
© 2024 SIGGRAPH. ALL RIGHTS RESERVED.

BAILEY MILLER*, ROHAN SAWHNEY*, 
KEENAN CRANE†, IOANNIS GKIOULEKAS†

WALKIN' ROBIN: WALK ON STARS 
WITH ROBIN BOUNDARY CONDITIONS



Rohan Sawhney 
High Fidelity Physics @ Nvidia

Bailey Miller 
CMU PhD

Ioannis Gkioulekas 
CMU

Keenan Crane 
CMU

team

2



3



NASA’s Curiosity Mars Rover

3



NASA’s Curiosity Mars Rovera rendering of

3
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Rendering “just works,” and 
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NASA’s Curiosity Mars Rovera rendering of an amateur 3D model of

Rendering “just works,” and 

gives immediate feedback, no 

matter what you throw at it. But what if we need to predict 
something beyond appearance?
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physics beyond light transport

acoustic modeling

structural analysisthermal diffusion electrostatics

microfluidics biophysics
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physics beyond light transport

acoustic modeling

structural analysisthermal diffusion electrostatics

microfluidics biophysics

Δ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Δu = 0
partial differential equations, e.g., Laplace eq.

5



finite element method (FEM) pipeline

tetrahedralize

FEM solve
input boundary  
representation

high-quality 
surface mesh

volume mesh

PDE solution
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finite element method (FEM) pipeline

tetrahedralize

FEM solve
input boundary  
representation

high-quality 
surface mesh

volume mesh

PDE solution

bottleneck
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meshing complex geometry is difficult + slow
input boundary mesh 
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meshing complex geometry is difficult + slow
input boundary mesh boundary of tetrahedral mesh

30 min 2 hours
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meshing complex geometry is difficult + slow
input boundary mesh boundary of tetrahedral mesh

30 min 2 hours

8 hours
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grid-free PDE solvers

ray tracing walk on spheres 
[Muller 1956, Sawhney and Crane 2020]

recursive random walks for solving the Laplace equation Δu = 0
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walk on spheres [Muller 1956, Sawhney and Crane 2020]

Δu = 0 on Ω
u = g on ∂ΩD

Laplace eq
Dirichlet

fixed value g

∂ΩDΩ
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∂ΩD

∂ΩN

walk on stars [Sawhney et al. 2023]

Δu = 0 on Ω
u = g on ∂ΩD

Laplace eq
Dirichlet
Neumann

∂u
∂n

= h on ∂ΩN

fixed value g fixed derivative h

Ω
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importance of materials in rendering

perfectly reflective walls
“Neumann”

partially reflective walls
“Robin”

why are idealized materials not enough?



real physical materials neither perfectly absorptive (Dirichlet) 
nor perfectly reflective (Neumann)

acoustic

biochemical

thermal

Robin boundary conditions
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Robin boundary conditions

• real physical materials neither perfectly absorbing (Dirichlet) 
nor perfectly reflecting (Neumann)

• more realistic behavior modeled by Robin boundary conditions

Δ u = 0 on Ω∂u
∂n

− μu = h  on ∂Ω
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Robin boundary conditions

• real physical materials neither perfectly absorbing (Dirichlet) 
nor perfectly reflecting (Neumann)

• more realistic behavior modeled by Robin boundary conditions

Neumann 
(reflective )

Dirichlet 
(absorbing)

“how easily does the 
material absorb 
heat?”

Δ u = 0 on Ω∂u
∂n

− μu = h  on ∂Ω
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Robin boundary conditions

Analyze 
locally in 
region of 
interest.

visualization (light transport)

simulation (thermal conduction)

μ
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generalizing walk on stars

x = x0
until Dirichlet boundary reached:

S = find_largest_star_shape(x)
x = sample_point_on_boundary(S)

return g(x)

[Sawhney et al. 2023]

∂ΩN

∂ΩD

x0

x1

x2

x4xk

x3

r = 1; x = x0
until Dirichlet boundary reached:

