibits the expected O(1/√𝑁) rate of convergence with
respect to the number of walks 𝑁 , which suggests that any bias has

little impact on accuracy. Moreover, we observe predictable con-

vergence in both convex and concave domains (Figure 12), though

results are typically noisier with more reflecting Robin conditions.

7.2 Comparison With The Walk on Boundary Method
Similar to WoSt, WoB uses direction sampling to determine the next

walk location 𝑥𝑘+1, but uses the entire boundary 𝜕Ω as its sampling

domain. This means that it must estimate the solution at all ray

intersections with 𝜕Ω, as each intersected point contributes to the

solution estimate at 𝑥𝑘 (left, Figure 8). To avoid a branching walk

that increases exponentially in size, WoB instead uses just a sin-

gle randomly selected intersection. This results in extremely high

variance even in domains that are mostly convex (Figure 12), as the

recursive solution estimate must be multiplied by the number of

intersections to ensure the expected contribution from each inter-

section is correctly accounted for. Consequently, by accumulating

such multiplicative factors, the walk contribution grows unbounded

as walk length increases, resulting in unbounded variance as noted

by Sabelfeld and Simonov [2016, Chapter 2]. Moreover, the Pois-

son kernel alternates sign between consecutive intersections in the

WoB estimator [Sugimoto et al. 2023, Section 4.1.1], which further

results in unstable estimates due to cancellation [Kalos and Whit-

lock 2009, Chapter 4]. Sugimoto et al. [2023, Section 4.1.2] therefore

propose truncating walk length to reduce variance, but as we show

in Figure 12 (left column), doing so introduces significant bias in

non-convex domains. In contrast, WoSt has much more manageable

variance and bias, as it only ever intersects 𝜕St once to select 𝑥𝑘+1,
and uses an 𝜀-shell that requires little-to-no hand-tuning.

WoB has even more trouble with Robin problems (third and fourth
row, Figure 12), as it has no mechanism to deal with the reflectance

term 𝜌𝜇 = 1 − 𝜇 𝐺/𝑃 in its integral expression (e.g., via importance

sampling). As a result, walk throughout typically grows even faster

with Robin conditions, especially as 𝜇 increases—here, standard

variance reduction techniques from rendering cannot help bound

throughput. Our WoSt estimator, on the other hand, ensures 𝜌𝜇
remains bounded between 0 and 1 on 𝜕St. Therefore, we do not

truncate walk length to a predefined value like WoB, and instead

use Russian roulette to terminate walks without any additional bias.
Figure 12 shows equal-time comparisons between WoB and WoSt

for a Laplace BVP, where we run the reference WoB implementa-

tion from Sugimoto et al. [2023] on an Nvidia RTX 3090 GPU, and

our WoSt implementation on a 12-core CPU—giving WoB the bene-

fit of faster compute hardware. WoSt demonstrates stable conver-

gence with little bias for Dirichlet, Neumann, and Robin conditions.

Though WoSt takes on average more steps per walk than WoB (Ta-

ble 1), the relative mean squared errors show that WoB is extremely

sensitive to the walk length choice, and requires enormous sample

count to converge, even to a solution with large bias.

7.3 Thermal Analysis
Accurate thermal analysis of complex geometry is central to the

success of a wide variety of engineering problems, ranging from

the design of printed circuit boards [Cadence 2024] and residen-

tial architecture [Kamel and Kazemian 2023] to spacecrafts and

robotics. NASA itself advocates for use of detailed thermal analysis

throughout the design process—instructing its engineers that “ther-
mal modeling is required beginning at the project conceptual design
stage and continuing through preliminary and detailed design stages
... simplified calculations and rules of thumb are useful at this stage,
but a computer model ... provides the ability to evaluate and respond
quickly to proposed system trade-offs.” [NASA 1999]. Just as computer

graphics has long enjoyed the ability to iterate on illumination for

virtual environments (via Monte Carlo rendering), the solver we de-

velop here can help engineers to achieve the same kind of rapid and

quantitatively reliable feedback during the design process—rather

than waiting on bottlenecks like mesh generation (Figure 4).

Figure 1 mocks up a representative use case of our method in a ge-

ometrically complex scenario: thermal analysis of NASA’s Curiosity
Mars rover. In particular, we compute the steady-state temperature

on the robot surface by solving a Laplace BVP with Robin bound-

ary conditions. Robin boundary data is given by thermal radiation

from the Sun, computed via ordinary ray tracing. As we do not

have access to original NASA schematics for Curiosity, we use an
artist-generated model, using texture values to set Robin boundary

conditions. From the perspective of simulation, however, there is

nothing special about this model—it could trivially be swapped out

with the true engineeringmodel (or any other candidate design). The

use of partially-absorbing Robin boundary conditions provides the

opportunity for far more accurate physical modeling than purely

absorbing (Dirichlet) or purely reflecting (Neumann) conditions

alone. More accurate simulation might be obtained by coupling our

solver with one that models, e.g., convective heat transfer [Bati et al.
2023], though the low density of the Martian atmosphere makes

this term largely negligible [Von Arx and Delgado Jr 1991].

Finally, Figure 1, top right illustrates a deferred shading approach

[Deering et al. 1988] that is quite natural in the Monte Carlo set-

ting, but has not been considered in prior work on WoS methods.

Rather than evaluate the solution at every point of a regular grid,

or every vertex of the boundary mesh, we first render the Cartesian

𝑥𝑦𝑧 coordinates of the model as seen from a viewpoint of interest

(Figure 1, (top center of top right). Each pixel in this coordinate image

is then used as the starting point for random walks via WoSt. In this

way, we only spend time computing points that actually need to be

inspected for engineering analysis—Figure 1, bottom shows a collec-

tion of closeup viewpoints solved in the same fashion. Moreover, as

Monte Carlo accumulates a running sum, we can quickly visualize

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

41:12 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas
R

ob
in

reference solutionwalk on stars

RMSE: 0.005

walk on boundary
walk length = 2 walk length = 4 walk length = 7

RMSE: 0

RMSE: 0.008

RMSE: 0.036

more non-convex WoSt (more samples)

equal time results for WoB and WoSt

RMSE: 0.100

RMSE: 0.311

RMSE: 2.043

RMSE: 2683.24

RMSE: 0.014

RMSE: 0.201

RMSE: 0.708

RMSE: 2.712

RMSE: 0.036

RMSE: 0.569

RMSE: 0.216

RMSE: 0.465

m
ix

ed
 D

ir
ic

hl
et

 &
 N

eu
m

an
n

D
ir

ic
hl

et

R
ob

in

Neumann DirichletRobin min max

mostly convex

Figure 12. The WoB method suffers from an extreme bias-variance tradeoff, whereas WoSt demonstrates reliable Monte Carlo convergence with increasing
sample count (i.e., number of walks) for any combination of Dirichlet, Neumann and Robin boundary conditions. First three rows: Even in a mostly convex
domain with simple boundary conditions, WoB has noticeable bias in its solution estimates when walk length is truncated too aggressively (first column).
Otherwise, WoB experiences an exponential increase in variance with longer walk lengths (second and third column), and requires an enormous number of
samples to suppress error. Furthermore, RMSE remains high even for problems with a constant solution, whereas WoSt has no estimation error in this case as
walk throughput is always bounded between 0 and 1 (second row). Fourth row: For more non-convex domains, variance in the solution estimate explodes with
WoB even for a truncated walk length of 2. By contrast, estimation with WoSt is equally stable in both convex and non-convex domains.