S = find_reflectance_bounded_star_shape(x)
x = sample_point_on_boundary(S)
r *= reflectance(S, x)

return r * g(x)

ours

∂ΩR

∂ΩD

x0
x1

x2

x4

xk

x3

x5 x6

with Robin
boundary conditions



WALK ON SPHERES TO 
WALK ON STARS



Dirichlet problem

∂ΩD

Ω

Δu = 0 on Ω
u = g on ∂ΩD
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walk on spheres [Muller 1956, Sawhney and Crane 2020]

mean value integral

x0

∂Ωϵ

∂ΩDu(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

18
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walk on spheres [Muller 1956, Sawhney and Crane 2020]

mean value integral

∂B(x0)

R

closest point

x0

∂Ωϵ

∂ΩD

y ∼ U[∂B(x)]uniform distribution on sphere

Monte Carlo estimator

̂u (x) = {g(x̄), x ∈ ∂Ωϵ

̂u (y), otherwise
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walk on spheres [Muller 1956, Sawhney and Crane 2020]

mean value integral

∂B(x0)

R

closest point

x0 x1

x2

xk
∂Ωϵ

A walk terminates once 
solution can be approximated 

with boundary data

∂ΩD

y ∼ U[∂B(x)]uniform distribution on sphere

Monte Carlo estimator

̂u (x) = {g(x̄), x ∈ ∂Ωϵ

̂u (y), otherwise

u(x) =
1

|∂B(x) | ∫∂B(x)
u(y) dy

u(xk) = g(xk)

18



Neumann problem

Δu = 0 on Ω
u = g on ∂ΩD

x0 x1

∂B(x0) x2

xk

∂ΩN

∂u
∂n

= 0 on ∂ΩN

∂ΩD

u(xk) = ??
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Walk on Stars [Sawhney et al. 2023]

∂ΩN

∂ΩD

generalized mean value integral

u(x) = ∫∂St
PB(x, y)u(y) dy

Monte Carlo estimator

x0

̂u (x) = {g(x̄), x ∈ ∂Ωϵ

̂u (y), otherwise



20

Walk on Stars [Sawhney et al. 2023]

∂ΩN

∂ΩD

generalized mean value integral

u(x) = ∫∂St
PB(x, y)u(y) dy

Monte Carlo estimator

x0

̂u (x) = {g(x̄), x ∈ ∂Ωϵ

̂u (y), otherwise

∂St(x0)



20

Walk on Stars [Sawhney et al. 2023]

∂ΩN

∂ΩD

generalized mean value integral

u(x) = ∫∂St
PB(x, y)u(y) dy

Monte Carlo estimator

x0

̂u (x) = {g(x̄), x ∈ ∂Ωϵ

̂u (y), otherwise

∂St(x0)



20

Walk on Stars [Sawhney et al. 2023]

∂ΩN

∂ΩD

generalized mean value integral

u(x) = ∫∂St
PB(x, y)u(y) dy

Monte Carlo estimator

x0

̂u (x) = {g(x̄), x ∈ ∂Ωϵ

̂u (y), otherwise

∂St(x0)



20

Walk on Stars [Sawhney et al. 2023]

∂ΩN

∂ΩD

generalized mean value integral

u(x) = ∫∂St
PB(x, y)u(y) dy

Monte Carlo estimator

x0

x1

x2

x4xk

x3
̂u (x) = {g(x̄), x ∈ ∂Ωϵ

̂u (y), otherwise

∂St(x0)

y ∼ |P(x, y) |uniform direction sample



20

Walk on Stars [Sawhney et al. 2023]

∂ΩN

∂ΩD

generalized mean value integral

u(x) = ∫∂St
PB(x, y)u(y) dy

Monte Carlo estimator

x0

x1

x2

x4xk

x3
̂u (x) = {g(x̄), x ∈ ∂Ωϵ

̂u (y), otherwise

key difference: walk can now reflect off Neumann boundary

reflection

∂St(x0)

y ∼ |P(x, y) |uniform direction sample



avoiding multiple intersections

∂ΩN

∂ΩD

generalized mean value integral

u(x) = ∫∂A
PB(x, y)u(y) dy

xMonte Carlo estimator

̂u (x) =
n

∑
i=1

P(x, yi)
|P(x, yi) |

̂u (yi)

y2

A

multiple intersections  exponential growth or infinite variance⟹ ∂B

y1

y0

y ∼ |P(x, y) |uniform direction sample
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walk on stars [Sawhney et al. 2023]

∂ΩN

∂ΩD

generalized mean value integral

u(x) = ∫∂St
PB(x, y)u(y) dy

Monte Carlo estimator

̂u (x) = ̂u (y) St y

x
✱

✱ closest visibility silhouette

y ∼ |P(x, y) |uniform direction sample ∂B

RSt
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closest silhouette points

23

view
cone

normal cone

query 
point

SNCH
node

normal cone hierarchy

[Johnson & Cohen 2001]

n

n
n

query 
point

silhouette 
points
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GENERALIZING  
WALK ON STARS



Robin problem

∂ΩR

∂ΩD

x0

x1

x2

x4xk

x3

Δu = 0 on Ω
u = g on ∂ΩD

∂u
∂n

− μu = 0 on ∂ΩR

μ : ∂Ω → ℝ>0
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generalized mean value with dampening

∂ΩR

∂ΩD

x0

x1

x2

x4xk

x3

generalized boundary integral

u(x) = ∫∂St
ρμ(x, y)PB(x, y)u(y) dy

no change from walk on stars

̂u (x) = {
g(x̄), x ∈ ∂Ωϵ

ρμ(x, y) ̂u (y), otherwise

Monte Carlo estimator
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generalized mean value with dampening

∂ΩR

∂ΩD

x0

x1

x2

x4xk

x3

generalized boundary integral

u(x) = ∫∂St
ρμ(x, y)PB(x, y)u(y) dy

no change from walk on starsreflectance

̂u (x0) = g(xk)
k−1

∏
i=0

ρμ(xi, xi+1)

Monte Carlo estimator

reflectance modulates 
path throughput

 exponential growth in path throughputρμ(x, y) ∉ [0,1]⟹
26
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keeping reflectance bounded

Neumann μ = 0 Dirichlet μ = ∞Robin

intuition: interpolate between WoSt and WoS

closest point on boundary✱ closest visibility silhouette ρμ(x, y) ∉ [0,1]
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keeping reflectance bounded

Neumann μ = 0 Dirichlet μ = ∞Robin

intuition: interpolate between WoSt and WoS

∂ΩR

∂ΩD

x
∂ΩR

∂ΩD

x
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x
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keeping reflectance bounded

∂ΩR

∂ΩD

x

generalized boundary integral

u(x) = ∫∂St
ρμ(x, y)PB(x, y)u(y) dy

ρμ(x, y) ∉ [0,1]

ρμ(x, y) ∈ [0,1]

Monte Carlo estimator

̂u (x0) = g(xk)
k−1

∏
i=0

ρμ(xi, xi+1)

∂B

✱

RSt

✱ nearest visibility silhouette
28
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✱ nearest visibility silhouette

∂B

keeping reflectance bounded

∂ΩR

∂ΩD

x

key idea: shrink star-shaped domain to ensure ρμ(x, y) ∈ [0,1]

generalized boundary integral

u(x) = ∫∂St
ρμ(x, y)PB(x, y)u(y) dy

ρμ(x, y) ∉ [0,1]

Monte Carlo estimator

̂u (x0) = g(xk)
k−1

∏
i=0

ρμ(xi, xi+1)

ρμ(x, y) ∈ [0,1]

✱

RSt
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✱ nearest visibility silhouette

∂B

keeping reflectance bounded

∂ΩR

∂ΩD

x

key idea: shrink star-shaped domain to ensure ρμ(x, y) ∈ [0,1]

generalized boundary integral

u(x) = ∫∂St
ρμ(x, y)PB(x, y)u(y) dy

ρμ(x, y) ∉ [0,1]

Monte Carlo estimator

reflectance product bound to [0,1]

̂u (x0) = g(xk)
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∏
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✱ nearest visibility silhouette

∂B

keeping reflectance bounded

∂ΩR

∂ΩD

x

key idea: shrink star-shaped domain to ensure ρμ(x, y) ∈ [0,1]

generalized boundary integral

u(x) = ∫∂St
ρμ(x, y)PB(x, y)u(y) dy

ρμ(x, y) ∉ [0,1]