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

Walkin’ Robin: Walk on Stars with Robin Boundary Conditions • 41:13

Table 1. Minimum and maximum estimated solution values, total number
of walks, and average walk length for the WoB and WoSt results in Fig-
ure 12. Though WoSt generally requires longer walks than WoB, its solution
estimates have significantly less error compared to WoB at equal time with
fewer walks per point.

WoB(2) WoB(4) WoB(7) WoSt()

min value
max value
walks per point
avg. walk length

estimator

-0.03
1.08

1.2x107

2

min value
max value
walks per point
avg. walk length

min value
max value
walks per point
avg. walk length

min value
max value
walks per point
avg. walk length

D
ir

ic
hl

et
m

ix
ed

R
ob

in
 (b

un
ny

)
R

ob
in

 (h
ea

ts
in

k)

0.22
0.916

1.2x107

2
0.12
0.47

1.7x107

2

0
0.82

1.5x107

2

-0.03
1.02

7x106

4

0.51
1.36

6.1x106

4
0.43
2.75

8.3x106

4

-9.12
30.30

7.6x106

4

-0.48
1.39

1.6x106

7

-14.5
10.06

3.5x106

7
-17.6
53.82

4.8x106

7

-2.3x104

4.1x104

4.3x106

7

0
1.0

5.5x103

14

1.0
1.0

6
4.6x102

0
0.18

96
62

0
0.58

36
1.6x102

a rough estimate of the solution that progressively improves over

time (Figure 1, bottom row of top right). Across all four viewpoints
we compute the solution at 793,000 points; for this model, our unop-

timized CPU implementation takes 0.48 ms per walk, and computes

a preview in about 1.5 min per viewpoint.

The complexity and significant nonconvexity of the rover ge-

ometry make this problem essentially intractable for the walk on

boundary method [Sabelfeld and Simonov 2013; Sugimoto et al.

2023]. Likewise, attempting to capture the domain geometry with

a finite element mesh leads to extreme compute times and, ulti-

mately, failure, even with state-of-the-art robust meshing software

(Figure 4). Overall, the use of deferred shading, plus the fact that we

avoid volumetric meshing, makes this approach orders of magnitude

faster than any finite element approach—offering a qualitative shift

in the approach to engineering design.

8 CONCLUSION AND FUTURE WORK
We consolidate the treatment of first-order linear boundary condi-

tions withWoSt, which allows us to model boundary value problems

with much greater physical realism, and often better efficiency. The

key strength of our method is that it functions reliably in complex

geometric domains: it does not require any geometric preprocessing

or volumetric meshing, and its error decreases predictably with

more samples. Yet, there remain many avenues for improvement.

To increase the efficiency of our estimator, we could search for

subdomains other than star-shaped regions that allow larger steps

while keeping throughput bounded.We could also develop: (1) better

traversal strategies to quickly reject front- or back-facing geometry;

(2) a high-performance wavefront (rather than megakernel) imple-

mentation for the GPU [Laine et al. 2013] that minimizes thread

divergence amongst independent random walks of varying length;

and (3) a single framework that combines the benefits of multiple

variance reduction strategies such as boundary [Miller et al. 2023],

mean value [Bakbouk and Peers 2023] or neural caching [Li et al.

2023], and bidirectional random walks [Qi et al. 2022].

Though we focus on solving Poisson equations, our estimator

for Robin problems should apply more generally to elliptic PDEs

with variable coefficients [Sawhney et al. 2022], and exterior prob-

lems with mixed boundary conditions [Nabizadeh et al. 2021]—here

we can use the Girsanov and Kelvin transforms (resp.) to convert

Neumann conditions into Robin conditions. Our algorithm can be

used alongside a ray tracer to more accurately model physics that

couples conduction, convection and radiative transfer [Bati et al.

2023]. We also believe that WoSt provides a valuable starting point

for solving other PDEs with boundary integral formulations, such as

the Helmholtz equation [Hunter and Pullan 2001, Chapter 3], linear

elasticity [Hunter and Pullan 2001, Chapter 4] and even fluid flow

[Busnello et al. 2005; Rioux-Lavoie et al. 2022]. Finally, similar to

Monte Carlo rendering, another exciting direction for future work

is to develop differentiable implementations of WoSt that optimize

parametric descriptions of geometry and boundary conditions, for

inverse tasks like electrical impedance tomography [Yılmazer et al.

2022] and thermally aware circuit board design [Cadence 2024].

ACKNOWLEDGMENTS
This work was supported by National Science Foundation (NSF)

awards 2008123 and 2212290; National Institute of Food and Agri-

culture award 2023-67021-39073; a gift from Adobe Research; NSF

Graduate Research Fellowship DGE2140739 and an NVIDIA grad-

uate fellowship for Bailey Miller; a Packard Foundation Fellow-

ship for Keenan Crane; and Alfred P. Sloan Research Fellowship

FG202013153 for Ioannis Gkioulekas. Rohan Sawhney thanks Ken

Museth for supporting this work. The Curiosity Mars rover model

is courtesy of user 3d_molier International on TurboSquid.

REFERENCES
Robert Anderson, Julian Andrej, Andrew Barker, et al. 2021. MFEM: A modular finite

element methods library. Computers & Mathematics with Applications 81 (2021).
James Arvo. 1995a. The role of functional analysis in global illumination. In Rendering

Techniques’ 95: Proceedings of the Eurographics Workshop in Dublin, Ireland, June
12–14, 1995 6. Springer, 115–126.

James Richard Arvo. 1995b. Analytic methods for simulated light transport. Ph. D.

Dissertation. Yale University.

Ghada Bakbouk and Pieter Peers. 2023. Mean Value Caching for Walk on Spheres. In

Eurographics Symposium on Rendering, Tobias Ritschel and Andrea Weidlich (Eds.).