Monte Carlo estimator

reflectance product bound to [0,1]

̂u (x0) = g(xk)
k−1

∏
i=0

ρμ(xi, xi+1)

ρμ(x, y) ∈ [0,1]

✱

RSt

proof of estimator 
convergence based on 

operator-theoretic analysis
provided in appendix 
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walk on stars with probabilistic termination

∂ΩR

∂ΩD

generalized boundary integral

u(x) = ∫∂St
ρμ(x, y)PB(x, y)u(y) dy

Monte Carlo estimator

̂u (x0) = g(xk)
k−1

∏
i=0

ρμ(xi, xi+1)

key idea: probabilistically reflect or absorb on boundary

apply Russian roulette 
to terminate walks 

with low throughput

x0
x1

x2

x4

xk

x3

x5 x6
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walk on stars with probabilistic termination

∂ΩR

∂ΩD

generalized boundary integral

u(x) = ∫∂St
ρμ(x, y)PB(x, y)u(y) dy

Monte Carlo estimator

̂u (x0) = g(xk)
k−1

∏
i=0

ρμ(xi, xi+1)

key idea: probabilistically reflect or absorb on boundary

x0
x1

x2

x3

apply Russian roulette 
to terminate walks 

with low throughput



generalized walk on stars overview
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generalized walk on stars overview

only minor changes to original walk on stars method:

̂u (x0) = g(xk)
k−1

∏
i=0

ρμ(xi, xi+1)

apply Russian roulette 
to terminate walks 

with low throughput

modulate contributions 
by reflectance

probabilistically terminate 
paths at each boundary hit

view
cone

normal cone

query 
point

SNCH
node

update SNCH to query 
reflectance bounds

32



Poisson equation and non-zero Robin condition

∂ΩD

Δu = f on Ω
u = g on ∂ΩD

μ : ∂Ω → ℝ>0

∂ΩR
x0

x1

x2

x4

xk

x3

x5 x6

∂u
∂n

− μu = h on ∂ΩR
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variance reduction

WoSt reverse WoSt boundary value caching
[Qi  et al. 2022] [Miller et al. 2023]

reference

key idea: can directly apply existing variance reduction techniques

min value max value Robin boundary condition



EVALUATION



walk on boundary vs walk on stars

∂ΩR

x0
x1

x2
x4

xk

x3
x5 x6

∂ΩD

∂ΩR

∂ΩD

x0

x1

x2

x4

x3

x5

x6

walk on boundary walk on stars

branching paths (multiple intersections) 

unbounded path throughput 

ray trace on entire domain

no branching (single-intersections) 

bounded path throughput [0,1] 

construct star-shaped subomdinas

[Sabelfeld and Simonov 2013, Sugimoto et al. 2023] [Sawhney et al. 2023, ours]
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walk on boundary vs walk on stars

WoB WoSt (ours) reference

Ro
bi

n
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Monte Carlo thermal simulation
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Monte Carlo thermal simulation
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Monte Carlo thermal simulation

analyze locally 
in region of 

interest.
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Monte Carlo thermal simulation

analyze locally 
in region of 

interest.
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Monte Carlo thermal simulation

analyze locally 
in region of 

interest. only simulate what you see!

39



WHAT’S NEXT?



differentiable solvers
Goal: recover shape given measurements, e.g., temperature

reference optimized

PDE solution

reference optimized

triangle mesh 
41
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differentiable solvers
Goal: recover shape given measurements, e.g., temperature

reference optimized

PDE solution

reference optimized

triangle mesh 

boundary and source terms 
[Yilmazer et al. 2022]

shape derivatives
[Yu et al. 2024, Miller et al. 2024]

41
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pointwise estimator

variance reduction, variance reduction, var..
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boundary value caching [Miller et al. 2023] pointwise estimator

variance reduction, variance reduction, var..
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boundary value caching [Miller et al. 2023] pointwise estimator

variance reduction, variance reduction, var..