The Eurographics Association. https://doi.org/10.2312/sr.20231120

Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and Alec Jacobson. 2018.

Fast Winding Numbers for Soups and Clouds. ACM Trans. Graph. 37, 4, Article 43
(2018), 12 pages.

Bruce A Barnes. 1990. Spectral properties of linear Volterra operators. Journal of
Operator Theory (1990), 365–382.

Mégane Bati, Stéphane Blanco, Christophe Coustet, Vincent Eymet, Vincent Forest,

Richard Fournier, Jacques Gautrais, Nicolas Mellado, Mathias Paulin, and Benjamin

Piaud. 2023. Coupling Conduction, Convection and Radiative Transfer in a Single

Path-Space: Application to Infrared Rendering. ACM Trans. Graph. 42, 4 (aug 2023).
Mireille Bossy, Nicolas Champagnat, Sylvain Maire, and Denis Talay. 2010. Probabilistic

interpretation and random walk on spheres algorithms for the Poisson-Boltzmann

equation in molecular dynamics. ESAIM: Mathematical Modelling and Numerical
Analysis 44, 5 (2010), 997–1048.

Barbara Busnello, Franco Flandoli, and Marco Romito. 2005. A probabilistic representa-

tion for the vorticity of a three-dimensional viscous fluid and for general systems of

parabolic equations. Proc. Edinburgh Math. Soc. 48, 2 (2005), 295–336.
Cadence. 2024. Using a Thermal FEA Solver for Heat Management in Your PCB.

Retrieved January 6, 2024 from https://resources.pcb.cadence.com/blog/2020-using-

a-thermal-fea-solver-for-heat-management-in-your-pcb

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

https://doi.org/10.2312/sr.20231120
https://resources.pcb.cadence.com/blog/2020-using-a-thermal-fea-solver-for-heat-management-in-your-pcb
https://resources.pcb.cadence.com/blog/2020-using-a-thermal-fea-solver-for-heat-management-in-your-pcb

41:14 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

Chris J Coleman, David L Tullock, and Nhan Phan-Thien. 1991. An effective boundary

element method for inhomogeneous PDEs. J. App. Math. Phys. (ZAMP) 42, 5 (1991).
Martin Costabel. 1987. Principles of boundary element methods. Computer Physics

Reports 6, 1-6 (1987), 243–274.
Auguste De Lambilly, Gabriel Benedetti, Nour Rizk, Chen Hanqi, Siyuan Huang, Jun-

nan Qiu, David Louapre, Raphael Granier De Cassagnac, and Damien Rohmer.

2023. Heat Simulation on Meshless Crafted-Made Shapes. In Proceedings of
the 16th ACM SIGGRAPH Conference on Motion, Interaction and Games (<conf-
loc>, <city>Rennes</city>, <country>France</country>, </conf-loc>) (MIG ’23).
Association for Computing Machinery, New York, NY, USA, Article 9, 7 pages.

https://doi.org/10.1145/3623264.3624457

Michael Deering, StephanieWinner, Bic Schediwy, Chris Duffy, andNeil Hunt. 1988. The

triangle processor and normal vector shader: a VLSI system for high performance

graphics. Acm siggraph computer graphics 22, 4 (1988), 21–30.
SP Eveson. 2003. Norms of iterates of Volterra operators on L 2. Journal of Operator

Theory (2003), 369–386.

Nicole Feng, Mark Gillespie, and Keenan Crane. 2023. Winding Numbers on Discrete

Surfaces. ACM Trans. Graph. 42, 4, Article 36 (jul 2023), 17 pages. https://doi.org/

10.1145/3592401

Natasha Flyer, Bengt Fornberg, Victor Bayona, and Gregory A Barnett. 2016. On the

role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J.
Comput. Phys. 321 (2016), 21–38.

Denis S Grebenkov. 2006. Partially reflected Brownian motion: a stochastic approach

to transport phenomena. arXiv preprint math/0610080 (2006).
Denis S Grebenkov. 2007. NMR survey of reflected Brownian motion. Reviews of Modern

Physics 79, 3 (2007), 1077.
Wolfgang Hackbusch. 2015. Hierarchical matrices: algorithms and analysis. Vol. 49.

Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47324-5

Stefan Heinrich and Peter Mathé. 1993. The Monte Carlo complexity of Fredholm

integral equations. mathematics of computation 60, 201 (1993), 257–278.

Desmond J Higham. 2001. An algorithmic introduction to numerical simulation of

stochastic differential equations. SIAM review 43, 3 (2001), 525–546.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast

Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4 (2020), 18 pages.
Peter Hunter and Andrew Pullan. 2001. Fem/bem notes. Department of Engineering

Science, The University of Auckland, New Zeland (2001).

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside

segmentation using generalized winding numbers. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 1–12.

David E Johnson and Elaine Cohen. 2001. Spatialized normal come hierarchies. In

Proceedings of the 2001 symposium on Interactive 3D graphics. 129–134.
Konrad Jörgens. 1982. Linear integral operators. Pitman.

Derek Juba, Walid Keyrouz, Michael Mascagni, and Mary Brady. 2016. Acceleration

and Parallelization of ZENO/Walk-on-Spheres. Procedia Computer Science 80 (2016),
269–278. https://doi.org/10.1016/j.procs.2016.05.319 International Conference on

Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA.

Malvin H Kalos and Paula A Whitlock. 2009. Monte carlo methods. John Wiley & Sons.

Ehsan Kamel and Ali Kazemian. 2023. BIM-integrated thermal analysis and building

energy modeling in 3D-printed residential buildings. Energy and Buildings 279
(2023), 112670.

Tosio Kato. 2013. Perturbation theory for linear operators. Vol. 132. Springer Science &
Business Media.

Bastian Krayer and Stefan Müller. 2021. Hierarchical Point Distance Fields. In Interna-
tional Symposium on Visual Computing. Springer, 435–446.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W

Mahoney. 2021. Characterizing possible failure modes in physics-informed neural

networks. Advances in Neural Information Processing Systems 34 (2021), 26548–26560.
Andreas E Kyprianou, Ana Osojnik, and Tony Shardlow. 2017. Unbi-

ased ‘walk-on-spheres’ Monte Carlo methods for the fractional Lapla-

cian. IMA J. Numer. Anal. 38, 3 (08 2017), 1550–1578. https://doi.org/

10.1093/imanum/drx042 arXiv:https://academic.oup.com/imajna/article-

pdf/38/3/1550/25170901/drx042.pdf

Eric P Lafortune and Yves D Willems. 1993. Bi-directional path tracing. In Proc. Int.
Conf. Comp. Graph. Vis. Tech. Alvor, Portugal.

Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels considered harmful:

wavefront path tracing on GPUs. In Proceedings of the 5th High-Performance Graphics
Conference (Anaheim, California) (HPG ’13). Association for Computing Machinery,

New York, NY, USA, 137–143. https://doi.org/10.1145/2492045.2492060

Shaofan Li and Wing Kam Liu. 2007. Meshfree particle methods. Springer Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-71471-2

Zilu Li, Guandao Yang, Xi Deng, Christopher De Sa, Bharath Hariharan, and Steve

Marschner. 2023. Neural Caches for Monte Carlo Partial Differential Equation

Solvers. In SIGGRAPHAsia 2023 Conference Papers (<conf-loc>, <city>Sydney</city>,
<state>NSW</state>, <country>Australia</country>, </conf-loc>) (SA ’23). As-
sociation for Computing Machinery, New York, NY, USA, Article 34, 10 pages.

https://doi.org/10.1145/3610548.3618141

Frank Losasso, Ronald Fedkiw, and Stanley Osher. 2006. Spatially adaptive techniques

for level set methods and incompressible flow. Computers & Fluids 35, 10 (2006).
Michael Mascagni and Nikolai A Simonov. 2004. Monte Carlo Methods for Calculating

Some Physical Properties of Large Molecules. SIAM J. Sci. Comp. 26, 1 (2004).
Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary

Value Caching for Walk on Spheres. ACM Trans. Graph. 42, 4, Article 82 (jul 2023),
11 pages. https://doi.org/10.1145/3592400

Jean-Paul Morillon. 1997. Numerical solutions of linear mixed boundary value problems

using stochastic representations. International journal for numerical methods in
engineering 40, 3 (1997), 387–405.

Linus Mossberg. 2021. GPU-Accelerated Monte Carlo Geometry Processing for Gradient-
Domain Methods. Ph. D. Dissertation. Linköping University, Linköping, Sweden.

Mervin E Muller. 1956. Some Continuous Monte Carlo Methods for the Dirichlet

Problem. Annals of Mathematical Statistics 27, 3 (Sept. 1956), 569–589.
Mohammad Sina Nabizadeh, Ravi Ramamoorthi, and Albert Chern. 2021. Kelvin

Transformations for Simulations on Infinite Domains. ACM Trans. Graph. 40, 4,
Article 97 (jul 2021), 15 pages. https://doi.org/10.1145/3450626.3459809

NASA. 1999. Guidelines for Thermal Analysis of Spacecraft Hardware. Retrieved

January 6, 2024 from https://llis.nasa.gov/lesson/695

Jean-Claude Nédélec. 2001. Acoustic and electromagnetic equations: integral representa-
tions for harmonic problems. Vol. 144. Springer.

B. Øksendal. 2003. Stochastic Differential Equations: An Introduction with Applications.

Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14394-6

Paul William Partridge, Carlos Alberto Brebbia, et al. 2012. Dual reciprocity boundary
element method.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From
theory to implementation. Morgan Kaufmann.

Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A

bidirectional formulation for Walk on Spheres. Computer Graph-
ics Forum 41, 4 (2022), 51–62. https://doi.org/10.1111/cgf.14586

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14586

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed neu-

ral networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations. Journal of Computational physics
378 (2019), 686–707.

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H. Shimada,

Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte

Carlo Method for Fluid Simulation. ACM Trans. Graph. 41, 6, Article 240 (nov 2022),

16 pages. https://doi.org/10.1145/3550454.3555450

Karl K Sabelfeld and Nikolai A Simonov. 2013. Random walks on boundary for solving
PDEs. De Gruyter.

Karl K Sabelfeld and Nikolai A Simonov. 2016. Stochastic methods for boundary value
problems: numerics for high-dimensional PDEs and applications. Walter de Gruyter

GmbH & Co KG.

Rohan Sawhney. 2021. FCPW: Fastest Closest Points in the West. https://github.com/

rohan-sawhney/fcpw

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-

Free Approach to PDE-Based Methods on Volumetric Domains. ACM Trans. Graph.
39, 4, Article 123 (aug 2020), 18 pages. https://doi.org/10.1145/3386569.3392374

Rohan Sawhney and Bailey Miller. 2023. Zombie: A Grid-Free Monte Carlo Solver for
PDEs. https://github.com/rohan-sawhney/zombie

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk

on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary

Conditions. ACM Trans. Graph. 42, 4, Article 80 (jul 2023), 20 pages. https://doi.

org/10.1145/3592398

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-Free

Monte Carlo for PDEs with Spatially Varying Coefficients. ACM Trans. Graph. 41, 4,
Article 53 (jul 2022), 17 pages. https://doi.org/10.1145/3528223.3530134

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. 41, 2, Article 11 (feb 2015), 36 pages. https://doi.org/10.1145/

2629697

Nikolai A Simonov. 2017. Walk-on-spheres algorithm for solving third boundary value

problem. Applied Mathematics Letters 64 (2017), 156–161.
Cyril Soler, Ronak Molazem, and Kartic Subr. 2022. A Theoretical Analysis of Compact-

ness of the Light Transport Operator. InACM SIGGRAPH 2022 Conference Proceedings
(Vancouver, BC, Canada) (SIGGRAPH ’22). Association for Computing Machinery,

New York, NY, USA, Article 17, 9 pages. https://doi.org/10.1145/3528233.3530725

Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka.

2023. A Practical Walk-on-Boundary Method for Boundary Value Problems. ACM
Trans. Graph. 42, 4 (aug 2023), 16 pages. https://doi.org/10.1145/3592109

Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Stanford
University.

Eric Veach and Leonidas Guibas. 1995. Bidirectional estimators for light transport. In

Photorealistic Rendering Techniques. Springer, 145–167.
Alan V Von Arx and Adon Delgado Jr. 1991. Convective heat transfer on Mars. In AIP

Conference Proceedings, Vol. 217. American Institute of Physics, 734–739.