Mean Value Caching for Walk on Spheres

Ghada Bakbouk Pieter Peers

College of William & Mary

Abstract
Walk on Spheres (WoS) is a grid-free Monte Carlo method for numerically estimating solutions for elliptical partial differential

equations (PDE) such as the Laplace and Poisson PDEs. While WoS is efficient for computing a solution value at a single

evaluation point, it becomes less efficient when the solution is required over a whole domain or a region of interest. WoS

computes a solution for each evaluation point separately, possibly recomputing similar sub-walks multiple times over multiple

evaluation points. In this paper, we introduce a novel filtering and caching strategy that leverages the volume mean value

property (in contrast to the boundary mean value property that forms the core of WoS). In addition, to improve quality under

sparse cache regimes, we describe a weighted mean as well as a non-uniform sampling method. Finally, we show that we can

reduce the variance within the cache by recursively applying the volume mean value property on the cached elements.

CCS Concepts
• Computing methodologies ! Shape analysis;

1. Introduction

Partial differential equations (PDEs) form the basis of many fun-
damental computer graphics problems. The recently introduced
Monte Carlo Geometry Processing (MC-GP) framework [SC20]
offers an exciting new strategy for solving PDEs defined over vol-
umes without the need to discretize or create a grid. At its core,
MC-GP builds on the Walk on Spheres (WoS) algorithm for solving
PDEs. Due to its conceptual similarity to path tracing, many Monte
Carlo innovations and solution strategies from rendering have been
applied to MC-GP, such as importance sampling [SC20] and re-
verse and bidirectional algorithms [QSBJ22].

Monte Carlo techniques are very effective for computing a solu-
tion estimate at a single evaluation point. However, in many prac-
tical cases, the solution over the whole volume or region of in-
terest in the volume is desired. Because the solution estimate is
computed for each evaluation point separately and independently,
many similar sub-walks are recomputed multiple times. To re-
duce recomputation, prior work looked at interpolation with Mov-
ing Least Squares [Nea04] of forward walks, and reusing reverse
walks [QSBJ22]. While the former is biased, the latter still requires
a large number of reverse walks to ensure a sufficiently dense over-
lap with each evaluation point.

In this paper we present a novel method for reusing forward

walks that is easy to implement in existing WoS frameworks. At the
core of our method is the volume mean value property, hence we
call our method (volume) mean value caching. The volume mean
value property is the volumetric counterpart of the (boundary) mean
value property that enables walking on spheres. We show that sim-

ply performing the first step in a WoS-walk over the sphere’s vol-
ume instead of its boundary leads to a filtering method that greatly
reduces Monte Carlo noise over multiple parallel WoS estimates
covering a volume. We also show that the volume mean value prop-
erty leads to an efficient caching scheme that is unbiased for uni-
formly distributed cache samples. In addition, to equalize variance
between evaluation points, we describe a (consistent) non-uniform
sampling strategy. Furthermore, we introduce a weighted volume
mean value property to improve the smoothness of the solution
when using a low number of cache samples. Finally, we show that
by recursively applying the volume mean value property, we can
also reduce the variance in the cache itself.

We validate our mean value caching strategy on a variety of
PDEs and show that we can reduce the required sample count by
several orders of magnitude for equivalent error levels. In summary,
our contributions are:

• A hybrid volume and boundary mean value formulation of WoS;
• An unbiased post-processing filtering method for reducing

Monte Carlo noise over uniformly distributed WoS estimates;
• A mean value caching and gathering method for reusing WoS-

walks that is unbiased for uniformly distributed cache samples,
and consistent for a non-uniformly sampled cache;

• A weighted volume mean value formulation; and
• A recursive algorithm for reducing the variance within the cache.

2. Related Work

Walk on spheres [Mul56] was introduced to computer graph-
ics in the context of grid-free Monte Carlo geometry process-
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caching methods
[Miller et al. 2023, Bakbouk and Peers 2023, Li et al. 2023]

sampling methods
[Qi et al. 2022]

control variates
[Sawhney and Crane 2020,  Li et al. 2024]
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broader range of physics
MC solver as subroutine

[Rioux-Lavoix et al. 2022, Sugimoto et al. 2024, Jain et al. 2024]
coupling MC physics solvers

[Bati et al. 2023]
new MC physics solvers

lots to explore here! 

wave equations,  
linear elasticity,  

Etc.
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open-source walk on stars solver

github.com/rohan-
sawhney/zombie
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