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

https://doi.org/10.1145/3623264.3624457
https://doi.org/10.1145/3592401
https://doi.org/10.1145/3592401
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1016/j.procs.2016.05.319
https://doi.org/10.1093/imanum/drx042
https://doi.org/10.1093/imanum/drx042
https://arxiv.org/abs/https://academic.oup.com/imajna/article-pdf/38/3/1550/25170901/drx042.pdf
https://arxiv.org/abs/https://academic.oup.com/imajna/article-pdf/38/3/1550/25170901/drx042.pdf
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1007/978-3-540-71471-2
https://doi.org/10.1145/3610548.3618141
https://doi.org/10.1145/3592400
https://doi.org/10.1145/3450626.3459809
https://llis.nasa.gov/lesson/695
https://doi.org/10.1007/978-3-642-14394-6
https://doi.org/10.1111/cgf.14586
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14586
https://doi.org/10.1145/3550454.3555450
https://github.com/rohan-sawhney/fcpw
https://github.com/rohan-sawhney/fcpw
https://doi.org/10.1145/3386569.3392374
https://github.com/rohan-sawhney/zombie
https://doi.org/10.1145/3592398
https://doi.org/10.1145/3592398
https://doi.org/10.1145/3528223.3530134
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1145/3528233.3530725
https://doi.org/10.1145/3592109

Walkin’ Robin: Walk on Stars with Robin Boundary Conditions • 41:15

Ingo Wald. 2007. On fast construction of SAH-based bounding volume hierarchies. In

2007 IEEE Symposium on Interactive Ray Tracing. IEEE, 33–40.
Ekrem Fatih Yılmazer, Delio Vicini, and Wenzel Jakob. 2022. Solving Inverse PDE

Problems using Grid-Free Monte Carlo Estimators. arXiv preprint arXiv:2208.02114
(2022).

Yijing Zhou and Wei Cai. 2016. Numerical Solution of the Robin Problem of Laplace

Equations with a Feynman–Kac Formula and Reflecting Brownian Motions. Journal
of Scientific Computing 69 (2016). https://doi.org/10.1007/s10915-016-0184-y

A OPERATOR-THEORETIC ANALYSIS
We provide a formal justification for the convergence and bounded

variance of WoSt with Dirichlet, Neumann and Robin conditions,

via an operator-theoretic analysis of boundary integral equations.

We draw inspiration from the seminal work of Arvo [1995a], who

pioneered the use of operator theory to analyze the convergence

of integral equations for light transport—Arvo [1995b, Chapter 6]

and Veach [1998, Chapter 4 & 7] provide a detailed treatment of this

topic, and Soler et al. [2022] describe recent developments.

Background. Thematerial in this section uses results from Jörgens

[1982, Chapter 2] and Kato [2013, Chapter 3]. To simplify the dis-

cussion, we work with a Banach space L2 (Ω) of square-integrable
functions on a domain Ω, equipped with the usual functional norm

∥·∥L2 (Ω) . That is, for any function 𝑢 ∈ L2 (Ω),

∥𝑢∥L2 (Ω) B
(∫

Ω

|𝑢 (𝑥) |2 d𝑥

) 1

2

and ∥𝑢∥L2 (Ω) < ∞. (16)

Even though the solution of linear elliptic PDEs such as the Poisson

equation generally exists in more restrictive spaces (e.g., spaces
requiring differentiability), working with such spaces requires more

complicated techniques to arrive at the same results (e.g., using
different inequalities to bound operator norms).

Given a kernel 𝜅 : Ω × Ω→ R and a boundary mapping A : Ω→
P(Ω) (where P is the powerset), we define an integral operator

CA

𝜅 [𝑢] (𝑥) B
∫

A(𝑥)
𝜅 (𝑥,𝑦)𝑢 (𝑦) d𝑦. (17)

If the kernel and boundary mapping satisfy, for some constant 𝐶 ,

sup

𝑥∈Ω

∫
A(𝑥)
|𝜅 (𝑥,𝑦) | d𝑦 < 𝐶 < ∞, (18)

then the integral operator CA

𝜅 satisfies the following properties:

(1) Its codomain is L2 (Ω), i.e., CA

𝜅 : L2 (Ω) → L2 (Ω).
(2) It is bounded, and in particular, for all 𝑢 ∈ L2 (Ω),

CA

𝜅 [𝑢]

L2 (Ω)

≤ 𝐶 ∥𝑢∥L2 (Ω) . (19)

These two properties together imply that the operator has a well

defined operator norm

CA

𝜅

Op

B sup

{

CA

𝜅 [𝑢]

L2 (Ω)

∥𝑢∥L2 (Ω)
, 𝑢 ∈ L2 (Ω), 𝑢 ≠ 0

}
, (20)

and spectral radius

𝑟 (CA

𝜅) B lim

𝑛→∞

CA

𝜅

 1

𝑛

Op

. (21)

It also follows that

CA

𝜅

Op

≤ 𝐶 and 𝑟 (CA

𝜅) < 𝐶. (22)

Moreover, for an operator CA

𝜅 , its unit resolvent is the operator

RA

𝜅 B
(
I − CA

𝜅

)−1

, (23)

where I : L2 (Ω) → L2 (Ω) is the identity operator. The unit

resolvent RA

𝜅 exists and is a bounded operator L2 (Ω) → L2 (Ω) if
and only if 𝑟 (CA

𝜅) < 1 (the inequality is strict).

WoSt with Dirichlet-Neumman conditions. To understand the con-

vergence ofWoStwithmixedDirichlet-Neumann conditions, wewill

express the boundary integral in Equation 3 in operator-theoretic

form. We achieve this by defining the convolutional kernel 𝜅 B 𝑃B
,

the boundary mapping A : 𝑥 ↦→ 𝜕St(𝑥, 𝑅), and the corresponding

integral operator CSt

𝑃
—we leave the radius 𝑅 unspecified for now,

which means that the region St(𝑥, 𝑅) is not necessarily star-shaped.

We can then rewrite Equation 3 equivalently in operator form as

𝑢 = CSt

𝑃
[𝑢] + 𝑠, (24)

where we use 𝑠 ∈ L2 (Ω) to denote the non-recursive terms on the

right-hand side of Equation 3. Equation 24 is a Fredholm-Volterra

equation of the second kind, whose solution exists only if the unit

resolvent RSt

𝑃
B (I − CSt

𝑃
)−1

of CSt

𝑃
exists and is bounded [Barnes

1990; Eveson 2003]. If RSt

𝑃
is indeed bounded, then by rearranging

terms we can write the solution as

𝑢 = RSt

𝑃
[𝑠] . (25)

To estimate Equation 24 using recursive Monte Carlo, we also

require boundedness of RSt

𝑃
for any estimator to be convergent and

have finite variance [Heinrich andMathé 1993]. Therefore, to ensure

the WoSt estimator has these properties, we need to select a radius

𝑅 for region St(𝑥, 𝑅) that guarantees this condition on RSt

𝑃
.

To this end, we leverage the fact that the Poisson kernel 𝑃B
is the

signed solid angle kernel that integrates to 1 over any closed region

[Jacobson et al. 2013; Barill et al. 2018; Feng et al. 2023]. Thus∫
𝜕St(𝑥,𝑅)

���𝑃B (𝑥,𝑦)
���𝑑𝑦 ≥ ∫

𝜕St(𝑥,𝑅)
𝑃B (𝑥,𝑦)𝑑𝑦 = 1. (26)

The inequality follows from basic properties of the absolute value

and integration, and becomes an equality in regions St(𝑥, 𝑅) where
𝑃B

is positive for all 𝑦 ∈ 𝜕St(𝑥, 𝑅), i.e., star-shaped regions where all
points 𝑦 are visible from 𝑥 . By selecting 𝑅 to be the minimum of the

distances to the closest silhouette point on the Neumann boundary

and the closest point on the Dirichlet boundary, WoSt ensures that

St(𝑥, 𝑅) is star-shaped, and thus∫
𝜕St(𝑥,𝑅)

���𝑃B (𝑥,𝑦)
���𝑑𝑦 = 1. (27)

Together with Equation 22, Equation 27 guarantees that the spec-

tral radius 𝑟 (CSt

𝑃
) ≤ 1. However, for the unit resolvent to exist and

be bounded, we require this inequality to be strict. We achieve this

through the 𝜀-shell approximation, which effectively replaces 𝑃B

with a kernel 𝑃B

𝜀 such that 𝑃B

𝜀 (𝑥,𝑦) = 0 for 𝑦 ∈ 𝜕St(𝑥, 𝑅) ∪ 𝜕Ω
𝜀
D
, and

𝑃B

𝜀 (𝑥,𝑦) = 𝑃B (𝑥,𝑦) otherwise. Then,∫
𝜕St(𝑥,𝑅)

���𝑃B

𝜀 (𝑥,𝑦)
���𝑑𝑦 <

∫
𝜕St(𝑥,𝑅)

���𝑃B (𝑥,𝑦)
���𝑑𝑦 = 1, (28)

ensuring the unit resolvent exists. As WoSt reduces to WoS for

pure Dirichlet problems, this analysis also applies to WoS, whose

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

https://doi.org/10.1007/s10915-016-0184-y

41:16 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

spherical domains always satisfy Equation 27—in particular, this

analysis explains the need for the 𝜀-shell approximation in WoS

to achieve convergence. In contrast, the WoSt estimator for pure

Neumann problems does not converge to a unique solution without

Tikhonov regularization [Sawhney et al. 2023, Section 3.4.3], as the

lack of an 𝜀-shell (only defined on Dirichlet boundaries) means that

𝑃B

𝜀 (𝑥,𝑦) = 𝑃B (𝑥,𝑦) always, and thus the spectral radius 𝑟 (CSt

𝑃
) is

not guaranteed to be smaller than 1.

WoSt with Robin conditions. Lastly, we consider WoSt with Robin

conditions (Section 4). As above, we start by writing the boundary

integral in Equation 6 in operator-theoretic form, but we nowmodify

our kernel to include the reflectance term, 𝜅 B 𝜌𝜇𝑃
B
, and use the

same mapping A. Using the corresponding integral operator CSt

𝜌𝜇𝑃
,

we rewrite Equation 6 equivalently in operator form as

𝑢 = CSt

𝜌𝜇𝑃
[𝑢] + 𝑠, (29)

As in the previous section, we need to select a radius 𝑅 that ensures

the unit resolvent RSt

𝜌𝜇𝑃
B (I − CSt

𝜌𝜇𝑃
)−1

of CSt

𝜌𝜇𝑃
exists and is

bounded. This will guarantee that the solution

𝑢 = RSt

𝜌𝜇𝑃
[𝑠] (30)

can be estimated using recursive Monte Carlo. Using the radius for

a Dirichlet-Neumann problem, we have∫
𝜕St(𝑥,𝑅)

���𝜌𝜇 (𝑥,𝑦)𝑃B (𝑥,𝑦)
���𝑑𝑦 ≤∫

𝜕St(𝑥,𝑅)

��𝜌𝜇 (𝑥,𝑦)��𝑑𝑦 ∫
𝜕St(𝑥,𝑅)

���𝑃B (𝑥,𝑦)
���𝑑𝑦 =∫

𝜕St(𝑥,𝑅)

��𝜌𝜇 (𝑥,𝑦)��𝑑𝑦, (31)

where we used Hölder’s inequality and Equation 27. To ensure that∫
𝜕St(𝑥,𝑅)

��𝜌𝜇 (𝑥,𝑦)��𝑑𝑦 ≤ 1, (32)

we follow Section 4.2 to further restrict 𝑅 such that |𝜌𝜇 (𝑥,𝑦) | ≤ 1

for all 𝑦. If |𝜌𝜇 (𝑥,𝑦) | < 1 for any 𝑦, then the inequality becomes

strict even before we consider the 𝜀-shell approximation. This ex-

plains why WoSt with Robin conditions can also terminate walks

using Russian roulette (Section 4.3), which is not possible when the

boundary conditions are Dirichlet and Neumann.

B REFLECTANCE AND RADIUS BOUND IN 2D
To obtain an explicit expression for the reflectance in 2D, we sub-

stitute the 2D Green’s function and Poisson kernel of a ball B(𝑥, 𝑅)
[Sawhney et al. 2023, Equations 25 & 26] into Equation 7 to obtain

𝜌𝜇 (𝑥, 𝑧) = 1 − 𝜇 (𝑧) 𝑟
cos𝜃

(log(𝑅) − log(𝑟)) , (33)

where 𝑟 = ∥𝑧 − 𝑥 ∥ and cos𝜃 = (𝑛𝑧 · (𝑧−𝑥))/𝑟 . To restrict 𝜌𝜇 ∈ [0, 1],
we require

𝜇 (𝑧) 𝑟
cos𝜃

(log(𝑅) − log(𝑟)) ≤ 1. (34)

Then, rearranging terms gives us an upper bound on the radius 𝑅,

𝑅 ≤ 𝑟 exp

(
cos𝜃

𝜇 (𝑧) 𝑟

)
, (35)

which must hold at all points 𝑧 ∈ 𝜕StR.

Similar to Section 5.1, we can compute a tight radius bound

for a 2D line segment 𝑙 using the maximum coefficient 𝜇max B
max(𝜇 (𝑧)) for all points 𝑧 ∈ 𝑙 , and a distance ℎ from 𝑥 to the plane

𝑙 lies on. In particular, letting 𝑟 = ℎ/cos𝜃 in Equation 35, we have:

𝑅 ≤ ℎ

cos𝜃
exp

(
cos

2 𝜃

𝜇 (𝑧) ℎ

)
. (36)

As before, we minimize this equation with respect to cos𝜃 . This

gives us an analytic expression

√︁
𝜇maxℎ/2 for the cosine, which we

clamp between the minimum and maximum cosine values at the

closest and farthest points on 𝑙 (resp.). We then plug the resulting

cosine value back in Equation 36 to compute the radius bound for 𝑙 .

C USING WOST TO ESTIMATE 𝐺Ω

In Section 6.2,𝐺Ω
satisfies a Poisson equation with Robin boundary

conditions (Equation 15). To use WoSt to estimate 𝐺Ω
, we therefore

follow Section 4.1 to derive an integral expression on a star-shaped

region St. For any two points 𝑥 ∈ Ω and 𝑧 ∈ 𝜕ΩR, we have

𝐺Ω (𝑥, 𝑧) =
∫
𝜕St(𝑥,𝑅)

𝜌𝜇 (𝑥, 𝑧′)𝑃B (𝑥, 𝑧′)𝐺Ω (𝑧′, 𝑧) d𝑧′ +𝐺B (𝑥, 𝑧) (37)

=

∫
𝜕St(𝑧,𝑅)

𝜌𝜇 (𝑧, 𝑧′)𝑃B (𝑧, 𝑧′)𝐺Ω (𝑧′, 𝑥) d𝑧′ +𝐺B (𝑧, 𝑥), (38)

where the second equality follows from 𝐺Ω
being symmetric. We

use this expression to define random walks that start from randomly

sampled points on 𝜕ΩR with known Robin data ℎ; for the source

term 𝑓 , walks will instead start from Ω. However, unlike the “for-

ward” estimator from Equation 8 which gathers information about

boundary conditions and source values during a walk, a “reverse”

WoSt estimator for𝐺Ω
will instead allow for a single walk to splat ℎ

and 𝑓 values at more than one point inside Ω (similar to the reverse

WoS walks of Qi et al. [2022] for pure Dirichlet problems). In more

detail, for 𝑘 ≥ 0, we estimate 𝐺Ω
using the following recursive

single-sample estimator for Equation 38:

𝐺Ω (𝑥, 𝑧𝑘) = 𝜌𝜇 (𝑧𝑘 , 𝑧𝑘+1)𝐺Ω (𝑧𝑘+1, 𝑥) + 𝐺B (𝑧𝑘 , 𝑥) . (39)

Here 𝐺B (𝑧𝑘 , 𝑥) > 0 when 𝑥 ∈ St(𝑧𝑘 , 𝑅𝑘), and is zero otherwise. As

in Section 3.2.3, we use direction sampling to determine the next

walk location 𝑧𝑘+1 ∈ 𝜕St(𝑧𝑘 , 𝑅𝑘). As in Section 4.3, we use Russian

roulette to terminate walks with probability 𝜌𝜇 (𝑧𝑘 , 𝑧𝑘+1).
We then estimate the BVP solution in Equation 14 as

𝑢 (𝑥) = −𝐺
Ω (𝑥, 𝑧0) ℎ(𝑧0)
𝛼 (𝑥) 𝑝𝜕ΩR(𝑧0)

+𝐺
Ω (𝑥,𝑦0) 𝑓 (𝑦0)
𝛼 (𝑥) 𝑝Ω (𝑦0)

, (40)

where we are free to sample points 𝑧0 ∈ 𝜕ΩR and 𝑦0 ∈ ΩR from

densities 𝑝𝜕ΩR
and 𝑝Ω

(resp.) of our choosing. Finally, we use Equa-
tion 40 and the random walks from Equation 39 to evaluate 𝑢 at

points 𝑥 , as long as these points are contained inside star-shaped

regions St(𝑧𝑘 , 𝑅𝑘) centered at walk locations 𝑧𝑘 . This approach also

applies to Neumann conditions when 𝜇 = 0.

D PSEUDOCODE
Algorithms 2, 3 and 4 provide pseudocode for the geometric queries

we describe in Section 5.

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

Walkin’ Robin: Walk on Stars with Robin Boundary Conditions • 41:17

ALGORITHM 2: StarRadiusReflectingBoundary(𝑇 = Snch(triangles𝜕Ω
R
), 𝑥, 𝑅, 𝑑min

𝑇
= 0)

Note: Code annotated with comments in green indicates our modifications to the corresponding procedure in Sawhney et al. [2023].

Input: Spatialized normal cone hierarchy𝑇 , query point 𝑥 ∈ R3
, current radius estimate 𝑅, and minimum distance 𝑑min

𝑇
to𝑇 ’s aabb from 𝑥 (0 if 𝑥 ∈ aabb).

Output: Radius of star-shaped region St(𝑥) containing a portion of the reflecting boundary 𝜕ΩR.

1: if 𝑑min

𝑇
> 𝑅 then return 𝑅 ⊲Ignore nodes outside current radius estimate

2: if 𝑇 .isLeaf then
3: for 𝑡 in𝑇 .triangles do
4: 𝑅 ← StarRadiusTriangle(𝑡, 𝑥, 𝑅) ⊲Compute radius bound for triangle 𝑡 (Alg. 3)
5: else
6: visitLeft, 𝑅min

left
, 𝑅max

left
← VisitNode(𝑇 .left, 𝑥, 𝑅) ⊲Determine whether to visit left node (Alg. 4)

7: if visitLeft then 𝑅 ← min(𝑅, 𝑅max

left
)

8: visitRight, 𝑅min

right
, 𝑅max

right
← VisitNode(𝑇 .right, 𝑥, 𝑅) ⊲Determine whether to visit right node (Alg. 4)

9: if visitRight then 𝑅 ← min(𝑅, 𝑅max

right
)

10: if visitLeft and visitRight then
11: if 𝑅min

left
< 𝑅min

right
then ⊲Visit closer node first

12: 𝑅 ← StarRadiusReflectingBoundary(𝑇 .left, 𝑥, 𝑅, 𝑅min

left
)

13: 𝑅 ← StarRadiusReflectingBoundary(𝑇 .right, 𝑥, 𝑅, 𝑅min

right
)

14: else
15: 𝑅 ← StarRadiusReflectingBoundary(𝑇 .right, 𝑥, 𝑅, 𝑅min

right
)

16: 𝑅 ← StarRadiusReflectingBoundary(𝑇 .left, 𝑥, 𝑅, 𝑅min

left
)

17: else if visitLeft then 𝑅 ← StarRadiusReflectingBoundary(𝑇 .left, 𝑥, 𝑅, 𝑅min

left
) ⊲Visit only left node

18: else if visitRight then 𝑅 ← StarRadiusReflectingBoundary(𝑇 .right, 𝑥, 𝑅, 𝑅min

right
) ⊲Visit only right node

19: return 𝑅

ALGORITHM 3: StarRadiusTriangle(𝑡, 𝑥, 𝑅max = ∞)
Note: Code annotated with comments in green indicates our modifications to the corresponding procedure in Sawhney et al. [2023].

Input: Triangle 𝑡 with min and max robin coefficients 𝜇min
and 𝜇max

, query point 𝑥 ∈ R3
, and radius bound 𝑅max

.

Output: Radius of star-shaped region for triangle 𝑡 .

1: 𝑅𝑡 ← 𝑅max ⊲Initialize radius value
2: 𝑑closest, 𝑥closest ← ClosestPointTriangle(𝑡, 𝑥)
3: if 𝑑closest > 𝑅𝑡 then return 𝑅𝑡 ⊲𝑡 is outside radius bound, return the radius bound
4: if 𝑡 .𝜇max ≡ ∞ then return 𝑑closest ⊲𝑡 has Dirichlet conditions, return distance to closest point on 𝑡
5: 𝑛𝑡 ← TriangleNormal(𝑡)
6: for 𝑒 in 𝑡 .adjacentEdges do ⊲Visit edges adjacent to 𝑡 and compute distance to closest silhouette edge
7: 𝑝𝑒 ← ClosestPointEdge(𝑒, 𝑥)
8: 𝑣 ← 𝑝𝑒 − 𝑥
9: 𝑑𝑒 ← |𝑣 |
10: if 𝑑𝑒 < 𝑅𝑡 then
11: hasAdjacentTriangle, 𝑛

adj
← AdjacentTriangleNormal(𝑡, 𝑒)

12: isSilhouetteEdge← not hasAdjacentTriangle or (𝑣 · 𝑛𝑡) · (𝑣 · 𝑛adj) ≤ 0

13: if isSilhouetteEdge then 𝑅𝑡 ← min(𝑅𝑡 , 𝑑𝑒)
14: if 𝑡 .𝜇min ≡ 0 then return 𝑅𝑡 ⊲𝑡 has Neumann conditions, return distance to closest silhouette edge
15: else ⊲𝑡 has Robin conditions, compute radius bound for 𝑡 (Eq. 12)
16: 𝑑 farthest, 𝑥 farthest ← FarthestPointTriangle(𝑡, 𝑥)
17: cos

max 𝜃 ← |𝑛𝑡 · (𝑥 − 𝑥 farthest) | / 𝑑 farthest

18: cos
min 𝜃 ← |𝑛𝑡 · (𝑥 − 𝑥closest) | / 𝑑closest

19: ℎ ← DistancePlane(𝑥closest, 𝑛𝑡)
20: 𝜇ℎ ← 𝑡 .𝜇max · ℎ
21: if

√︁
𝜇ℎ < cos

min 𝜃 then return 𝑅𝑡

22: cos𝜃 ← Clamp(
√︁
𝜇ℎ / 3, cos

min 𝜃, cos
max 𝜃)

23: return min

(
𝑅𝑡 ,

𝜇ℎ2

𝜇ℎ cos𝜃 − cos
3 𝜃

)

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

41:18 • Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas

ALGORITHM 4: VisitNode(𝑇, 𝑥, 𝑅 = ∞)
Note: Code annotated with comments in green indicates our modifications to the corresponding procedure in Sawhney et al. [2023].

Input: Spatialized normal cone hierarchy node𝑇 with min and max robin coefficients 𝜇min
and 𝜇max

, query point 𝑥 ∈ R3
, and current radius estimate 𝑅.

Output: Whether to traverse the node, as well as min and max bounds on the star radius computed using𝑇 ’s aabb and cone.
1: visit, 𝑑min, 𝑑max ← IntersectAABBSphere(𝑇 .aabb, 𝑥, 𝑅) ⊲Intersect aabb with sphere 𝜕B(𝑥, 𝑅) , and compute min and max distance to aabb from 𝑥

2: if not visit then return false, 0,∞ ⊲Do not visit node as aabb does not intersect B(𝑥, 𝑅)
3: if 𝑇 .𝜇min ≡ ∞ then return true, 𝑑min, 𝑑max ⊲𝑇 only contains a Dirichlet boundary, visit node
4: hasSilhouette, | cos

min 𝜃 |, | cos
max 𝜃 | ← HasSilhouette(𝑇 .aabb,𝑇 .cone, 𝑥) ⊲Sawhney et al. [2023, Alg. 4]

5: if hasSilhouette then return true, 𝑑min,∞ ⊲Visit node since the normal & view cones formed by aabb & 𝑥 likely contain a pair of orthogonal directions
6: else if 𝑇 .𝜇max ≡ 0 then return false, 0,∞ ⊲Do not visit node as𝑇 contains an entirely front- or back-facing Neumann boundary with no silhouette edge

7: 𝑅min ← 𝑑max ≤ | cos
min 𝜃 |

𝑇 .𝜇max ?∞ : 𝑑min

/ (
1 − | cos

min 𝜃 |
𝑇 .𝜇max 𝑑max

)
⊲Compute minimum radius bound for Robin boundary inside𝑇 (Eq. 11)

8: 𝑅max ← 𝑑min ≤ | cos
max 𝜃 |

𝑇 .𝜇min
?∞ : 𝑑max

/ (
1 − | cos

max 𝜃 |
𝑇 .𝜇min 𝑑min

)
⊲Compute maximum radius bound for Robin boundary inside𝑇 (Eq. 11)

9: return true, 𝑅min, 𝑅max ⊲Visit node

ACM Trans. Graph., Vol. 43, No. 4, Article 41. Publication date: July 2024.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Grid-based PDE Solvers
	2.2 Grid-free Monte Carlo Methods

	3 Background
	3.1 Boundary Integral Equation
	3.2 Walk on Stars for Dirichlet-Neumann Conditions

	4 Walk on Stars for Robin Conditions
	4.1 Modified BIE and MC Estimator
	4.2 Using Reflectance to Select Ball Radius
	4.3 Using Russian Roulette to Terminate Walks

	5 Implementation on Triangle Meshes
	5.1 Computing Radius Bounds for Triangles
	5.2 Accelerating Star-Shaped Region Queries

	6 Variance Reduction
	6.1 Boundary Value Caching
	6.2 Reverse Random Walks

	7 Evaluation
	7.1 Stopping Tolerances and Convergence
	7.2 Comparison With The Walk on Boundary Method
	7.3 Thermal Analysis

	8 Conclusion and Future Work
	Acknowledgments
	References
	A Operator-theoretic analysis
	B Reflectance and Radius Bound in 2D
	C Using WoSt to Estimate G
	D Pseudocode

